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ABSTRACT To maximize the received power at a user equipment, the problem of optimizing a
reconfigurable intelligent surface (RIS) with a limited phase range and nonuniform discrete phase shifts
with adjustable gains is addressed. Necessary and sufficient conditions to achieve this maximization are
given. These conditions are employed in two algorithms to achieve the global optimum in linear time.
Depending on the phase range limitation, it is shown that the global optimality is achieved in NK or fewer
and N(K + 1) or fewer steps, where N is the number of RIS elements and K is the number of discrete
phase shifts which may be placed nonuniformly over the limited phase range. In addition, we define
two quantization algorithms that we call nonuniform polar quantization (NPQ) algorithm and extended
nonuniform polar quantization (ENPQ) algorithm, where the latter is a novel quantization algorithm for
RISs with a significant phase range restriction. With NPQ, we provide a closed-form solution for the
approximation ratio with which an arbitrary set of nonuniform discrete phase shifts can approximate
the continuous solution. We also show that with a phase range limitation, equal separation among the
nonuniform discrete phase shifts maximizes the normalized performance. Furthermore, for a larger RIS
phase range limitation, we show that the gain of increasing K is only marginal, whereas, ON/OFF selection
for the RIS elements can bring significant performance compared to the case when the RIS elements are
strictly ON.

INDEX TERMS Intelligent reflective surface (IRS), reconfigurable intelligent surface (RIS), nonuniform
discrete phase shifts, IRS/RIS phase range, global optimum, linear time discrete beamforming for IRS/RIS,
nonuniform quantization.

I. INTRODUCTION
A reconfigurable intelligent surface (RIS), also known as in-
telligent reflective surface (IRS) is proposed for wireless en-
vironments where there may be blockage of electromagnetic
waves between the base station (BS) and user equipment
(UE), creating a low line-of-sight (LOS) environment [1]. An
RIS can also be employed to generate a wireless coexistence
environment by avoiding an area which may have its own
transmissions and transmitting to users in a different area
via reflections. An RIS employs devices known as RIS
elements whose capacitance can be changed by controlling
their bias voltage, affecting the phase of the RIS element,

thereby creating a change in the reflection coefficient of
the RIS element. This results in changing the direction of
an impingent electromagnetic wave [2]–[4]. Assuming the
phase shifts at the RIS elements are continuous, optimization
algorithms are developed, for example, [5]–[8].

A two-stage approach to address the discrete phase shifts
constraints for the single-user system is to project the con-
tinuous solution to the closest value in the discrete set [9]–
[12]. With discrete phase shifts constraints, the number of
possible solutions increases exponentially with the number
of RIS elements. Therefore, a closed-form solution becomes
practically unavailable and exponential search techniques are
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required [13]. To that end, [14] stated that the problem is a
generally NP-hard discrete quadratic program (QP). Most of
the prior work in single-user scenarios had exponential com-
plexity [9], [15]. In this regard, to outperform the traditional
quantization approach, probabilistic optimization techniques
have also drawn attention [16]–[18]. To address multi-user
detection in code division multiple access, the probabilistic
data association (PDA) approach is used in [16] to address
general binary quadratic problems (BPQs). Similarly, in [17],
authors addressed BPQs with a PDA algorithm and achieved
near-optimal results for highly reliable machine-to-machine
communication. Recently, the authors in [18] showed the
general quantization approaches can be outperformed in
various discrete RIS optimization problems by developing a
comprehensive probabilistic technique to transform discrete
optimization problems. Yet, most of the solutions not only
assume uniform discrete phase shifts but also can only
approximate the global optimum.

