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Abstract—This paper presents a new algorithm, Evolutionary
eXploration of Augmenting Memory Models (EXAMM), which
is capable of evolving recurrent neural networks (RNNs) using a
wide variety of memory structures, such as ∆-RNN, GRU, LSTM,
MGU and UGRNN cells. EXAMM evolved RNNs to perform
prediction of large-scale, real world time series data from the
aviation and power industries. These data sets consist of very long
time series (thousands of readings), each with a large number of
potentially correlated and dependent parameters. Four different
parameters were selected for prediction and EXAMM runs were
performed using each memory cell type alone, each cell type
and simple neurons, and with all possible memory cell types
and simple neurons. Evolved RNN performance was measured
using repeated k-fold cross validation, resulting in 2420 EXAMM
runs which evolved 4, 840, 000 RNNs in ∼24, 200 CPU hours
on a high performance computing cluster. Generalization of the
evolved RNNs was examined statistically, providing interesting
findings that can help refine the RNN memory cell design as
well as inform future neuro-evolution algorithms development.

I. INTRODUCTION

This work is motivated by a major open question in the
field of artificial neural network (ANN) research: What neu-
ral memory structures appear to be optimal for time-series
prediction? Conducting such a search over ANN structures
entails manual, primarily human-driven labor and activity. As
more advances are made in the field, the number of possible
architecture variations and modifications explodes combinato-
rially. The growing space of architecture structures combined
with the limited, often simple heuristic local search that can
be conducted by human experts means that efficiently finding
architectures that generalize well while still maintaining low
parameter complexity (given that regularization is important
for most data sample sizes) makes for a nearly impossible,
largely intractable search problem.

In natural biological systems, the process of evolution, over
long time-spans, endows organisms with various inductive
biases that allow them to adapt and learn their environment
quickly and readily. It is thought that these inductive biases
are what provide infants the ability to quickly learn complex
pattern recognition/detection functions with limited data across
various sensory modalities [1], [2], such as in visual and
speech sensory domains. While artificial forms of evolution,
such as the classical genetic algorithm [3], are significantly
simplified from the actual evolutionary process that creates

useful inductive biases to drive development and survival of
organisms at large, these optimization procedures offer the
chance to develop non-human centered ways of generating
useful and even potentially optimal neural architectures.

While neuro-evolution (applying evolutionary processes to
the development of ANNs) been used in searching the space
of feed forward and even convolutional architectures for tasks
involving static inputs [4]–[13], less effort has been put
into exploring the evolution of recurrent memory structures
that operate with complex time based data sequences and
uncovering what forms and structures the neuro-evolutionary
process finds. Insights extracted from the evolved architectures
can serve as inductive biases for subsequent research in neural
network design and development.

The evolution of recurrent neural networks (RNNs) poses
significant challenges above beyond the already challenging
task of evolving feed forward and convolutional neural net-
works. First, RNNs are more challenging to train due to
issues with exploding and vanishing gradients which occur
when unrolling a RNN over a long time series with the
backpropagation through time (BPTT) algorithm [14]. Due to
this issue, development of recurrent memory cells which can
preserve memory and long term dependencies while alleviating
the exploding and vanishing gradient problem has been an area
of significant study [15]–[19]. Further, as in the case of time-
varying data, input samples are strictly ordered in time and
thus induce long-term dependencies that any useful stateful
adaptive process/model must extract in order to generalize. The
complexity of time-series tasks varies, entailing the prediction
of a particular variable of interest over time or even con-
structing a full generative model of all the available variables,
perhaps additionally involving other non-trivial tasks such as
data imputation.

Due to these issues, RNNs for time series data prediction
can require the use of a variety of memory cell structures
in addition to recurrent connections spanning different time
spans. To optimize within this large search space, Evolutionary
eXploration of Augmenting Memory Models (EXAMM) inte-
grates an extensible collection of different complex memory
cell types with simple neuronal building blocks and recurrent
connections of varying time spans. EXAMM was used to
evolve RNNs with various cell types to predict time series
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data from two real-world, large-scale data sets.
In total, 2420 EXAMM runs were done using repeated k-

fold cross valdation, generating a large set of evolved RNNs
to analyze statistically. Results are particularly interesting
in that while they show allowing selection from any of
the available memory cell structures can provide very well
performing networks in many test cases; it does come at the
cost of reliability (how well the evolved RNNs perform in
an average case). Further, even small modifications to the
neuro-evolutionary process, such as allowing simple neurons,
can generally improve predictions, but they can also have
unintended consequences – in some examples it meant the
difference between a memory cell structure performing the
best as opposed to the worst. The authors hope that these
results can help guide not only the further development of
neuro-evolution algorithms, but also help refine and inform
the development of new memory cell structures and human
designed RNNs.

II. EVOLVING RECURRENT NETWORKS

Several methods for evolving NN topologies along with
weights have been searched and deployed, with NeuroEvo-
lution of Augmenting Topologies (NEAT) [12] perhaps be-
ing the most well-known. EXAMM differs from NEAT in
that it includes more advanced node-level mutations (see
Section III-A2), and utilizes Lamarckian weight initialization
(see Section III-B) along with backpropagation to evolve
the weights as opposed to a simpler less efficient genetic
strategy. Additionally, it has been developed with large-scale
concurrency in mind, and utilizes an asynchronous steady state
approach which has been shown to facilitate scalability to
potentially millions of compute nodes [20].

Other recent work by Rawal and Miikkulainen has inves-
tigated an information maximization objective [21] strategy
to evolve RNNs. This strategy essentially utilizes NEAT with
Long Short Term Memory (LSTM) neurons instead of regular
neurons. EXAMM provides a more in-depth study of the
performance of possible recurrent cell types as it examines
both simple neurons and four other cell structures beyond
LSTMs. Rawal and Miikulainen have also utilized tree-based
encoding [22] to evolve recurrent cellular structures within
fixed architectures built of layers of the evolved cell types.
Combining this evolution of cell structure along with the
overall RNN structure stands as interesting future work.

Ant colony optimization (ACO) has also been investigated
as a way to select which connections should be utilized in
RNNs and LSTM RNNs by Desell and ElSaid [23]–[25]. In
particular, this ACO approach was shown to reduce the number
of trainable connections in half while providing a significant
improvement in predictions of engine vibration [24]. However,
this approach works within a fixed RNN architecture and
cannot evolve an overall RNN structure.

