
978-1-5386-4485-0/18/$31.00 ©2018 IEEE

A New Software Architecture Style for Hadoop

Systems

Fatima El Jamiy Hassan Reza AbdElRahman ElSaid

Computer Science Department Computer Science Department Computer Science Department

University of North Dakota University of North Dakota University of North Dakota

Grand Forks, North Dakota, USA Grand Forks, North Dakota, USA Grand Forks, North Dakota, USA

fatima.eljamiy@ndus.edu reza@cs.und.edu abdelrahman.elsaid@und.edu

Abstract— Big data provides a challenging environment to

store, process and analyze large scale data. Various requirements

that impact the architectural solution of big data include the

source of data and its involved features such as volume, velocity,

variety and the type of data. While processing big data, other

challenges raised related to scalability, availability, integrity,

concurrency, parallelism and performance. Because of all these

features and requirements, building a suitable big data solution

needs to consider the architectural solutions to satisfy those

different elements of the system. Different software architectural

styles exist. The aim of this paper is to provide an overview of the

important commonly used architecture styles for building big

data systems, compare their benefits, performance and main

components. And mostly cover how each style can help in

resolving the challenges required by developing big data software

systems. The goal is to identify and discuss software architectural

issues imposed by Hadoop that impact its performance. A new

hybrid architecture system to achieve the requirement for

Hadoop is proposed and all possible challenges the Hybrid

system could face are investigated.

Keywords—Distributed systems; Hadoop; Software architecture

styles; HDFS

I. INTRODUCTION

Apache Hadoop (high-availability distributed object-
oriented platform) is a distributed system that offers a
distributed storage system via its HDFS file system (Hadoop
Distributed File System) and provides a data analysis system
called MapReduce that uses the HDFS file system to perform
processing on large volumes of data. In this work we will be
focusing on improving the architecture of HDFS to improve
the performance of Hadoop system.

MapReduce is a parallel computing paradigm for large scale

data systems [1]. It distributes data across a set of computing

nodes. In MapReduce, each node processes the blocks of data

stored on it and does not communicate with other nodes without

shared state, but their data flow is dependent where the output of

a node (Mapper) is the input of another (Reducer). MapReduce

can change the system behavior by connecting or removing

machines and thus slowing down and speeding up the

computation. However, the main issue about the performance

of the system appears when we demystify the architecture of

Hadoop in which only the NameNode manages the whole

system and the various features of the system are challenging

to handle and consider while designing the architecture style.

The paper is exploring the different architecture styles and

compare them to come up with a hybrid architecture style for

big data system that will combine different features from each

candidate architecture style in order to cover the different

functional and non-functional requirements of large scale

systems.

This paper is mainly a survey on software architecture
styles for Hadoop and it is organized as follows: In Section 2,
a discussion of Hadoop system is given, we present the
features of this system, and present some detailed design and
architecture issues. MapReduce architecture style is presented
in section 3. The main approach with the new hybrid
architectural style for Hadoop and the related different
challenges related to the new system are discussed in section
4. Finally, we conclude the paper in section 5.

II. BACKGROUND

We are in the era of production of massive data (Big Data)
in which a definition involves five dimensions (5Vs): Volume,
Velocity, Variety (frequency), Veracity and Value. The data
sources are numerous. On the one hand, the applications
generate data from logs, sensor networks, transaction reports,
traces of GPS, etc. And on the other hand, users produce data
such as photographs, videos, music or data on the health status
(heart rate, pressure or weight). A problem then arises as to the
storage and analysis of data. The storage capacity of hard
drives increases but reading time is also growing. It then
becomes necessary to parallelize the processing by storing on
multiple hard disk drives. However, this raises the hard disk
reliability problem that generates hardware failure [2]. The
proposed solution is the duplication of data like a RAID 6
system.

Apache Hadoop (High-availability distributed object-

oriented platform) is a distributed system that addresses these
issues. On the one hand, it offers a storage system via its
HDFS distributed file system (Hadoop Distributed File
System) and it offers the possibility of storing the data by
duplicating it, a Hadoop cluster therefore does not need to be
configured with a RAID system that becomes useless [1]. On
the other hand, Hadoop provides a data analysis system called
MapReduce. It works with the HDFS file system to perform
processing on large data volumes.