There has been a significant amount of research activity
for the selection of uniform discrete phases when the phase
range is 2π, see e.g., references in [19]. However, the
problem of the selection of discrete phases when the phase
range is limited to less than 2π is new and there are only a
few works that appeared in the literature or as preprints [20]–
[22]. Reference [20] states a uniform phase shift assumption
is not realistic according to the actual behavior of practical
RIS elements. The paper maximizes the channel capacity
of the target user. It claims to develop a method that finds
the optimal reflection amplitudes and phases with complex-
ity linear in the number of RIS elements. Reference [21]
states it models reflection coefficients as discrete complex
values that have nonuniform amplitudes and suffer from
insufficient phase shift capability. It proposes a group-based
query algorithm that takes the imperfect coefficients into
consideration. The authors have fabricated an RIS prototype
system and validate their theoretical results by experiments.
Reference [22] recognizes that in real-world applications, the
phase and bit resolution of RIS units are often nonuniform
due to practical requirements and engineering challenges.
The authors formulate an optimization problem for discrete
nonuniform phase configuration in RIS-assisted multiple-
input single-output (MISO) communications. They state they
propose a partition-and-traversal algorithm which achieves
the global optimal solution.

We note that the problem of a limited phase range can ac-
tually happen in a real RIS system. For example, a common
technology to implement an RIS is to employ varactor diodes
and change their capacitance via varying their bias voltages.
The change in capacitance makes the reflection coefficient of
the RIS element to change, thereby creating the desired effect
via the RIS. However, in the implemented RIS element, the
voltage changes may not correspond to the full range of
−π to π (or −180◦ to 180◦). As an example, [4] discusses a
prototype for an RIS implemented via varactor diodes. In [4,
Fig. 3], it can be observed that for the frequency the RIS is

designed to operate at, i.e., 5.8 GHz, the change in the phase
of the reflection coefficient is restricted to −120◦ to 110◦. At
frequencies different than 5.8 GHz, the range is even smaller.

Our motivation in this paper is to address the discrete-
phase RIS problem to maximize the received power at a
UE with the particular emphasis that the phase range is
less than 2π. As described above, this can occur commonly
in realistic implementations of the RIS structure where the
components that realize the phase change in an RIS element
are varactor diodes. In these settings, it is possible that the
algorithms developed for the full phase range of 2π will
not work and thus new algorithms need to be developed.
Inspired by our work in [19], we are also motivated to find
out if intuitive suboptimal algorithms to solve this problem
can be found. For example, is it possible to employ intuitive
techniques that have an approach of quantization within the
limited phase range? If yes, we would like to quantify how
closely they can perform compared to the optimum solution.
We are also motivated to find closed-form expressions as
to the fundamental limits of such techniques. Another key
motivation is optimizing the placement of discrete phase
shifts, i.e., selecting the phase shift set. Previously, these
were uniformly set based on the number of phases, but with
the possibility of nonuniform phases, this requires analysis.

Our work in this paper provides, as an extension of the
work in [19], necessary and sufficient conditions for global
optimality, two algorithms to achieve the optimum solution
which can have smaller number of steps than the works
in the literature, and two intuitive quantization algorithms
which achieve near-optimal performance with very small
complexity. We provide fundamental limits for the quanti-
zation approach. We also show that the best solution for
this approach is obtained when equal separation among the
discrete phases in the limited phase range is achieved.

In quantitative terms, the contributions of the paper are as
follows.

• To maximize the received power at a user equipment,
the problem of optimizing an RIS with a limited phase
range R < 2π and nonuniform discrete phase shifts
with adjustable gains is addressed and necessary and
sufficient conditions to achieve this maximization are
given.

• These conditions are employed in two novel algorithms
to achieve the global optimum in linear time for R ≥ π
and R < π. With a total number of N(K + 1) and
N(K + 2) complex vector additions when R ≥ π
and R < π, it is shown that the global optimality is
achieved in NK or fewer and N(K+1) or fewer steps,
respectively, where N is the number of RIS elements
and K is the number of discrete phase shifts. To the
best of our knowledge, the required complexity is the
lowest available in the literature.

• In addition, we define two quantization algorithms that
we call nonuniform polar quantization (NPQ) algorithm
and extended nonuniform polar quantization (ENPQ)
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algorithm, where the latter is a novel quantization algo-
rithm for RISs with a significant phase range restriction,
i.e., R < π.