III. EVOLUTIONARY EXPLORATION OF AUGMENTING
MEMORY MODELS

The EXAMM algorithm presented in this work expands on
an earlier algorithm, EXALT [26] which can evolve RNNs
with either simple neurons or LSTM cells. It further re-
fines EXALT’s mutation operations to reduce hyperparameters
using statistical information from parental RNN genomes.
Also, EXALT only used a single steady state population, and
EXAMM expands on this to use islands, which have been
shown by Alba and Tomassini to greatly improve performance
of distributed evolutionary algorithms, potentially providing
superlinear speedup [27]. A master process maintains each
population of islands, and generates new RNNs form islands
in a round robin manner to be trained upon request by workers.
When a worker completes training a RNN, it is inserted
into the island it was generated from if its fitness (mean
squared error on the test data) is better than the worst in the
island, and then the worst RNN in the island is removed.
This asynchrony is particularly important as the generated
RNNs will have different architectures, each taking a different
amount of time to train. By having a master process control
the population, workers can complete the training of the
generated RNNs at whatever speed they can and the algorithm
is naturally load balanced. This allows EXAMM to scale
to the number of available processors, having a population
size independent of processor availability, unlike synchronous
parallel evolutionary strategies. The EXAMM codebase has
a multithreaded implementation for multicore CPUs as well
as an MPI [28] implementation for use on high performance
computing resources.

A. Mutation and Recombination Operations

RNNs are evolved with edge-level operations, as done in
NEAT, as well as with new high level node mutations as in
EXALT and EXACT. Whereas NEAT only requires innovation
numbers for new edges, EXAMM requires innovation numbers
for both new nodes, new edges and new recurrent edges. The
master process keeps track of all node, edge and recurrent
edge innovations made, which are required to perform the
crossover operation in linear time without a graph matching
algorithm. Figures 1 and 2 display a visual walkthrough of all
the mutation operations used by EXAMM. Nodes and edges
selected to be modified are highlighted, and then new elements
to the RNN are shown in green. Edge innovation numbers are
not shown for clarity. Enabled edges are in black, disabled
edges are in grey.

It should be noted that for the following operations, when-
ever an edge is added, unless otherwise specified, it is prob-
abilistically selected to be a recurrent connection with the
following recurrent probability: p = nre

nff+nre
, where nre

is the number of enabled recurrent edges and nff is the
number of enabled feed forward edges in the parent RNN. A
recurrent connection will go back a randomly selected number
of time steps with bound specified as search parameters (in this
work, 1 to 10 time steps), allowing for recurrent connections
of varying time spans. Any newly created node is selected



(a) The edge between Input 1 and Output 1 is selected to be split. A new
node with innovation number (IN) 1 is created.

(b) Input 3 and Node IN 1 are selected to have an edge between them
added.

(c) The edge between Input 3 and Output 1 is enabled.

(d) A recurrent edge is added between Output 1 and Node IN 1

(e) The edge between Input 3 and Output 1 is disabled.

Fig. 1: Edge mutation operations.

uniformly at random as a simple neuron or from the memory
cell types specified by the EXAMM run input parameters.

1) Edge Mutations::
a) Disable Edge: This operation randomly selects an

enabled edge or recurrent edge in a RNN genome and disables
it so that it is not used. The edge remains in the genome.
As the disable edge operation can potentially make an output
node unreachable, after all mutation operations have been
performed to generate a child RNN genome, if any output
node is unreachable that RNN genome is discarded without
training.

b) Enable Edge: If there are any disabled edges or
recurrent edges in the RNN genome, this operation selects
a disabled edge or recurrent edge at random and enables it.

c) Split Edge: This operation selects an enabled edge at
random and disables it. It creates a new node and two new
edges, and connects the input node of the split edge to the
new node, and the new node to the output node of the split
edge. If the split edge was recurrent, the new edges will also
be recurrent (with the same time skip); otherwise they will be
feed forward.

d) Add Edge: This operation selects two nodes n1 and
n2 within the RNN Genome at random, such that depthn1

<
depthn2 and such that there is not already an edge between
those nodes in this RNN Genome. Then it adds an edge from
n1 to n2.

e) Add Recurrent Edge: This operation selects two nodes
n1 and n2 within the RNN Genome at random and then adds
a recurrent edge from n1 to n2, selecting a time span as
described before. The same two nodes can be connected with
multiple recurrent connections, each spanning different times;
however it will not create a duplicate recurrent connection with
the same time span.

2) Node Mutations::
a) Disable Node: This operation selects a random non-

output node and disables it along with all of its incoming and
outgoing edges. Note that this allows for input nodes to be
dropped out, which can be useful when it is not previously
known which input parameters are correlated to the output.

b) Enable Node: This operation selects a random dis-
abled node and enables it along with all of its incoming and
outgoing edges.

c) Add Node: This operation selects a random depth
between 0 and 1, noninclusive. Given that the input node is
always depth 0 and the output nodes are always depth 1, this
depth will split the RNN in two. A new node is created at
that depth, and the number of input and output edges and
recurrent edges are generated using normal distributions with
mean and variances equal to the mean and variances for the
of input/output edges and recurrent edges of all nodes in the
parent RNN.

d) Split Node: This operation takes one non-input, non-
output node at random and splits it. This node is disabled
(as in the disable node operation) and two new nodes are
created at the same depth as their parent. At least one input and
one output edge are assigned to each of the new nodes, of a
duplicate type from the parent, with the others being assigned
randomly, ensuring that the newly created nodes have both
inputs and outputs.

e) Merge Node: This operation takes two non-input, non-
output nodes at random and combines them. Selected nodes
are disabled (as in the disable node operation) and a new node
is created at depth equal to the average of its parents. This
node is connected to the inputs and outputs of its parents with
a duplicate type from the parent; as input edges connected to
lower depth nodes and output edges connect to greater depth
nodes.



(a) A node with IN 2 is selected to be added at a depth between the inputs
& Node IN 1. Edges are randomly added to Input 2 and 3, and Node IN
1 and Output 1.

(b) Node IN 1 is selected to be split. It is disabled with its input/output
edges. It is split into Nodes IN 3 and 4, which get half the inputs. Both
have an output edge to Output 1 since there was only one output from
Node IN 1.

(c) Node IN 2 and 3 are selected for a merger (input/output edges are
disabled). Node IN 5 is created with edges between all their inputs/outputs.

Fig. 2: Node mutation operations.

3) Other Operations::

a) Crossover: creates a child RNN using all reachable
nodes and edges from two parents. A node or edge is reachable
if there is a path of enabled nodes and edges from an input
node to it as well as a path of enabled nodes and edges from
it to an output node, i.e., a node or edge is reachable if it
actually affects the RNN. Crossover can be done either within
an island (intra-island) or between islands (inter-island). Inter-
island crossover selects a random parent in the target island,
and the best RNN from the other islands.

b) Clone: creates a copy of the parent genome, initialized
to the same weights. This allows a particular genome to
continue training in cases where further training may be more
beneficial than performing a mutation or crossover.

