
A Scalable Register File Architecture for Dynamically Scheduled Processors

Steven Wallace and Nader Bagherzadeh
Department of Electrical and Computer Engineering

University of California, Irvine
Irvine, CA 92697

swallace@ece.uci.edu, nader@ece.uci.edu

Copyright 1997 IEEE. Published in the Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques ’96, October 21-23, 1996 in Boston, Massachusetts, USA. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact:

Manager, Copyrights and Permissions
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.



A Scalable Register File Architecture for Dynamically Scheduled Processors

Steven Wallace and Nader Bagherzadeh
Department of Electrical and Computer Engineering

University of California, Irvine
Irvine, CA 92697

swallace@ece.uci.edu, nader@ece.uci.edu

Abstract

A major obstacle in designing dynamically scheduled
processors is the size and port requirement of the register
file. By using a multiple banked register file and performing
dynamic result renaming, a scalable register file architec-
ture can be implemented without performance degradation.
In addition, a new hybrid register renaming technique to
efficiently map the logical to physical registers and reduce
the branch misprediction penalty is introduced. The perfor-
mance was simulated using the SPEC95 benchmark suite.

1 Introduction

The instruction level parallelism in programs allows a
superscalar microprocessor to execute multiple instructions
per cycle. It can be exploited by hardware providing re-
sources to perform dynamic instruction scheduling. In-
dependent instructions can be discovered at run-time and
scheduled to functional units out-of-order. To avoid anti and
outputdependencies, registers can be renamed by using a re-
order buffer [5] or a mapping table [10]. The Power PC [7],
Pentium Pro [6], and MIPS R10000 [10] are examples of
superscalar microprocessors that perform out-of-order issue
and register renaming.

The register file is a design obstacle for superscalar micro-
processors. If

�
instructions can be issued in a cycle, then

a superscalar microprocessor’s register file needs �
�

read
ports and

�
write ports to handle the worst-case scenario.

The area complexity for the register file grows proportional
to
���

[2]. Therefore, a new architecture is needed to keep
the ports of a register file cell constant as

�
increases.

In addition, the register requirements for high perfor-
mance and exception handling can be quite high. Farkas
et. al. conclude that for best performance, 160 registers
are needed for a four-way issue machine, and 256 registers
are needed for an eight-way issue machine [4]. Therefore,

it is desirable to reduce the register requirements and still
maintain performance.

A major difficulty in the simultaneous multithreading
(SMT) architecture, introduced by Tullsen et. al., was the
size of the register file [8]. They supported eight threads on
an eight-way issue machine, using 356 total registers with
16 read ports and 8 write ports. Compared to a standard
32-register, 2 read port, 1 write port register file of a scalar
processor, the area of the SMT register file is estimated to
be over seven hundred times larger. To account for the size
of the register file, they took two cycles to read registers
instead of one. This underscores the need for a mechanism
to scale the register file, yet still have the benefits of area
and access time of a register file for a scalar processor.

To attack this problem, we approach the problem of scal-
ability of a register file in two directions. First, we show
how it is possible to use multiple banked register file to re-
duce the port requirement to that of a scalar processor: 2
read ports and 1 write port. Second, we show how to reduce
the total register requirement by improving the utilization of
the registers.

Register renaming is performed by mapping the logical
registers intophysical registers, as in the MIPS R10000 [10].
When an instruction is decoded, a new physical register
from a free list is allocated for its destination register and
entered into a mapping table. The old physical register for
that register is entered into a recovery list. The recovery
list (also called the active list) maintains the in-order state
of instructions and can be used to undo the mappings in
the event of a mispredicted branch or exception. After
an instruction completes and all previous instructions have
completed, its register is committed and the old value is
discarded by freeing the old physical register contained in
the recovery list. The mapping table is used to lookup the
current logical to physical registers for source operands.

A major drawback with this mapping technique is the
large penalty required to recover from a branch mispredic-
tion or exception, except if a checkpoint mechanism is used.
The R10000 uses checkpointing for up to four branches, but



not for exceptions [10]. In order for checkpointing to be
realistic in hardware, checkpoint storage must be integrated
into the basic cell of the mapping table to have direct access
for a single cycle recovery. Thus, a mapping table’s cell size
is greatly increased and is not scalable with the number of
branch checkpoints. With increased speculation from wide-
issue superscalars and larger mapping tables from SMTs,
using standard RAM cells becomes imperative for speed
and scalability. Therefore, we introduce a new hybrid reg-
ister renaming technique which significantly reduces this
penalty yet still retains some of the benefits of a mapping
table, yet still remains scalable.