• With NPQ, we provide a closed-form solution for the
approximation ratio with which an arbitrary set of
nonuniform discrete phase shifts can approximate the
continuous solution. With this, we analyze the optimal
placement of the nonuniform discrete phases overseen
by literature. We show that with a phase range limita-
tion, equal separation among the nonuniform discrete
phase shifts maximizes the normalized performance.

• Furthermore, we show that the gain of using more than
two discrete phase shifts with R < π/2 and more than
three discrete phase shifts with R < π is only marginal,
i.e., increasing the number of discrete phase shifts does
not improve the performance when R is limited.

• Finally, we prove that when R < 2π/3, ON/OFF selec-
tion for the RIS elements brings significant performance
compared to the case when the RIS elements are strictly
ON.

The rest of this paper is organized as follows. Section II
introduces the system model and the problem definition.
With strictly ON RIS gains, an optimal algorithm and a sub-
optimal quantization algorithm are developed in Section III
and Section IV, respectively. Based on the quantization
algorithm, Section V provides an approximation ratio for
the performance. With the approximation ratio, an analytical
analysis for the optimum placement of discrete phases is
provided in Section VI. Then the RIS gains are relaxed.
Considering adjustable RIS gains, Section VII, Section VIII,
and Section IX provide an optimal algorithm, a suboptimal
algorithm, and an approximation ratio of the performance
for R < π. Section X analyzes convergence to optimality.
Performance and complexity analyses are provided in Sec-
tion XI, in comparison with the recent literature. Section XII
has a brief discussion on an extension to the multi-user
scenario. Finally, Section XIII provides the conclusion of
the paper.

II. SYSTEM MODEL
We consider a point-to-point communication scenario aided
by an RIS with N elements and a phase range R. The RIS
elements introduce a gain and a phase shift, i.e., βr

n and
θn for n = 1, . . . , N , respectively, to the incident signal.
We consider K discrete phase shifts for the RIS elements
θn ∈ ΦK , where ΦK = {ϕ1, ϕ2, . . . , ϕK} and the RIS
gains can be adjustable, i.e., βr

n ∈ [0, 1]. We also define
the difference among each adjacent phase shift in ΦK as
ΩK = {ω1, ω2, . . . , ωK}, such that ϕk⊕1 = ϕk+ωk

1. Hence,

1In this paper, we define ⊕ and ⊖ to choose from RIS phase shift
indexes from 1 to K as follows. For k1, k2 ∈ {1, . . . ,K}, k1 ⊕ k2 =

k1 + k2 if k1 + k2 ≤ K and k1 ⊕ k2 = k1 + k2 − K, otherwise.
Similarly, for k1, k2 ∈ {1, . . . ,K}, k1 ⊖ k2 = k1 − k2 if k1 > k2 and
k1 ⊖ k2 = K + k1 − k2, otherwise.

the N -element reflection coefficient vector is

w =
[
βr
1e

jθ1 , βr
2e

jθ2 . . . , βr
NejθN

]
(1)

where j =
√
−1. Let s ∈ C be the transmitted symbol. The

received signal is given as [19]

y = (hT
uWhb + h0)s+ z, (2)

where h0 ∈ C is the direct link between the BS and UE with
non-line-of-sight (NLOS), W = diag(w), z is the additive
white Gaussian noise (AWGN), hu ∈ CN×1 and hb ∈ CN×1

are the equivalent channels of the RIS-UE and BS-RIS links,
respectively.