(d) Node IN 1 is selected to be enabled, along with all its input and output
edges.

(e) Node IN 5 is selected to be disabled, along with all its input and
output edges.

Fig. 2: Node mutation operations (continued).

B. Lamarckian Weight Initialization

For RNNs generated during population initialization, the
weights are initialized uniformly at random between −0.5
and 0.5. Biases and weights for new nodes and edges are
initialized from a normal distribution based on the average,
mu, and variance, σ2, of the parents’ weights. However,
RNNs generated through mutation or crossover re-use parental
weights, allowing the RNNs to train from where the parents
are left off, i.e., “Lamarckian” weight initialization.

During crossover, in the case where an edge or node exists in
both parents, the child weights are generated by recombining
the parents’ weights. Given a random number −0.5 <= r <=
1.5, a child’s weight wc is set to wc = r(wp2 − wp1) + wp1,
where wp1 is the weight from the more fit parent, and wp2

is the weight from the less fit parent. This allows the child
weights to be set along a gradient calculated from the weights
of the two parents.

This weight initialization strategy is particularly important
as newly generated RNNs do not need to be completely
retrained from scratch. In fact, the RNNs only need to be
trained for a few epochs to investigate the benefits of newly
added structures. In this work, the generated RNNs are only
trained for 10 epochs (see Section V-B), where training a static
RNN structure from scratch may require hundreds or even
thousands of epochs.



C. A Collection of Memory Cells

Node types can range quite a bit in terms of complexity
and their design largely governs the form of the underly-
ing memory structure. Simple neurons can be evolved into
generalized versions of traditional Elman and Jordan neurons
as EXAMM adds recurent connections. Below describes how
simple neurons can evolve to generalized Elman and Jordan
neurons, as well as complex cells such as the Delta-RNN,
the minimally gated unit (MGU) [18], the update-gated RNN
(UGRNN) [17], the Gated Recurrent Unit (GRU) [16], and
Long Short Term Memory (LSTM) [15].
Elman, Jordan and Arbitrary Recurrent Connections: In
EXAMM, simple neurons are represented as potential recurent
neurons with both recurrent and feed forward inputs. I is the
set of all nodes with a feed forward connection to simple
neuron j while R is the set of all nodes with a recurrent
connection to simple neuron j. At time step t, the output is
a weighted summation of all feed forward inputs, where wij

is the feed forward weight connecting node i to node j, plus
a weighted summation of recurrent inputs, where vrjk is the
recurrent weight from node r at time step t − k to the node
j, where k is the time span of the recurrent connection. Thus
the state function s for a computing a simple neuron is:1

sj(t) = φs

(∑
i∈I

wij · si(t) +
∑

r∈R,k

vrjk · sr(t− k)

)
The overall state is a linear combination of the projected input
and an affine transformation of the vector summary of the past.
The post-activation function, φs(·), can be any differentiable
element-wise function, however for the purposes of this work
it was limited to the hyperbolic tangent φ(v) = tanh(v) =
(e(2v) − 1)/(e(2v) + 1).

Elman-RNNs [29] are the simplest of all RNNs, where
recurrent nodes connections to themselves and potentailly all
other hidden nodes in the same layer. Jordan-RNNs [30]
have recurrent connections from output node(s) to hidden
node(s). EXAMM can evolve Elman connections when the
add recurrent edge mutation adds a recurrent edge from a
simple neuron back to itself, and Jordan connections when it
adds a recurrent edge from an output to a simple neuron. It
generalizes these structures by allowing varying time spans
(Jordan and Elmann network traditionally span only one time
step) and arbitrary recurrent connections between from any
pair of simple neurons or cells, i.e., cross-layer recurrent
connections.
The Delta RNN (∆-RNN) Cell: For models more complex
than the simple RNN model, we looked to derive a vast set of
gated neural architectures unified under a recent framework
known as the Differential State Framework (DSF) [19]. A
DSF neural model is essentially a composition of an inner
function used to compute state proposals and an outer “mix-
ing” function used to decide how much of a state proposal
is incorporated into a slower moving state, i.e., the longer
term memory. These models are better equipped to handle

1The bias is omitted for clarity and simplicity of presentation.

the vanishing gradient problem induced by the difficulty of
learning long-term dependencies over sequences [31]. Other
models that can be derived under the DSF include the LSTM,
the GRU, and the MGU [19]. One of the simplest DSF models
is the ∆-RNN, which has been shown to perform competitively
with more complex memory models in problems ranging from
language modeling [19], [32] to image decoding [33]. With
{α, β1, β2, bj ,m} as learnable coefficient scalars, the ∆-RNN
state is defined as:

ewj =
∑
i∈I

wij · si(t) +
∑

r∈R,k

vrjk · sr(t− k), evj = m · sj(t− 1)

d1j = α · evj · ewj , d2j = β1 · evj + β2 · ewj , rj = σ(ewj + bj)

s̃j(t) = φs(d
1
j + d2j ), sj(t) = Φs((1− rj) · s̃j(t) + rj · sj(t− 1)

The Long-Short Term Memory (LSTM): The LSTM [15]
is one of the most commonly used gated neural model when
modeling sequential data. The original motivation behind the
LSTM was to implement the “constant error carousal” in order
to mitigate the problem of vanishing gradients. This means
that long-term memory can be explicitly represented with a
separate cell state ct.

The LSTM state function (without extensions, such as
“peephole” connections) is implemented as follows:

fj = σ(
∑
i∈I

wf
ij · si(t) +

∑
r∈R,k

vfrjk · sr(t− k))

ij = σ(
∑
i∈I

wi
ij · si(t) +

∑
r∈R,k

virjk · sr(t− k))

c̃j = tanh(
∑
i∈I

wc
ij · si(t) +

∑
r∈R,k

vcijk · sr(t− k))

oj = σ(
∑
i∈I

wo
ij · si(t) +

∑
r∈R,k

voijk · sr(t− k))

cj(t) = fj(t) · cj(t− 1) + ij · c̃j , sj(t) = oj · φs(cj(t))

where we depict the sharing of the transformation function’s
output across the forget (ft), input (it), cell-state proposal (c̃t),
and output (ot) gates. The LSTM is by far the most parameter-
hungry of the DSF models we explore.
The Gated Recurrent Unit (GRU): The Gated Recurrent
Unit (GRU; [16]) can be viewed as an early attempt to simplify
the LSTM. Among the changes made, the model fuses the
LSTM input and forgets gates into a single gate, and merges
the cell state and hidden state back together. The state function
based on the GRU is calculated using the following equations:

zj = σ(
∑
i∈I

wz
ij · si(t) +

∑
r∈R,k

vzijk · sr(t− k)) (1)

rj = σ(
∑
i∈I

wr
ij · si(t) +

∑
r∈R,k

vrijk · sr(t− k)) (2)

s̃j(t) = φs(
∑
i∈I

ws
ij · si(t) +

∑
r∈R,k

vsijk · (rj · sr(t− k)) (3)

sj(t) = zj · s̃j + (1− zj) · sj(t− 1) (4)

noting that φs(v) = tanh(v).