To begin with, we explain our simulation environment
and machine model. Then we discuss register renaming
and our hybrid technique. After discussing register file
utilization, we finally present the dynamic result renaming
mechanism for a scalable register file architecture.

2 Experimental Methodology

The performance of the concepts we describe was simu-
lated by running the SPEC95 benchmark suite on the SPARC
architecture using the Shade instruction-set simulator [3].
Each program was compiled using the SunPro compiler with
standard optimizations (-O) and simulated for the first 100
million instructions. Also, we simulated the SPECint95
benchmark suite on the SDSP (Superscalar Digital Signal
Processor) architecture [9], using the GNU CC compiler and
second-level optimizations (-O2). The instruction set of the
SDSP is very similar to MIPS.

To verify that our new register file architecture performs,
we chose a reasonable machine model that resembles com-
mercial processors including Power PC 604 [7] and MIPS
R10000 [10]. Table 1 lists the quantity, type, and latency of
the different function units modeled. The quantity of func-
tional units for the 8-way superscalar architecture is twice
that of the 4-way superscalar architecture.

The machine model parameters used in simulation are:
instruction cache: 64 Kbyte, two-way set associative LRU,
16 byte line size, 2 banks, self-aligned fetching, 10 cycle
miss penalty; data cache: 64 Kbyte, two-way set associa-
tive LRU, 16 byte line size, 4 banks, 2 simultaneous accesses
per cycle, lockup-free, write-around, write-through, 4 out-
standing cache request capability, 10 cycle miss penalty;
branch prediction: 2K x 2-bit pattern history table indexed
by XOR of PC and global history register [11]; specula-
tive execution: enabled; interrupts: precise; instruction
window: centralized, 32 entries for 4-way, 64 entries for
8-way; register file: separate general purpose and floating
point register files; logical registers are mapped to physical
registers; recovery list: 32 entries for 4-way, 64 entries for
8-way; store buffer: 16 entries.

The instruction scheduling logic uses a single instruction

Table 1. Functional Unit Parameters
Quantity Type Latency

4-way 8-way
4 8 ALU 1
2 4 Load unit 1
2 4 Store unit -
1 2 Int. multiply 2
1 2 Int. divide 10
4 8 FP add 3
1 2 FP multiply 3
1 2 FP divide 16
1 2 FP other 3

window for all functional units [5]. We chose a reasonable
size, 32 entries for 4-way issue and 64 entries for 8-way
issue, that would give good performance and produce a
strong demand for registers during issue and writeback. A
variable number of instructions, up to the decode width of
4 or 8 (equal to issue capability), may be inserted into the
instruction window, if entries are available. Instructions are
issued out-of-order using an oldest first algorithm. Store
instructions are issued in-order and load instructions may be
issued out-of-order in between store instructions.

Each cycle, a variable number of registers, up to the de-
code width, may be retired from the recovery list. If entries
are available, then they may be used by new instructions,
up to the decode width. The old physical register of corre-
sponding to the same destination register is inserted into the
recovery list.

The pipeline stages of the processor modeled are instruc-
tion fetch, decode and rename, issue, register read, execute,
register write, and commit. Consequently, two levels of by-
passing are required for back-to-back execution of depen-
dent instructions. Also, we optimistically issue instructions
dependent on a load, in expectation of a cache hit [8]. If a
cache miss occurs, then the dependent instructions must be
re-issued.

3 Register Renaming

A major performance penalty with using a mapping table
and a recovery list is the time it takes to recover from a
mispredicted branch. Using the recovery list, the mapping
table can be recovered by undoing each entry in the list one
at a time. The mapping table can be updated in groups at a
time, but the rate is limited by the number of read and write
ports. If

�
ports are available and � register mappings need

to be recovered, then it will take ��� � cycles to recover.
Hence, the longer it takes for the branch to be resolved

and found incorrectly predicted, the larger the penalty.
In fact, this essentially doubles the branch misprediction
penalty, compared to a mechanism that can recover from a
mispredicted branch in one cycle.

In addition, the ports of the mapping table grow propor-
tional to

�
, so it is not ideally scalable. On the other hand,

2



with a fixed number of entries and a relatively small entry
size,

�
would have to be large in order to cause real prob-

lems from a practical standpoint. Nevertheless, it would be
beneficial to reduce the number of ports.