Let hn be the complex-valued cascaded channel coeffi-
cient between the BS and the UE, being reflected by the nth
RIS element, n = 1, . . . , N , i.e., let h = hu ⊙ hb, where
⊙ is the elementwise (Hadamard) multiplication of the two
vectors. Assuming a mean power constraint E[|s|2] ≤ P at
the BS, the achievable ergodic data rate in bps/Hz is given
by

γ = E
[
log

(
1 +

P

σ2

∣∣h0 + hTw
∣∣2)] , (3)

where z ∼ CN (0, σ2) and σ2 is the noise power.
The RIS aids the communication through discrete beam-

forming to maximize the overall channel gain in equation
(3). In practical scenarios, RISs have a certain phase-shifting
capability, and the discrete phase shifts are not necessarily
uniform [23]. In this paper, the RIS phase range R ∈ [0, 2π]
represents the phase-shifting capability of the RIS. Hence,
we assume that the main restriction arises due to the RIS
phase range R < 2π, and the nonuniform phase shifts are
selected based on the RIS phase range as in Fig. 1.

At this point, we would like to emphasize an important
point regarding the placement of the limited phase range R
on the unit circle. We remark that the symmetry between
the phase shifts −R

2 and R
2 in Fig. 1 is not required and the

techniques presented in this paper apply to any nonuniform
discrete phase shifts structure with a total contiguous phase
range R. Because, for an arbitrary nonuniform phase shift
structure, the RIS phase range would satisfy the condition
R = 2π − ωk̄ where ωk̄ is the largest value in the set ΩK .
So, without loss of generality, we will use the approach in
Fig. 1, i.e., −π ≤ ϕ1 < · · · < ϕK = ϕ1 + R < π with
R < 2πK−1

K . The condition R < 2πK−1
K arises due to the

fact that R comes from ωk̄, and the condition ωk̄ ≥ 2π
K must

be satisfied as
∑K

k=1 ωk = 2π and by its definition ωk̄ ≥ ωk,
for k ∈ {1, 2, . . . ,K}\ k̄. Note that, this will ensure that the
discrete phase shifts cannot be placed uniformly over the unit
circle2. In addition, while we recognize the phase range is
not necessarily symmetric, we will assume the discrete phase
shifts to be distributed over the range [−R

2 ,
R
2 ], without loss

of generality.

2Note that the terms uniform and nonuniform depend on the range over
which they are defined. In this paper, we use the term nonuniform to mean
the distribution over the full phase range [−π, π) is nonuniform, or not
equally separated.
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FIGURE 1: Nonuniform phase placement for R ∈ [0, 2π].

A. PROBLEM DEFINITION
In this paper, we extend the problem of finding discrete
phase shifts to maximize the received power at a UE for
transmission, reflected by an RIS, originated from a BS, see,
e.g., [19]. In particular, we address the problem of finding
the values θ1, θ2, . . . , θN and βr

1 , β
r
2 , . . . , β

r
N to maximize

the received power
∣∣∣h0 +

∑N
n=1 hnβ

r
ne

jθn

∣∣∣2 in equation (3),
or its square root, using nonuniform discrete phase shifts.

We would like to remind the reader that in∣∣∣h0 +
∑N

n=1 hnβ
r
ne

jθn

∣∣∣, the values hn = βne
jαn ,

n = 0, 1, 2, . . . , N are the channel coefficients and
θn, n = 1, 2, . . . , N are the phase values added to the
corresponding hn by an RIS. As for the moment, we let
βr
n = 1, n = 1, . . . , N , which we will relax after further

analysis in this paper.
Initially, the problem can be formally described as

maximize
θ

f(θ)

subject to θn ∈ ΦK , n = 1, 2, . . . , N
(4)

where

f(θ) =

∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(αn+θn)

∣∣∣∣2, (5)

βn ≥ 0, n = 0, 1, . . . , N , θ = (θ1, θ2, . . . , θN ), and αn ∈
[−π, π) for n = 0, 1, . . . , N .

We will provide optimal and suboptimal but computation-
ally efficient algorithms for the problem. Furthermore, we
will analyze the arbitrary phase shift placement and their
optimality of approximating the continuous solution for large
N , in regards to the RIS phase range.

In the next section, we will define our nonuniform discrete
phase shift selection algorithm that guarantees the global
optimal solution for βr

n = 1, n = 1, 2, . . . , N , or equiv-
alently when R ≥ π, and it will be an extension of [19,
Algorithm 1]. We further improve it in the sequel by relaxing
βr
n in the interval [0, 1] to improve the performance whenever

the RIS phase range is less than π, i.e., R < π.