The Minimally-Gated Unit (MGU): The MGU model is very
similar in structure to the GRU, reducing number of required
parameters by merging its reset and update gates into a single
forget gate [18]. The state computation proceeds as follows:

fj = σ(
∑
i∈I

wf
ij · si(t) +

∑
r∈R,k

vfijk · sr(t− k)) (5)

s̃j(t) = φs(
∑
i∈I

ws
ij · si(t) +

∑
r∈R,k

vsijk · (fj · sr(t− k)) (6)

sj(t) = zj · s̃j + (1− zj) · sj(t− 1). (7)

The Update-Gated RNN (UGRNN): The UGRNN [17]
updates are defined in the following manner:

cj = φs(
∑
i∈I

wc
ij · si(t) +

∑
r∈R,k

vcijk · sr(t− k)) (8)

gj = σ(
∑
i∈I

wg
ij · si(t) +

∑
r∈R,k

vgijk · sr(t− k)) (9)

sj(t) = gj · sj(t− 1) + (1− gj) · cj . (10)

The UGRNN, though more expensive than the ∆-RNN, is a
simple model, essentially working like an Elman-RNN with a
single update gate. This extra gate decides whether a hidden
state is carried over from the previous time step or if the state
should be updated.

IV. OPEN DATA AND REPRODUCIBILITY

This work utilizes two data sets to benchmark the memory
cells and RNNs evolved by EXAM. The first comes from a
selection of 10 flights worth of data from the National General
Aviation Flight Information Database (NGAFID) [34] and the
other comes from a coal-fired power plant (which has re-
quested to remain anonymous). Both datasets are multivariate
(26 and 12 parameters, respectively), non-seasonal, and the
parameter recordings are not independent. Furthermore, they
are very long – the aviation time series range from 1 to 3 hours
worth of per-second data while the power plant data consists
of 10 days worth of per-minute readings. These data sets are
provided openly through the EXAMM GitHub repository2, in
part for reproducibility, but also to provide a valuable resource
to the field. To the authors’ knowledge, real world time series
data sets of this size and at this scale are not freely available.

RPM (rotations per minute) and pitch were selected as
prediction parameters from the aviation data since RPM is
a product of engine activity, with other engine-related param-
eters being correlated, and since pitch is directly influenced by
pilot controls, making it particularly challenging to predict. For
the coal plant data, main flame intensity and supplementary
fuel flow were selected as parameters of interest. Similar to
the choices from the NGAFID data, main flame intensityy is
mostly a product of conditions within the (coal) burner, while
supplementary fuel flow is more directly controlled by human
operators.

2https://github.com/travisdesell/exact

A. Aviation Flight Recorder Data

With permission, data from 10 flights was extracted from
the NGAFID. Each of the 10 flight data files last over an hour,
and consist of per-second data recordings from 26 parameters:

1) Altitude Above Ground Level (AltAGL)
2) Engine 1 Cylinder Head Temperature 1 (E1 CHT1)
3) Engine 1 Cylinder Head Temperature 2 (E1 CHT2)
4) Engine 1 Cylinder Head Temperature 3 (E1 CHT3)
5) Engine 1 Cylinder Head Temperature 4 (E1 CHT4)
6) Engine 1 Exhaust Gas Temperature 1 (E1 EGT1)
7) Engine 1 Exhaust Gas Temperature 2 (E1 EGT2)
8) Engine 1 Exhaust Gas Temperature 3 (E1 EGT3)
9) Engine 1 Exhaust Gas Temperature 4 (E1 EGT4)

10) Engine 1 Oil Pressure (E1 OilP)
11) Engine 1 Oil Temperature (E1 OilT)
12) Engine 1 Rotations Per minute (E1 RPM)
13) Fuel Quantity Left (FQtyL)
14) Fuel Quantity Right (FQtyR)
15) GndSpd - Ground Speed (GndSpd)
16) Indicated Air Speed (IAS)
17) Lateral Acceleration (LatAc)
18) Normal Acceleration (NormAc)
19) Outside Air Temperature (OAT)
20) Pitch
21) Roll
22) True Airspeed (TAS)
23) Voltage 1 (volt1)
24) Voltage 2 (volt2)
25) Vertical Speed (VSpd)
26) Vertical Speed Gs (VSpdG)
These files had identifying information (fleet identifier, tail

number, date and time, and latitude/longitude coordinates)
which was removed to protect the identify of the pilots. The
data is provided unnormalized.

For this work, two parameters were selected as prediction
targets: RPM and Pitch. These are interesting as the first
(RPM) is a product of engine activity, with other engine related
parameters being correlated; while Pitch is most directly
influenced by pilot controls, making it particularly challenging
to predict.

B. Coal-fired Power Plant Data

This data set consists of 10 days of per-minute data readings
extracted from 12 of the plant’s burners. Each of these 12 data
files has 12 parameters of time series data:

1) Conditioner Inlet Temp
2) Conditioner Outlet Temp
3) Coal Feeder Rate
4) Primary Air Flow
5) Primary Air Split
6) System Secondary Air Flow Total
7) Secondary Air Flow
8) Secondary Air Split
9) Tertiary Air Split

10) Total Combined Air Flow



11) Supplementary Fuel Flow
12) Main Flame Intensity

In order to protect the confidentiality of the power plant
which provided the data, along with any sensitive data ele-
ments, all identifying data has been scrubbed from the data sets
(such as dates, times, locations and facility names). Further,
the data has been pre-normalized between 0 and 1 as a further
precaution. So while the data cannot be reverse engineered to
identify the originating power plant or actual parameter values
– it still is an extremely valuable test data set for times series
data prediction as it consists of real world data from a highly
complex system with interdependent data streams.