3.1 CAM/Table Hybrid

The beauty of a register renaming mechanism that uses
CAM logic, such as a reorder buffer [5], is that it can re-
cover from a mispredicted branch in one cycle by simply
invalidating appropriate entries relative to the branch. We
could use a CAM lookup to search for speculative registers
(extra registers reserved for temporary or speculative use
until committed), and a table to hold the logical to physical
mapping of committed registers. In this case, the recovery
time of a mispredicted branch would be one cycle, as de-
sired. Unfortunately, the CAM logic scales worse than the
mapping table. To begin with, a CAM cell is more expen-
sive and slower than a normal RAM cell. In addition, the
lookup array grows as the number of speculative registers
increases. Therefore, it is desirable to have the significant
performance benefits of the CAM lookup and the reasonably
scalable table lookup.

As a compromise, we propose a CAM/table mapping
hybrid technique. Figure 1 is a block diagram of the re-
naming hardware of such a hybrid technique. There are a
limited number of CAM lookup entries, while the rest of
the speculative registers are controlled by the recovery list
and the mapping table. Source operands are first searched
for matching entries in the CAM lookup list for the most
recent destination register. If a match is not found, then the
register is looked up in the mapping table. New destination
registers enter the top of the lookup list and shift in a FIFO
manner. When a destination register leaves the CAM lookup
list, only then it is entered into the mapping table. Hence,
when a mispredicted branch is encountered, if it is still in the
CAM lookup entries, then there is no additional penalty. If
it has been entered into the mapping table, then the recovery
list is used to undo the mappings. In this situation there is
a significant savings in the misprediction penalty, which is
determined by the size of the CAM lookup.

To compare the performance benefit from a full map-
ping table, full CAM lookup, and hybrid, Table 2 lists the
misprediction penalty and instructions per cycle (IPC) for
CAM depths (number of entries divided by decode width)
of 0, 2, 4, and 8. Of course, the simulator continued down
the mispredicted path until it was resolved to determine the
misprediction penalty.

We observe a significant performance improvement when
the CAM lookup is used because the misprediction penalty
is reduced. After about half the total depth (

��� ����� ),
there is a marginal improvement in performance compared
to a full CAM lookup (

��� ���	� ). Therefore, we conclude

Free
Old
PReg

Bank
1 2

Bank Bank Bank
43

FREE
LI ST

Detection
Intrablock

Source Operands

......

......

Itag PReg Ready...

...

Mapping
Table

Operands to
Instruction Window

Send renamed

Allocate PReg
for Result and
    Send to
  RF and IW

Old
PReg

Next

Recovery
List

Update PRegOld PReg

Itag

CAM Lookup

ReadyReg
Dest

Itag
Dest Dest

PReg

Figure 1. Block Diagram of Hybrid Renaming

that the hybrid CAM/table is a good compromise between
cost and performance. Also, there might not be enough time
to do a CAM lookup and table lookup serially, so it can be
done in parallel at the expense of additional ports in the
table.

3.2 Intrablock Decoding

Many operands are dependent on a result in the same
block or in the recent past. For example, in a block of four
instructions, each with one operand (since about half are usu-
ally constant or not used), about 1.2 operands are expected
to be dependent within that block. If intrablock dependen-
cies are exploited, the number of CAM ports required to
search the lookup entries may be reduced. If there is not
enough time in the decode stage to determine the intrablock
dependencies, then pre-decode bits in the instruction block
can be used. Each source operand in a block requires 
���
 ���
bits to encode which of the previous

���	�
instructions it

is dependent on, or none at all. In addition, if an operand is
dependent on an instruction which comes before the starting
position of a block, the dependency information is ignored.
When each line is brought into the instruction cache, or after
the first access, the line containing a block of instructions
is annotated with � � 
���
 ��� bits (for two source operands)
indicating if an instruction is dependent on another one in

Table 2. Bad Branch Penalty and Performance
Arch/Suite/ CAM=0 CAM=2 CAM=4 CAM=8
Issue Pen IPC Pen IPC Pen IPC Pen IPC
SDSP/Int/4 5.7 2.63 4.4 2.70 3.8 2.74 3.5 2.75
SPARC/Int/4 6.0 2.20 4.6 2.29 4.0 2.32 3.7 2.35
SPARC/FP/4 6.1 1.58 4.8 1.61 4.1 1.63 3.8 1.64
SDSP/Int/8 6.8 3.70 5.4 3.85 4.7 3.93 4.2 3.99
SPARC/Int/8 8.0 2.70 6.4 2.84 5.5 2.91 5.0 2.96
SPARC/FP/8 8.6 1.91 7.1 1.96 6.1 2.00 5.4 2.03

3



the same block.
After running simulations using intrablock detection, we

conclude decoding four instructions requires one less CAM
port to search the lookup array for equivalent performance.
Instead of needing five or six CAM ports, now the CAM
lookup can use four or five. When the block size is doubled
to eight instructions, we expect about four out of eight regis-
ter operands to be intrablock dependent. Therefore, instead
of doubling the number of CAM ports when the decode size
doubles, an increase of only one port is needed – to about
five or six.