III. OPTIMAL SOLUTION WITH NONUNIFORM DISCRETE
PHASE SHIFTS
In this section, we aim to solve the received power max-
imization problem, so that we can get the global op-
timum solution in linear time. We want to maximize∣∣∣h0 +

∑N
n=1 hne

jθn

∣∣∣ where hn = βne
jαn for n =

0, 1, . . . , N , and θ = (θ1, θ2, . . . , θN ). Define g as

g = h0 +

N∑
n=1

hne
jθ∗

n (6)

where θ∗n are the discrete phase shifts that lead to the global
optimum. Let µ = g/|g| so that |g| = ge(−j µ). Similar
to the condition in [19], we can make use of the following
lemma.

Lemma 1: For an optimal solution (θ∗1 , θ
∗
2 , . . . , θ

∗
n), it is

necessary and sufficient that each θ∗n satisfy

θ∗n = arg max
θn∈ΦK

cos(θn + αn − µ) (7)

for an arbitrary ΦK .
Proof: We can rewrite |g| = ge(−j µ) as

|g| = β0e
j(α0− µ) +

N∑
n=1

βne
j(αn+θ∗

n− µ)

= β0 cos(α0 − µ) + jβ0 sin(α0 − µ)

+

N∑
n=1

βn cos(θ
∗
n + αn − µ)

+ j

N∑
n=1

βn sin(θ
∗
n + αn − µ). (8)

Because |g| is real-valued, the second and fourth terms in
(8) sum to zero, and

|g| = β0 cos(α0 − µ) +

N∑
n=1

βn cos(θ
∗
n + αn − µ), (9)

from which (7) follows as a necessary and sufficient condi-
tion for the lemma to hold. ■

With the help of this lemma, we have the necessary and
sufficient conditions to get the optimal phase shift selections.
However, at this point, we assumed that the optimum µ
would be given. To make use of this mathematical condition-
ing on the globally optimum solution, we need an operational
framework to find µ, similar to [14], [19]. While µ can be
anywhere on the unit circle, given the channel realizations hn

for n = 0, 1, . . . , N , we provide the following proposition to
reduce the search space of µ to a finite size, as an extension
to [19, Proposition 1]. Towards that end, we will define the
following sequence of complex numbers with respect to each
n = 1, 2, . . . , N as

snk = exp
(
j
(
αn + ϕk −

ωk⊖1

2

))
, (10)

for k = 1, 2, . . . ,K . Define, for any two points a and b
on the unit circle C, arc(a : b) to be the unit circular arc
with a as the initial end and b as the terminal end in the
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FIGURE 2: An illustration for the optimality of θ∗n = ϕk given µ ∈
arc(snk : sn,k+1).

counterclockwise direction, with the two endpoints a and b
being excluded.

Proposition 1: A sufficient condition for θ∗n = ϕk is

µ ∈ arc(snk : sn,k+1). (11)

Proof: Assume µ satisfies (11). Then,

µ ∈
(
αn + ϕk −

ωk−1

2
, αn + ϕk+1 −

ωk

2

)
. (12)

By subtracting θn and αn, we get

µ−θn−αn ∈
(
ϕk −

ωk−1

2
− θn, ϕk+1 −

ωk

2
− θn

)
. (13)

Now, let θn = ϕk. Then,

µ−θn−αn ∈
(
ϕk −

ωk−1

2
− ϕk, ϕk+1 −

ωk

2
− ϕk

)
. (14)

By substituting ϕk+1 = ϕk + ωk, we have

µ− θn − αn ∈
(
−ωk−1

2
,
ωk

2

)
. (15)

Therefore, letting θn = ϕk results in the largest cos(θn +
αn− µ) value among other possibilities for µ, as illustrated
in Fig. 2 by showing the effect of selecting the phase shift
option before and after than ϕk. Since cos( µ− θn−αn) =
cos(θn + αn − µ), the proof is complete. ■