For this data set, two of the parameters were of key interest
for time series data prediction, Main Flame Intensity and
Supplementary Fuel Flow. Similar to the choices from the
NGAFID data, Main Flame Intensity is mostly a product of
conditions within the burner, while Supplementary Fuel Flow
is more directly controlled by humans.

V. RESULTS

A. Computing Environment

Results were gathered using university research computing
systems. Compute nodes utilized ranged between 10 core 2.3
GHz Intel R©Xeon R©CPU E5-2650 v3, 32 core 2.6 GHz AMD
OpteronTMProcessor 6282 SE and 48 core 2.5 GHz AMD
OpteronTMProcessor 6180 SEs, which was unavoidable due
to cluster scheduling policies. All compute nodes ran RedHat
Enterprise Linux 6.10. This did result in some variation in
performance, however discrepancies in timing were overcome
by averaging over multiple runs in aggregate.

B. Experimental Design

To better understand how the different memory cells per-
formed in time series data prediction, multiple EXAMM runs
were conducted that allowed different types of memory cells.
The first set of runs (5) only any added cells of only a single,
particular memory cell type, i.e., either a ∆-RNN, GRU,
LSTM, MGU, or UGRNN. The next set of runs (5) was nearly
identical, except these allowed nodes to be simple neurons in
addition to each particular memory cell type (such runs are
appended with a +simple in the result tables). One final version
was run where all cell types and simple neurons were allowed;
resulting in 11 different EXAMM run types (such runs are
labeled as all in the result tables). These different types of
runs were done for each of the four prediction parameters
(RPM, pitch, main flame intensity, and supplementary fuel
flow). K-fold cross validation was done for each prediction
parameter, with a fold size of 2. This resulted in 5 folds for
the NGAFID data (as it had 10 flight data files), and 6 folds
for the coal plant data (as it has 12 burner data files). Each
fold and EXAMM setting run was repeated 10 times. In total,
each of the 11 EXAMM run types was done 110 times (50
times for the NGAFID data k-fold validation and 60 times for
the coal data k-fold validation), for a total of 2, 420 separate
runs.

All neural networks were trained with backpropagation and
stochastic gradient descent (SGD) using the same hyperpa-
rameters. SGD was run with a learning rate η = 0.001,
utilizing Nesterov momentum with mu = 0.9. No dropout
regularization was used since it has been shown in other
work to reduce performance when training RNNs for time
series prediction [24]. To prevent exploding gradients, gradient
clipping (as described by Pascanu et al. [35]) was used
when the norm of the gradient was above a threshold of
1.0. To improve performance for vanishing gradients, gradient
boosting (the opposite of clipping) was used when the norm
of the gradient was below a threshold of 0.05. The forget gate
bias of the LSTM cells had 1.0 added to it as this has been
shown to yield significant improvements in training time by
Jozefowicz et al. [36]; otherwise weights were initialized as
described in Section III-B.

Each EXAMM run consisted of 10 islands, each with a
population size of 5, and new RNNs were generated via intra-
island crossover (at 20%), mutation (at 70%), and inter-island
crossover at (10%). All mutation operations (described in Sec-
tion III) except for split edge were utilized, as split edge can
be recreated with the add node and disable edge operations.
The 10 utilized mutation operations were performed each with
a uniform 10% chance. Each EXAMM run generated 2000
RNNs, with each RNN being trained for 10 epochs. These
runs were performed utilizing 20 processors in parallel, and
on average required approximately 0.5 compute hours. In
total, these results come from training over 4, 840, 000 RNNs,
requiring ˜24, 200 CPU hours of compute time.

C. Evolved RNN Performance

Table I shows aggregated results for each of the 50 or 60
EXAMM runs done (5 or 6 folds, each with 10 repeats) that
allowed only one of each memory cell type, along with the
EXAMM runs that allowed for added nodes to be of all node
types (i.e., all). Table II further shows the aggregated results
for runs which allowed both simple neurons and one particular
cell type (i.e., +simple).

These tables present the minimum, average, and maximum
mean squared error (MSE) on average across the runs. Table I
also shows the minimum, average, and maximum number of
hidden nodes, which would be entirely of the one memory
cell type, or of any memory cell type or simple neurons in
the case of the all runs, as well as how the the number
of nodes correlate to the MSE. Similar statistics are shown
for the numbers of feed forward edges and the numbers
of recurrent edges. Note that as a lower MSE is better, a
negative correlation means that having more nodes or edges
was correlated to lower MSE. Table II also divides hidden
nodes into counts for simple neurons and number of memory
cell nodes for a certain run type. Top 2 best models (avg)
scores are shown in bold.

The best found MSE scores across the four prediction
parameters had a wide range, which could be expected due to
varying complexities. As such, to properly rank performance
of different run types a metric was needed. Table IV orders



Flame Intensity
MSE Edges Rec. Edges Hidden Nodes

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

all 0.000438215 0.00168176 0.00308112 11 28 64 -0.274 0 5.7 15 -0.147 11 16 22 -0.228
∆-RNN 0.000419515 0.00164756 0.00365646 15 29 72 -0.163 1 6.3 16 -0.136 11 16 25 -0.251
GRU 0.000493313 0.00166337 0.0035205 11 28 56 -0.115 1 6.6 20 -0.101 12 16 21 0.109
LSTM 0.000460576 0.00174216 0.00386718 11 28 53 -0.187 0 7.9 26 -0.386 10 16 21 -0.241
MGU 0.000644687 0.00174361 0.00342526 8 27 49 -0.241 1 6.5 19 -0.127 13 16 21 -0.373
UGRNN 0.000531725 0.00166423 0.00399293 19 28 54 -0.215 1 6.9 25 -0.192 12 16 22 -0.209

Fuel Flow
MSE Edges Rec. Edges Hidden Nodes

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

all 4.86288e-06 0.000134371 0.000293377 12 31 55 0.138 0 6.7 18 0.15 8 16 22 0.251
∆-RNN 6.44047e-06 0.000140518 0.000306163 15 29 57 -0.0995 0 6.8 17 -0.264 12 16 22 -0.194
GRU 1.65072e-05 0.000131481 0.000289922 16 31 66 -0.193 0 6.6 29 -0.209 10 16 22 -0.146
LSTM 5.90673e-06 0.000121158 0.000262113 14 31 65 -0.0119 1 6.8 22 -0.028 11 16 23 0.0572
MGU 1.83369e-05 0.00013616 0.000281395 13 32 63 -0.235 0 6.7 17 -0.303 7 16 23 -0.141
UGRNN 6.08753e-06 0.000143734 0.000341757 10 29 78 0.0308 0 6.7 19 -0.0971 9 16 22 0.158