2018 International Conference on Advances in Computing and Communication Engineering (ICACCE-2018)
Paris, France 22-23 June 2018

254

Hadoop was created by Doug Cutting to the needs of Apache
Nutch project, an open source search engine [1]. It is
important to note that Doug Cutting also created the Apache
Lucene text search library. When the Apache Nutch project
started in 2002, contributors have understood that the original
architecture could not hold scalability on more than 20 billion
pages from the Web. Google published in 2003 a paper about
the architecture of its distributed file system GFS (Google's
distributed filesystem). Google then published in 2004 a paper
introducing the MapReduce system for analyzing data of a
GFS system. Doug Cutting decided to take the concepts
presented by the two items to solve problems in the Apache
Nutch project. In 2006, Hadoop was a subproject of Apache
Lucene and in 2008, an independent project of the Apache
Foundation [1,11].

Apache HDFS is used for its storage capacity (about one
terabyte per day) and its ease of scalability at lower cost.

III. RELATED WORK

Distinct recent models have been proposed for Hadoop to

solve the failure point bottleneck. Majority of these

implementations focus on using one of the most popular

methods to manage metadata in a distributed environment.

Hashing, Sub tree partitioning and consistent hashing are

among the techniques proposed and which are the bases of the

architecture of the most effective high-performance file

system.

In [4], authors proposed a distributed model that deploy a
hashing technique to split mainly the flattened namespace of
Hadoop Distributed File System. The solution has been
integrated to Hadoop and evaluated with a distributed
NameNode. According to the results, the prototype has not
been fully integrated into Hadoop ecosystem or tested with a
real-world application. This means that scalability of the
system has not been demonstrated and its capability to take
over when failure occurs has not been assessed either. Besides,
the load imbalance technique deployed by Hadoop to locate
the data in the DataNodes has not been taken into
consideration, which makes this method not suitable for
Hadoop environment.

Over and above, in Hashing (Lustre, zFs file system),

hierarchical directory structure is employed for metadata
allocation that can create an enormous overhead and therefore
the performance of the system will decrease. In fact, if a new
name is given to the path, the location of the directory will be
unable to find it and in that case, a movement of metadata is
needed [5].

To avoid the issue addressed in the first related model, a
mechanism based on both hashing and sub tree partitioning
techniques was proposed in [10]. It is a distributed metadata
approach for multi-NameNodes that implement these two
techniques by using a two-level algorithm.

Placement of data between nodes generate large amount of
data and make the system less scalable. So, they suggest that
the integration of hash algorithm in the first level will solve
the problem by setting the directory path name as an argument
[9]. This phase is performed by the client. Dispatching the

characteristics of the directory’s files at the first level will
enhance the rendering of its operations. In the second level, a
dynamic algorithm to select the position of blocks depending
on the actual load has been chosen. The NameNodes send
their loads with all the other related information about their
status to the master NameNode that keep a record of them and
then use them in the second level to classify and scatter the
position data to the NameNode with fewer loads.

A sub-tree technique was introduced to determinate the
value of the load and improve it. According to the results, the
performance of this two-level algorithm has been enhanced.
However, this approach is still not exact and precise because
the Sub Tree (in ceph and coda HPC file systems) presumes
the computation of the load which changes dynamically, and a
bottleneck in the network will be produced by the migration of
metadata.

The latest interesting work [6] has mentioned the
consistent hashing as a technique to overcome the drawbacks
of the previous techniques. The proposed method has been
compared to the above other techniques and has showed a
good performance. The metadata is split into blocks and
distributed relating to the loads to the different multiple
NameNodes and log replication was used to assure
consistency.

Consistent hashing is found in Amazon Dynamo. The
return function is like a range in which each node is in charge
of the data between it and the previous node and at the same
time a virtual node is allocated for it [11]. This way, data and
loads are shared and dispatched regularly among nodes. The
access to files and the association of files to blocks and the
namespace of the file system are managed by the master
NameNode.

In this approach [8], the nodes send heartbeats so the
master node can discover a failure and recover it. After that,
the blocks are assigned to another NameNode. Adding or
deleting NameNodes does not need to restart the system and
the redistribution of metadata is performed right away.
However, this approach still represents some limitations in
terms of scalability and availability.

IV. MAPREDUCE AS ARCHITECTURE STYLE

MapReduce is an internal implementation proposed by

Google to process big amounts of data across multiple nodes.

It is a fault tolerance system with write once and read many.