If we refer back to Figure 1, the intrablock decoding now
can be done before any CAM lookups or table mappings.
As
�

increases, the number of operands needed for CAM
and table lookup only increases slightly because it becomes
more likely operands will be dependent within the same
block. Hence, The hybrid CAM/table renaming scheme is
scalable.

4 Register File Utilization

A disadvantage with allocating a physical register at de-
code time is that physical registers go unused until they
receive their result value. As a result, a good portion of the
register file is wasted most of the time. The total register
file utilization is defined to be the ratio of the number of
physical registers with a useful value and the total number
of physical registers. In addition, the speculative register
file utilization is the ratio of the number of physical regis-
ters with a useful speculative value and the total number of
physical registers reserved for speculative results (does not
include logical registers). A value is considered to be useful
if it is needed to ensure proper execution of the machine.
With speculative execution and precise interrupts, this oc-
curs from the time a register receives its result until it is
committed.

Table 3 shows the average speculative and total register
file utilization per cycle for 4-way and 8-way superscalar
processors. The mean, median, and

�������
percentile of the

number of useful speculative registers are shown. Physical
registers used to store the state of the logical register file
will always be active, so the total register file utilization is
not as meaningful as the speculative register file utilization.

Table 3. Average RF Utilization per Cycle
Arch/Suite/ % spec % total mean median ���
	�� %
Issue RF util RF util
SDSP/Int/4 26.3 63.2 8.43 8 17
SPARC/Int/4 16.0 84.0 5.11 4 12
SPARC/FP/4 6.3 53.2 2.03 1 6
SDSP/Int/8 24.6 49.7 15.73 15 32
SPARC/Int/8 12.4 72.0 7.91 5 21
SPARC/FP/8 4.8 54.4 2.80 1 9

From the results presented, it is observed that less than one
quarter of the registers reserved for speculative execution
are used on the average. Less than half of the available
speculative registers are used 90% of the time. The floating
point RF used in the SPARC SPECfp95 has an extremely low
utilization: less than 6%. Hence, the majority of speculative
registers are going to waste most of the time.

5 Dynamic Result Renaming

As has been shown, many physical registers in the register
file have no value or contain a useless value. Therefore,
one way to reduce the size of the RF is to improve its
utilization. Physical registers allocated with no value can be
virtually eliminated by allocating at result write time instead
of decode time. This is accomplished by splitting the register
file into multiple banks, each bank with two read ports and
one write port, as shown in Figure 2. Each bank maintains
its own free list (see Figure 1), and old physical registers are
freed when an instruction commits. In addition, a bank is
directly connected to one result bus. When functional units
arbitrate for result buses, each bank allocates an entry for a
result. This cannot be done at decode time, since it is not
known exactly which functional unit and bus a result will
eventually arrive. On the other hand, by allocating the entry
when results are written, multiple banks can be used with
one write port and have no conflicts with writing results into
the same bank. As a result of allocating physical registers at
result write time, the size of each bank can remain constant
as the number of banks increase proportionally to the issue
width.

Although allocating physical registers at write time cre-
ates no conflicts for the single write port in a bank, the two
read ports on one bank can cause contention with the dis-
patch queues/instruction window. For example, three ALUs
could require three operands from a single bank. With only
two read ports, one ALU would not be able to issue its
instruction. Even though this event can happen, it is not
a likely event for two reasons. First, not every instruc-
tion issued requires two register operands. Some have one
operand, while others require an immediate value. Second,
most instructions issued bypass one of their results from the
result of an instruction completed the previous cycle. Con-
sequently, such a limited number of read ports per bank has
a very limited impact on performance.