RPM
MSE Edges Rec. Edges Hidden Nodes

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

all 0.00410034 0.00725003 0.0142856 25 36 54 0.215 0 5.3 13 -0.133 24 29 33 0.0921
∆-RNN 0.00247046 0.0066479 0.0132178 23 37 66 0.00237 0 4.8 16 -0.083 25 29 35 -0.00169
GRU 0.00221411 0.00684006 0.0108375 24 36 72 -0.207 0 5.9 16 -0.342 25 29 36 -0.262
LSTM 0.00323368 0.00736006 0.014325 24 35 46 0.018 0 4.7 14 -0.437 23 28 30 -0.14
MGU 0.00343788 0.00730802 0.0153965 28 38 57 0.057 0 5.3 14 -0.519 25 29 33 0.124
UGRNN 0.00307084 0.00716817 0.0116206 25 36 66 -0.277 0 5.3 15 -0.373 25 29 36 -0.315

Pitch
MSE Edges Rec. Edges Hidden Nodes

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

all 0.00101445 0.00347982 0.00582811 22 35 67 -0.132 0 3 10 -0.223 24 28 35 -0.109
∆-RNN 0.00149607 0.00328248 0.00557884 24 35 49 0.0524 0 3.4 12 -0.114 23 28 32 0.104
GRU 0.00133482 0.00323731 0.00506138 22 34 54 -0.0691 0 3 11 -0.212 24 28 32 -0.113
LSTM 0.00114187 0.0033505 0.00558931 26 35 54 -0.147 0 3.5 9 -0.126 24 28 33 -0.117
MGU 0.00148457 0.00327753 0.00565053 26 35 51 0.0707 0 3.3 11 -0.388 25 28 32 0.0442
UGRNN 0.00117033 0.0033487 0.00559272 22 33 50 -0.0981 0 3 13 -0.165 23 28 32 -0.0133

TABLE I: Statistics for RNNs Evolved With Individual Memory Cells and RNNs Evolved With All Memory Types.

Flame Intensity
MSE Edges Rec. Edges Memory Cells Simple Neurons

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

∆-RNN+simple 0.00042112 0.0015147 0.0038971 12 27 62 -0.25 1 7.7 20 -0.222 0 1.9 7 -0.137 0 1.6 6 -0.238
GRU+simple 0.00068848 0.0016726 0.0039989 18 29 55 -0.23 0 7.1 17 -0.11 0 1.8 4 -0.133 0 1.9 6 -0.384
LSTM+simple 0.00046443 0.0015194 0.0032395 19 31 65 -0.21 1 7.3 18 -0.208 0 1.6 6 -0.27 0 2.2 7 0.0671
MGU+simple 0.00053109 0.0016088 0.003241 18 29 55 -0.19 0 7.8 21 -0.238 0 1.6 6 -0.00329 0 2 7 -0.213
UGRNN+simple 0.00043835 0.0016874 0.0041592 16 29 50 -0.31 1 6.2 16 -0.274 0 1.5 5 -0.349 0 2.4 6 -0.061

Fuel Flow
MSE Edges Rec. Edges Memory Cells Simple Neurons

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

∆-RNN+simple 8.1558e-06 0.00012294 0.00026373 9 29 55 -0.12 0 6.4 15 -0.026 0 1.7 5 -0.2 0 1.8 6 -0.00871
GRU+simple 1.3193e-05 0.00013061 0.00028389 9 31 62 -0.17 0 6 21 0.00366 0 2.1 6 -0.196 0 1.8 6 0.0181
LSTM+simple 8.6606e-06 0.00013071 0.00025847 14 31 61 -0.098 0 6.5 22 -0.187 0 2.2 7 -0.0819 0 1.9 5 0.0817
MGU+simple 7.2707e-06 0.00012367 0.00028356 11 33 61 -0.072 1 6.8 26 -0.228 0 2.2 7 -0.107 0 2.1 8 -0.0846
UGRNN+simple 5.6189e-06 0.00014337 0.00030186 12 32 62 -0.15 0 6.1 15 -0.253 0 1.8 6 -0.0961 0 2.3 8 -0.102

RPM
MSE Edges Rec. Edges Memory Cells Simple Neurons

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

∆-RNN+simple 0.0029348 0.0069672 0.011182 25 36 48 -0.17 0 4.8 14 -0.496 0 0.88 3 0.0549 0 1.2 4 -0.142
GRU+simple 0.0039148 0.0070081 0.012816 29 38 63 -0.054 1 5.1 13 -0.049 0 1.2 4 -0.0963 0 1.3 5 0.0855
LSTM+simple 0.0027877 0.0063965 0.01091 27 37 60 -0.11 0 4.6 11 -0.5 0 1 3 -0.223 0 1.2 4 0.0936
MGU+simple 0.0024288 0.0065725 0.011325 24 36 44 0.051 0 5.6 13 -0.391 0 0.98 3 -0.0944 0 1.1 3 0.178
UGRNN+simple 0.0037114 0.0073811 0.012252 22 38 48 -0.11 0 4.3 10 -0.304 0 1.1 4 -0.00488 0 1.4 4 -0.0642

Pitch
MSE Edges Rec. Edges Memory Cells Simple Neurons

Run Type Min Avg Max Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr. Min Avg Max Corr.

∆-RNN+simple 0.0015138 0.0032316 0.0053377 20 34 54 -0.14 0 2.6 8 -0.341 0 0.86 4 -0.00809 0 1.1 5 -0.168
GRU+simple 0.0011566 0.0032083 0.0067072 22 36 57 0.056 0 3.2 9 0.0472 0 0.98 4 0.042 0 1 3 -0.00732
LSTM+simple 0.0010335 0.0032365 0.005414 22 34 52 -0.25 0 2.9 10 -0.233 0 0.9 3 -0.176 0 0.98 4 -0.157
MGU+simple 0.0010133 0.0033326 0.0060865 25 35 53 -0.15 0 2.8 11 -0.307 0 0.88 3 -0.276 0 0.98 5 0.163
UGRNN+simple 0.0015551 0.0031352 0.0053126 22 34 52 0.1 0 3.1 8 -0.216 0 0.94 3 -0.063 0 1 4 0.181

TABLE II: Statistics for RNNs Evolved With Simple Neurons and Memory Cells.