MapReduce style is composed of two different styles, Master-

slave style and batch sequential style [6].
The master node controls execution and manages replicated

file system. The slave nodes execute the mappers and reducers
functions and contain replicated data blocks. The execution
environment is taking care of :

• The planning of each job by dividing it into tasks

• Placement of data and code where each node contain its
data locally

• The synchronization is assured by making reduce tasks
wait for map tasks

• High tolerance to node failures

2018 International Conference on Advances in Computing and Communication Engineering (ICACCE-2018)
Paris, France 22-23 June 2018

255

 HDFS, the distributed file system is used by Hadoop along
with MapReduce. It is a master/slave architecture. Two types
of nodes are defined, the Master NameNode and data servers
DataNodes. Files are divided into chunks and the blocks are
replicated across the DataNodes. The NameNode knows the
location of each block but the clients communicate directly
with DataNodes.
 As mentioned before MapReduce is not a tool as some can
confused it with. It is a paradigm and a framework that you
must match your system into it of Map and Reduce Modules,
and that might be a challenging task. MapReduce is a
constraint more than a feature [7].
 This design and constraint make problem solving easier
and harder at the same time because it limits the possible
options that you can have and gives you a limit range of
design choices, which will narrow what it can and cannot be
done. So, more thinking and work on algorithm will be needed
in order to be able to solve and develop the system with those
constraints [8].

1) Components: MapReduce system consists of a single

master worker component and multiple map worker

components. A worker controller is used by the master worker

component to communicate with others. Data is written by

Map workers components to their local file system with the

help of a local file system connector, and Reduce worker’s

components read data with the same way. The two

components Map and Reduce use a global filesystem

connector.

2) Constraints: while writing the program, two functions

are developed, a map function and a reduce function. Creating

equal chunk sizes is important in the whole process. If

splitting the original input set is not done efficiently, that will

slower the overall system and decrease the performance of the

system because some map workers will take longer to run than

others [9]. The parallelized computation is basically the same

as the sequential computation if we use deterministic map and

reduce functions.

3) Qualities:

a) Scalability: It is the primary quality attribute that

MapReduce improves and it is its key goal. Dividing task into

small tasks and distribute them across many nodes improves

the performance than executing the task sequentially,

especially if the task is not easy to manage sequentially.

Programs written following the MapReduce style can run on

one cluster as they can run on more than one cluster of

thousands of machines.

b) Availability: MapReduce fosters availability. If a

failure occurs the system recover from it by rescheduling the

task on another node close to the one that caused the failure.

c) Data locality: It impacts strongly the performance of

the MapReduce architecture style. To mitigate the bandwidth

use, intermediate outputs should be kept close to the map and

reduce worker components. The global file system used is

often a distributed and redundant file system.

4) MapReduce and Pipe filter:

 MapReduce is a very strong paradigm for parallel and

distributed computing and processing. Most real problems in

the real world cannot be solved by a single MapReduce job.

And that is why a set of MapReduce jobs are linked together

so that the input to one job is the output of a previous job. If

not handled and architected adequately this can become a

development and maintenance issue.
MapReduce system is often a combination of MapReduce

architecture style and the batch sequential style, in which the

output from one MapReduce job is the input for the next. Each

MapReduce job is a phase in the batch sequential network.

Mixing these two architectural styles can make a problem that

was not adequate for MapReduce into one that is.
MapReduce is considered as an architectural style and

Hadoop is an open source implementation of MapReduce that

implement that architecture style.

V. APPROACH: HYBRID SOFTWARE ARCHITECTURE FOR HADOOP

A. Overview

 The fundamental concept of Hadoop is the manipulation,

processing and analysis of very large datasets (which are in

petabytes, Po), which are then automatically distributed in

storage spaces and batches of processing on a set of low cost

server clusters. From one server to several thousands of

machines, Hadoop is a scalable solution with a capacity for

fault tolerance. Failure detection and automation give Hadoop

an excellent resistance. Behind Hadoop, there are two

important technologies: MapReduce and HDFS, Hadoop's file

system. MapReduce is the infrastructure that identifies and

assigns batches processing to nodes in a Hadoop cluster.

MapReduce executes these batches in parallel mode

enabling their processing and analysis to carry large amounts

of data in a short time. HDFS, for its part, gathers and

connects all the nodes of the same Hadoop cluster into a single

large file system. As there is a failure, HDFS guarantees

reliability by replicating data at the level of several nodes.

High availability, reliability and fault tolerance is achieved by

using replication.