Table 4 demonstrates this fact by showing the distribu-
tion of read operand types, and the percentage of individual
operand requests failed due to insufficient ports. If the
operand is a register, then it can originate from the first or
second level of bypassing, the first or second read port of a
bank, or be an identical register read from the first or second
read port. On the other hand, if it is not a register operand,
then it can be an immediate value, zero value, or no operand

4



RF
Bank

RF
Bank

RF
Bank

RF
Bank

Instruction
Window

Update
Result
PReg

Result Bus

.   .   .   .   .FU FU

Bypass Network

Result Bus Muxes

1 2 3 4

(Read Operands)
Issue Instructions

(Opcode, Renamed Operands)
New Instructions

Figure 2. Diagram of Multiple Banked RF

at all. Interestingly, although a significant percentage of
register operands came from the first read port, few required
the second read port. Furthermore, a large percentage of
registers are bypassed, especially at the first level. Since
many operands are bypassed, a traditional RF for map on
decode could reduce the number of read ports by about 50%.
The number of write ports, however, must remain the same.
Consequently, although the size of its RF may be reduced,
this does not lead to a scalable solution.

The allocation of registers for results is pipelined. Two
cycles before the result will be ready for writing, write ar-
bitration takes place and entries for the corresponding re-
sult buses/banks are allocated. If allocation fails, then the
pipeline for the functional unit which is writing to that bank
is stalled. Also, another instruction may be issued to the
functional unit before the instruction window is notified that
the functional unit is stalled. Consequently, two instructions
may be waiting in the functional unit’s pipeline. This does
not create a problem since already two levels of bypass-
ing exist. If subsequent instructions require a stalled result,
then the result continues to use the bypass network until it
is written to the register file.

In order to be able to allocate registers at result write
time and be able to do register renaming for out-of-order
execution, two types of renaming must take place. Before
an instruction is placed into the instruction window, its des-

Table 4. Read Operand Category Distrib. (%)
4 Issue 8 Issue

Architecture SDSP SPARC SDSP SPARC
SPEC Int Int FP Int Int FP
Bypass L1 25.1 19.7 19.4 19.7 13.8 21.5
Bypass L2 4.8 4.3 2.6 4.3 2.9 2.3
Read P1 13.2 18.1 20.4 18.1 9.6 18.8
Read P2 0.8 1.5 5.2 1.5 1.1 3.4
Identical 0.3 0.6 1.6 0.6 1.0 2.5
Zero Val 9.3 9.3 8.7 9.3 13.8 8.7
Imm. Val 32.7 32.7 38.8 32.7 54.5 38.9
No Operand 13.8 13.8 3.3 13.8 3.5 4.0
Failed Read 0.2 0.2 7.3 0.2 7.4 5.1

tinationoperand is renamed to a unique instruction tag (itag)
and inserted into the mapping table. This contrasts to re-
naming the register to a physical register since allocation has
not taken place yet. After the physical register has been al-
located for the result, then the instruction window, mapping
table, and recovery list need to be notified of the physical
register (preg). Using the result’s destination register iden-
tifier, the mapping table is updated, if necessary. Matching
itag entries in the instruction window receive the preg. En-
tries in the instruction window are already matched to mark
its operand ready, so there is little additional cost involved
besides storage cost. The recovery list may contain an entry
with an invalid old preg because its value is not ready. As a
result, there needs to be some way of finding that entry so it
can be updated. One way would be to do a CAM matching
based on the itag. A more efficient mechanism would be to
store the next itag in the recovery list. When the entry in the
recovery list is marked complete, the next itag is read, and
the preg is written into the entry index by the next itag.

The greatest cost in hardware using dynamic result re-
naming is the full multiplexer network used for reading and
writing registers. This cost, however, does not begin to
compare to the enormous time and space savings by using
a two read port and one write port register file. The bypass
network is still required for map on decode case. In addi-
tion, the bypass network might be reduced by implemented
suggestions by Ahuja et. al. [1].

5.1 Deadlocks

The most critical aspect of using dynamic result renaming
is avoiding deadlock situations. If there are fewer specu-
lative registers than entries in the recovery list, then it is
possible all registers can be allocated with results still pend-
ing and create a deadlock situation. To guarantee a deadlock
will not occur, two conditions must exist: the oldest instruc-
tion must be able to issue its instruction, and the oldest
instruction must be able to write its result.

It may occur that the oldest instruction is not able to
issue its instruction if the functional unit it requires is stalled
and there are no free registers available. Therefore, if this
situation arises, the oldest instruction and only the oldest
instruction is permitted to issue its instruction to a functional
unit whose results are stalled and latched into its two stages.
When it completes, the result is delivered to the register
file and written using the old physical register stored in the
recovery list (thereby guaranteeing the second condition).

Moreover, if the oldest instruction is unable to issue or
complete its instruction, then the processor temporarily ex-
ecutes in a scalar manner. In addition, each functional unit
must have access to enough banks that equal to at least the
number of entries in the recovery list plus the number of
logical registers (in most situations, the entire register file).