Simple LSTM UGRNN ∆-RNN MGU GRU
Run Type Min Avg Max Corr Min Avg Max Corr Min Avg Max Corr Min Avg Max Corr Min Avg Max Corr Min Avg Max Corr

flame 0 0.6 3 0.044 0 0.5 3 -0.26 0 0.5 4 -0.11 0 0.5 2 -0.12 0 0.5 3 0.073 0 0.7 4 -0.17
fuel flow 0 0.8 3 0.0076 0 0.6 4 0.11 0 0.7 4 -0.061 0 0.6 4 -0.041 0 0.6 2 0.092 0 0.8 3 0.018
pitch 0 0.3 3 -0.017 0 0.3 3 -0.031 0 0.3 2 0.032 0 0.2 2 0.052 0 0.5 2 -0.036 0 0.3 2 -0.32
rpm 0 0.4 2 -0.14 0 0.4 2 0.24 0 0.3 2 -0.086 0 0.4 2 0.026 0 0.4 3 0.32 0 0.2 2 -0.16

TABLE III: Hidden Node Counts and Correlations to Mean Square Error for EXAMM Runs Using All Cell Types.



Flame Intensity
Best Case Avg. Case Worst Case

∆-RNN -0.92312 ∆-RNN+simple -1.7775 all -1.5404
∆-RNN+simple -0.90534 LSTM+simple -1.7148 LSTM+simple -1.1066

all -0.71602 MGU+simple -0.53749 MGU+simple -1.1026
UGRNN+simple -0.71451 ∆-RNN -0.026901 MGU -0.59787

LSTM -0.46836 GRU 0.18143 GRU -0.33703
LSTM+simple -0.42565 UGRNN 0.19272 ∆-RNN 0.035348

GRU -0.10578 GRU+simple 0.30281 LSTM 0.61246
MGU+simple 0.31264 all 0.42371 delta+simple 0.69439

UGRNN 0.31964 UGRNN+simple 0.49785 UGRNN 0.9569
MGU 1.5708 LSTM 1.2196 GRU+simple 0.97318

GRU+simple 2.0557 MGU 1.2386 UGRNN+simple 1.4123

Fuel flow
Best Case Avg. Case Worst Case

all -0.92643 LSTM -1.4415 LSTM+simple -1.2349
UGRNN+simple -0.7644 ∆-RNN+simple -1.2172 LSTM -1.0818

LSTM -0.70271 MGU+simple -1.1255 ∆-RNN+simple -1.014
UGRNN -0.66396 GRU+simple -0.25195 MGU -0.27097
∆-RNN -0.58832 LSTM+simple -0.23921 MGU+simple -0.1799

MGU+simple -0.41037 GRU -0.14222 GRU+simple -0.16598
∆-RNN+simple -0.22068 all 0.22163 GRU 0.087564

LSTM+simple -0.1125 MGU 0.44679 all 0.23284
GRU+simple 0.85882 ∆-RNN 0.99531 UGRNN+simple 0.58938

GRU 1.5692 UGRNN+simple 1.3537 ∆-RNN 0.77052
MGU 1.9613 UGRNN 1.4002 UGRNN 2.2672

RPM
Best Case Avg. Case Worst Case
GRU -1.444 LSTM+simple -1.7472 GRU -1.0958

MGU+simple -1.1012 MGU+simple -1.2299 LSTM+simple -1.0499
∆-RNN -1.0347 ∆-RNN -1.0081 ∆-RNN+simple -0.87687

LSTM+simple -0.52825 GRU -0.4433 MGU+simple -0.78566
∆-RNN+simple -0.29348 ∆-RNN+simple -0.069508 UGRNN -0.59783

UGRNN -0.076276 GRU+simple 0.050686 UGRNN+simple -0.19645
LSTM 0.18368 UGRNN 0.52115 GRU+simple 0.16258
MGU 0.50967 all 0.76179 ∆-RNN 0.41787

UGRNN+simple 0.9463 MGU 0.93224 all 1.0968
GRU+simple 1.271 LSTM 1.0852 LSTM 1.1219

all 1.5672 UGRNN+simple 1.147 MGU 1.8033

Pitch
Best Case Avg. Case Worst Case

MGU+simple -1.1631 UGRNN+simple -1.6163 GRU -1.3295
all -1.1577 GRU+simple -0.82052 UGRNN+simple -0.76284

LSTM+simple -1.0698 ∆-RNN+simple -0.56665 ∆-RNN+simple -0.70622
LSTM -0.5688 LSTM+simple -0.51389 LSTM+simple -0.53415

GRU+simple -0.50079 GRU -0.5047 ∆-RNN -0.16235
UGRNN -0.43726 MGU -0.066984 LSTM -0.13873

GRU 0.32298 delta -0.013118 UGRNN -0.13104
MGU 1.0151 MGU+simple 0.53287 MGU -0.00065639

∆-RNN 1.0682 UGRNN 0.70761 all 0.39991
∆-RNN+simple 1.1501 LSTM 0.72719 MGU+simple 0.98284
UGRNN+simple 1.3411 all 2.1345 GRU+simple 2.3828

Overall Combined
Best Case Avg. Case Worst Case

MGU+simple -0.59051 LSTM+simple -1.0538 LSTM+simple -0.98141
LSTM+simple -0.53405 ∆-RNN+simple -0.90771 GRU -0.6687

LSTM -0.38905 MGU+simple -0.59001 ∆-RNN+simple -0.47566
∆-RNN -0.36948 GRU -0.2272 MGU+simple -0.27133

all -0.30824 GRU+simple -0.17974 all 0.047292
UGRNN -0.21446 ∆-RNN -0.013211 LSTM 0.12847

∆-RNN+simple -0.067358 UGRNN+simple 0.34556 MGU 0.23345
GRU 0.085614 LSTM 0.39761 UGRNN+simple 0.26059

UGRNN+simple 0.20212 MGU 0.63765 ∆-RNN 0.26535
GRU+simple 0.9212 UGRNN 0.70542 UGRNN 0.62381

MGU 1.2642 all 0.88541 GRU+simple 0.83814

TABLE IV: EXAMM Run Types Prediction Error Ranked By
Standard Deviation From Mean.
the 11 different run types by how many standard deviations
the results were from the mean for each prediction parameter.
It also provides combined rankings, averaging the deviation
from the mean across the four prediction parameters. Each
of these tables are ordered from best to worst – a negative
deviation from the mean is that many standard deviations less
than the average MSE, and lower MSE is better.