 It is important to note that Hadoop can use any distributed

file system but that will come with a cost because Hadoop will

not benefit from data locality provided by HDFS. Hadoop

needs to know where data is and what are the nodes that are

close to the data. HDFS is a distributed file system developed

specifically for Hadoop to provide locality, fault tolerance,

reliability and mainly to be integrated with Hadoop and its

architectural requirements.
Hadoop’s performance is limited by the single point of failure,
the NameNode and the operations allowed on it, one writer at
a time, no overwrites and no appends.

2018 International Conference on Advances in Computing and Communication Engineering (ICACCE-2018)
Paris, France 22-23 June 2018

256

Figure 1. Hybrid distributed HDFS Architecture

B. Design style principles

As mentioned before, HDFS provides an extremely
resistant and well documented system storage. It depends on a

fault tolerance software architecture design. Unfortunately, its

unique NameNode is a point of failure that reduces the
availability of the system. The NameNode coordinates access

to data in the file system and manage the distribution of data.

 The purpose of this work is to identify the software

architecture style that fulfill the architectural requirements for

Hadoop and mainly remove the single point of failure. The

structure of structures and modules of Hadoop will be defined

and discussed which will help more understanding Hadoop

system and will provide a basis for a more in-depth analysis of

Hadoop design, consistency analysis, compliance testing and

dependency analysis. It includes software components, how

these components are organized, the visible external properties

of these components and the relationship between them. The

new model will help in designing and constructing the new

Hadoop system architecture and its behavior. Detecting the

new challenges and impact on the requirement of the system

will allow to reduce these impact and risks on the new

architecture and enhance its quality attribute.

 To approach the increasing and main requirement and

features for managing Hadoop, the proposed architecture is a

hybrid style composed of a distributed style and a master slave

style. It is based on separation of concern. This separation will

be beneficial specifically because of the complexity of the

whole system and will decrease the amount of responsibilities

performed by the NameNode and thus get rid of the single

point of failure. The NameNode is responsible of managing

the whole system and coordination of metadata and access file

to HDFS. It is the only component that can trace and localize

data in HDFS which will slow down the system when many

processes are willing to access the same file. The idea is to add

a new distributed master slave system to the HDFS part to

separate responsibilities and decentralize mainly the metadata

management. Even if we think that generally the size of

metadata is smaller than the data itself, it is actually the most

data accessed by the client in the overall file system accesses.

This is why it is crucial to include another architecture to

manage it and distribute it because 50% to 80% accesses are

assumed in a large scale distributed system like Hadoop.

 The new architecture is composed of different distributed

processes that communicate with different other processes.

The above figure (Figure 1) depicts the view of the main

components and connectors of this hybrid architecture. HDFS

contains two master slave architecture: data master slave

architecture and metadata master slave architecture.

1) HDFS Clients component: HDFS Clients component:

create, read, write and append data from/to files. Many

concurrent clients are expected, and they may all access the

same file.

2) Data master slave architecture:

a) Master NameNode component: Master NameNode

component retains details about information of the available

storage space and plan the location of the new blocks. A new

strategy will be deployed to manage the distribution of the

data.

b) Slaves DataNode component: It stores the blocks by

writes and appends.

2018 International Conference on Advances in Computing and Communication Engineering (ICACCE-2018)
Paris, France 22-23 June 2018

257

3) Metadata master slave architecture:

a) Master MetaNameNode component: Responsible of

allocating innovation numbers to writers and appenders and

inform the readers about the innovation numbers for each

block. This will allow to have a consistent system. Old and

new innovations for the same block are accessible.

b) Slaves MetadataNode component: Store the metadata

that allow identifying the chunks that make up a snapshot

innovation. To improve concurrent access to metadata, a

distributed metadata management architecture is presented.

Removing the single point of failure will improve the
performance of Hadoop.

C. Design issues and challenges

 The proposed architecture is a distributed model in which

different components are distributed and managed over the

whole platform and work together towards executing the same

goal. The single point of failure will be removed by adding

another distributed system for metadata and separate the

responsibilities of the NameNode.
The underlying infrastructure of the proposed distributed

model is based on availability transparency and reliability. It
promotes consistency, availability and scalability. The new
model introduces architectural software challenges that need
to be addressed with a proper software architecture tradeoff in

terms of distributed system:

1) Complexity of the system: Two distributed systems

combined to assure the main functions of the system make the

system more difficult to handle, maintain and coordinate. The

parts of the system are independently managed. But if

properly organized in its software components, the system will

be able to manage that complexity. Different strategies will be

employed to be sure each part of the system is well managed

and consistent with other components of the system. With

these new strategies, less synchronization will be needed.