5



8 16 24 32 40 48 56 64 72 80
Speculative physical registers

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

SDSP Int
SPARC Int
SPARC FP
SDSP Int base
SPARC Int base
SPARC FP base

2.70

2.60

1.91

1.90

Solid line: 8 issue
Dashed line: 4 issue

1.55

1.57

2.20

2.10

2.63

3.70

Figure 3. RF Performance Comparison

5.2 Performance

The performance of dynamic result mapping is compared
to the performance of mapping during decoding. The num-
ber of speculative physical registers is varied. Figure 3
shows the IPC for a 4-way and 8-way issue processors. The
map on decode (referred as the base case) does not need to
vary the speculative physical registers because the recov-
ery list is constant at 32 (or 64) entries and requires a fixed
amount. On the other hand, map on write can be affected
by more or less registers than this amount.

The performance difference from the base case is neg-
ligible, except for SPECint95 on the SPARC architecture,
where a 5% decrease is observed. Increasing the number of
physical registers reduced this gap for the 8-way issue pro-
cessor but did not help much for the 4-way issue processor.

The reason why a slight performance decrease is ob-
served in the SPARC architecture and not in the SDSP ar-
chitecture is the difference in the number of logical integer
registers. The ratio of logical to speculative registers in the
SDSP is 1:1 while the ratio is 4.25 for the SPARC (136 in-
teger registers) for a 4-way issue processor. This ratio is cut
in half when the decode width and recovery list are doubled.
When there is a large ratio, the speculative registers have a
difficult time competing against logical registers in a bank.
Logical registers can pool into one particular bank, thereby
restricting its usage. Registers will then tend to be allocated
from a bank with most of the free registers, and functional
units will stall since writing becomes limited. This perfor-
mance problem can be avoided by reducing the ratio and/or
increasing the number of banks.

The total and speculative utilization of the register file
increases, and the number of speculative registers is re-
duced by 25% to 50%, with none or a small performance
decrease. Sometimes the performance can actually increase

by decreasing the number of registers. This is not due to the
renaming, but from a slight reduction in the misprediction
penalty.

6 Conclusion

A new scalable register file architecture was introduced
that is suitable for wide-issue, dynamically scheduled pro-
cessors. This was accomplished by using a multiple banked
register file and binding the result to a physical register at the
write stage. Our simulation results show the proposed tech-
nique did not have any significant performance drawbacks
compared to mapping at instruction decode. In addition, we
proposed a hybrid technique of a CAM lookup list and a
mapping table to significantly reduce the branch mispredic-
tion penalty and still tolerate a large number of speculative
registers.

References

[1] P. Ahuja, D. Clark, and A. Rogers. The performance im-
pact of incomplete bypassing in processor pipelines. In
28th Annual International Symposium on Microarchitecture,
November 1995.

[2] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register
files for VLIWs: A preliminary analysis of tradeoffs. In
25th Annual International Symposium on Microarchitecture,
pages 292–300, Portland, Oregon, December 1992.

[3] B. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In ACM SIGMETRICS,
1994.

[4] K. I. Farkas, N. P. Jouppi, and P. Chow. Register file design
considerations in dynamically scheduled processors. In 2nd
International Symposium on High-Performance Computer
Architecture, pages 40–51, February 1996.

[5] M. Johnson. Superscalar Microprocessor Design. Prentice
Hall, Englewood Cliffs, 1991.

[6] D. B. Papworth. Tuning the pentium pro microarchitecture.
IEEE Micro, pages 8–15, April 1996.

[7] S. P. Song, M. Denman, and J. Chang. The Power PC 604
RISC microprocessor. IEEE Micro, pages 8–17, October
1994.

[8] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choise: Instruction fetch
and issue on an implementable simultaneous multithread-
ing processor. In 23rd Annual International Symposium on
Computer Architecture, May 1996.

[9] S. Wallace and N. Bagherzadeh. Performance issues of a
superscalar microprocessor. Microprocessorsand Microsys-
tems, 19(4):187–199, May 1995.

[10] K. C. Yeager. MIPS R10000 superscalar microprocessor.
IEEE Micro, pages 28–40, April 1996.

[11] T.-Y. Yeh and Y. N. Patt. Alternative implementations of
two-level adaptive branch prediction. In 19th Annual Inter-
national Symposium on Computer Architecture, pages 124–
134, Gold Cost, Australia, May 1992.

6