The results of these experiments led to some interesting
findings which the authors feel can help inform further devel-
opment of neuro-evolution algorithms as well as RNN memory
cells. Many of these findings can also serve as warnings to
those looking to train well performing RNNs for time series
prediction. We summarize the main takeaways from these
results as follows:

a) No memory structure was truly the best:: In the
overall rankings (Table IV), the ∆-RNN, LSTM, and MGU
cells seemed to have the highest rankings for best overall
performance as well as average and worst case performance,
with GRU cells being slightly behind. While UGRNN nodes

did not do so well in the total ranking, it should be noted that
when coupled with simple neurons, they did perform 2nd best
for the best case for fuel flow, and were the best for the average
case in predicting pitch. This highlights the importance of
testing a wide selection of memory cell types when developing
RNNs, as there is no free lunch in machine learning – each
memory cell type had its own strengths and weaknesses. It is
valuable to note that one of the simplest memory cell types,
i.e., the ∆-RNN, performs consistently and competitively with
the more complicated, multi-gate LSTM (at the top of the
rankings), which is consistent with a growing body of results
[19], [32], [33].

b) Adding simple neurons generally helped - with some
notable exceptions:: When looking at the overall rankings,
when simple neurons were added as an option to the neuro-
evolution process, the networks performed better. The only
exception to this was GRU cells, which tended to perform
worse when simple neurons were allowed. These results may
indicate that these memory cells lack the capability to track
some kinds of dependencies which the additional simple
neurons make up for; this means that there is potentially room
to improve these cell structures to capture whatever the simple
neurons were providing. Further examination of why the GRU
cells performed worse with simple neurons compared to the
other memory cells may help determine the cause of this and
makes for an interesting direction for future RNN work.

Another very interesting finding was that utilizing simple
neurons with MGU cells resulted in a dramatic improvement,
bringing them from some of the worst rankings to some of
the best rankings (e.g., in the overall rankings for best found
networks, MGU cells alone performed the worst while MGU
and simple neurons performed the best). Other cell types
(LSTM and ∆-RNN) showed less of an improvement. This
finding may highlight that the MGU cells could stand to benefit
from further development. This should serve as a warning to
others developing neuro-evolution algorithms, in that even the
rather simple change of allowing simple neurons can result
in significant changes in RNN predictive ability. Selection
of node and cell types for neuro-evolution should be done
carefully.

c) Allowing all memory cells has risks and benefits:: The
authors had hoped that allowing the neuro-evolution process
to simply select from all of the memory cell types would
allow it to find and utilize whichever cells were most suited to
the prediction problem. Unfortunately, this was not always the
case. While using all memory cell types generally performed
better than the mean on the best case, in the average and
worst cases, it performed worse than the mean. This was most
likely due to the fact that whenever a node was added to
the network it could have been from any of the 6 types, so
choosing from them uniformly at random ended up sometimes
selecting the nodes not best to the task (as they improved the
population, but not as well as another memory cell choice
could have done). These results are backed up by Table III,
which shows the correlations between node types and MSE
(again, a negative correlation means more of that cell type



resulted in a lower/better MSE), as well as the min, average
and max memory cell counts among the networks found by
EXAMM.

That being said, allowing all cell types did find the best
networks in the case of fuel flow, 2nd best in the case of
pitch, and 3rd best in the case of flame intensity; which
is impressive given the larger search space for the neuro-
evolution process. We expect to further improve this result
by dynamically adapting the rates at which memory cells are
generated in part based on how well they have improved the
population in the past (with caveats described in the next point)
– this stands as future work which can make EXAMM an even
stronger option for generating RNNs, especially in the average
and worse cases where they did not fare as well.

d) Larger networks tended to perform better, yet memory
cell count correlation to MSE was not a great indicator
of which cells performed the best:: This last point raises
some significant challenges for developing neuro-evolution
algorithms. When looking at Table III and examining the
memory cells types most correlated to improved performance
against the memory cell types most frequently selected by
EXAMM, meant that EXAMM was not selecting cell types
that would produce the best performing RNNs. This may due
to the fact that, in some cases, an RNN with a small number
of well trained memory cells was sufficient to yield good
predictions, and adding more cells to the network only served
to confuse the predictions.

The implications of this are two fold: 1), running a neuro-
evolution strategy allowing all memory cell types and then
utilizing counts or correlations to select a single memory cell
type for future runs may not produce the best results, and
2), dynamically tuning which memory cells are selected by a
neuro-evolution strategy is more challenging since the process
may not select the best cell types (e.g., when the network
already has enough memory cells) – so this would at least
need to be coupled with another strategy to determine when
the network is “big enough”.

VI. CONCLUSIONS AND FUTURE WORK

This work introduced a new neuro-evolution algorithm,
Evolutionary eXploration of Augmenting Memory Models
(EXAMM), for evolving recurrent neural architectures by
directly incorporating powerful memory cells such as the
∆-RNN, MGU, GRU, LSTM and UGRNN units into the
evolutionary process. EXAMM was evaluated on the task of
predicting 4 different parameters from two large, real world
time-series datasets. By using repeated k-fold cross validation
and high performance computing, enough RNNs were evolved
to be rigorously analyzed – a methodology the authors think
should be highlighted as novel. Instead of utilizing them to out-
perform other algorithms on benchmarks, neuro-evolutionary
processes can be used as selection methodologies, providing
deeper insights into what neural structures perform best on
certain tasks.

Key findings from this work show that a neuro-evolution
strategy that selects from a wide number of memory cell

structures can yield performant architectures. However, it does
so at the expense of reliability in the average and worst cases.
Furthermore, a simple modification to the evolutionary pro-
cess, i.e., allowing simple neurons, can have dramatic effects
on network performance. In general, while this largely benefits
most memory cells, outlier cases showed wide swings from
worst to best and best to worst performance. The authors hope
that these results will guide future memory cell development,
as the addition of simple neurons dramatically improved MGU
performance, but also decreased GRU performance. Under-
standing cases like that of the GRU could yield improvements
in cell design. Results showed that cell selection does not
necessarily correlate well to the best cell types for a particular
problem, partly due to the fact that good cells may not
necessarily require a large network. These results should serve
as cautionary information for future development of neuro-
evolution algorithms.

This paper opens up many avenues of future work. This
includes extending EXAMM’s search process to allow cellular
elements of the underlying neural model to be evolved (as
in Rawal and Miikulainen [22]); evolving over a large set
of post-activation functions; allowing for stochastic opera-
tions, e.g., Bernoulli sampling; and incorporating operators
such as convolution (to handle video sequences/time series)
or its simple approximation, the perturbative operator [37].
Additional future work will involve various hyperparameter
optimization strategies to dynamically determine RNN training
metaparameters as well as what probabilities EXAMM uses to
choose memory cell structures and what probabilities it uses
for the mutation and recombination operators. Lastly, imple-
menting even larger scale mutation operations, such as multi-
node/layer mutations could potentially speed up EXAMM’s
neuro-evolution process even further.
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