2) Scalability: Scalability may decrease as implementation

complexity of the system increases. So, being able to decrease

the complexity of the system and well manage it will help in

improving scalability of the system while there is a significant

number of processes accessing and using concurrently the

system.

3) Manageability: Managing the system will need more

effort and methods. It is important to ensure that the system is

easy to operate. Having a system combining three different

architectural styles will make it difficult to manage. That is

why we will need to make sure that the system is easy to

modify and update and can handle failures. A strategy based

on free concurrency access will be used. HDFS Clients writes

concurrently the modifications and updates to the system and

the MetaNameNode take in charge the assignment of new

innovation numbers to the system.

4) Communication: Communication and more specifically

between components may be more difficult specifically to

access files in HDFS. For every read and write, the client

Hadoop will contact the MetaNameNode or the NameNode

and if that communication is not managed, it could make the

system less performant. An invocation style will be used to

manage that. Using the publish-subscribe style to handle the

communication between clients and the MetaNameNode will

improve the quality of the communication and the

performance of the system. It may add more complexity to the

system but will make the system more consistent and make the

MetaNamenode and the client nodes low coupled.

5) Performance: Communication between components of

the new hybrid system may add an overload to the system and

thus impact the performance of the system. A method to make

the system a lock free system will help in decreasing the

overhead and waiting time among the concurrent processes

nodes.

6) Consistency: Will be guaranteed besides replication by

using a system for metadata management that depend on a

uniquely recognized shared innovation number in the system.

This method is explained above.

VI. CONCLUSION

In this paper, we have mainly addressed the challenge of
building big data systems using Hadoop. We described the
different features and architecture styles that exist and
discussed their design for Hadoop. We came up with a new
efficient architecture style for Hadoop that satisfy most of the
requirements and quality attributes promoted by this kind of
system. Challenges and issues raised by the new architectural
pattern have been identified and analyzed.

REFERENCES

[1] Shvachko, K., Kuang, H.R., Radia, S., et al., The Hadoop Distributed

File System. IEEE 26th Symposium on Mass Storage Systems and
Technologies, p.1-10, 2010.

[2] Dev, D., Patgiri, R., Performance evaluation of HDFS in big data

management. International Conference on High Performance Computing
and Applications, p 1-7, 2014.

[3] Bing Li, Yutao He, Ke Xu, “Distributed Metadata Management Scheme

in Cloud Computing “, In Proceedings of IEEE in PCN&CAD
CENTER, Beijing University of Post and Telecommunication, China,
2011.

[4] Ze Deng, Dong Wei, Wei-zhou Peng, Si-fa Zhang, “Constructing a

Two-Level Topology-Aware Distributed Hash Table with a Hierarchical
Network Coordinate System”, International Journal of Digital Content
Technology and its Applications, vol. 5, no. 8, pp. 203-214, 2011.

[5] Fairbanks, George. Just enough software architecture: a risk-driven

approach. Marshall & Brainerd, 2010.
[6] Mikhail J. Atallah & Marina Blanton, editors (2010): Algorithms and

Theory of Computation Handbook: General Concepts and Techniques, 2
edition. Chapman & Hall/CRC.

[7] Jost Berthold, Mischa Dieterle & Rita Loogen (2009): Implementing
parallel Google map-reduce in Eden. In: Euro-Par 2009 Parallel
Processing, Springer, pp. 990–1002.

[8] Shumo Chu & James Cheng (2012): Triangle Listing in Massive
Networks. ACM Trans. Knowl. Discov. Data 6(4), pp. 17:1–17:32.

[9] Jonathan Cohen (2009): Graph Twiddling in a MapReduce World.
Computing in Science and Engineering 11(4), pp. 29–41.

[10] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy & Russell Sears (2010): MapReduce Online. In:
Proceedings of the 7th USENIX Conference on Networked Systems

[11] Design and Implementation, NSDI’10, USENIX Association, Berkeley,
CA, USA, pp. 21–21.

2018 International Conference on Advances in Computing and Communication Engineering (ICACCE-2018)
Paris, France 22-23 June 2018

258

		2018-08-03T09:32:52-0400
	Certified PDF 2 Signature