Finally, to operate with Proposition 1, we will eliminate
duplicates among snk and sort to get ejλl such that 0 ≤
λ1 < λ2 < · · · < λL < 2π. Define the update rule as

N (λl) = {{n′, k′}| sn′k′ = λl}. (16)

Let us search for the optimum µ by traversing the unit circle
in the counterclockwise direction, starting from µ = 0. With
Proposition 1, we know that θn for n = 1, 2, . . . , N will
remain the same unless µ switches from one arc to another.
Whenever µ switches arcs, there exists n such that θn will
be updated, i.e., if

µ ∈ arc(ejλl : ejλl+1)→ µ ∈ arc(ejλl+1 : ejλl+2), (17)

Algorithm 1 Generalized [19, Algorithm 1] for Nonuniform
Phase Considerations

1: Initialization: Compute snk and N (λl) as in equations
(10) and (16), respectively.

2: Set µ = 0. For n = 1, 2, . . . , N , calculate and store

θn = arg max
θn∈ΦK

cos( µ− θn − αn).

3: Set g0 = h0 +
∑N

n=1 hne
jθn , absgmax = |g0|.

4: for l = 1, 2, . . . , L− 1 do
5: For each double {n′, k′} ∈ N (λl), let θn′ = ϕk′ .
6: Let

gl = gl−1 +
∑

{n′,k′}∈N (λl)

hn′
(
ejθn′ − ej(ϕk′⊖1)

)
7: if |gl| > absgmax then
8: Let absgmax = |gl|
9: Store θn for n = 1, 2, . . . , N

10: end if
11: end for
12: Read out θ∗n as the stored θn, n = 1, 2, . . . , N .

then for every {n′, k′}, θn′ must be updated according to the
update rule in (16) as

θn′ → ϕk′ , {n′, k′} ∈ N (λl+1). (18)

Therefore, the optimum solution will come from L ≤ NK
possible candidates of µ. For each candidate, we will operate
using the sufficiency condition in Proposition 1 that is
guaranteed to provide the globally optimum solution, since
it is compatible with Lemma 1.

We specify the procedure explained in this section, which
achieves the global optimum solution when RIS elements are
strictly ON, as Algorithm 1. Algorithm 1 works as a search
algorithm for the optimum µ and therefore the optimum
RIS configuration, based on Lemma 1 and Proposition 1.
To initiate the search, Algorithm 1 starts with µ = 0
and selects the RIS coefficients with Lemma 1. Then, to
try every other candidate µ and the corresponding RIS
configuration, Algorithm 1 only updates one or a small
number of elements, as specified in (17) and (18), achieving
linear time complexity. After trying NK or fewer options,
Algorithm 1 selects the RIS configuration that achieves the
maximum received power, which is guaranteed to be the
global optimum by the analytical analysis provided in this
section. A complexity analysis for Algorithm 1 is provided
in Section X.

Finally, Algorithm 1 is a generalized version of [19,
Algorithm 1] to work with nonuniform phase shifts and
achieve the global optimum in L ≤ NK steps. We remark
that, for uniformly distributed phase shifts, we showed in
[19] that the convergence can be achieved in N or fewer
steps, without requiring any complex number calculations.

Similar to what the authors in [20] pointed out, we remark
on an important downside of the nonuniform discrete phase

VOLUME , 5
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shifts, especially when R < π. We know from our Propo-
sition 1 that the optimal phase shift selections will satisfy
µ− θn−αn ∈

(
−ωk−1

2 , ωk

2

)
. So, whenever R < π, we will

have an ωk̄ > π for k̄ ∈ {1, 2, . . . ,K}. Note that there could
only be one instance of k̄ since

∑K
k=1 ωk = 2π must hold.

With this, depending on the optimum µ, cos( µ− θn − αn)
can take a negative value for some n. This results in a
negative contribution to the optimum |g| given in (9). To
address the issue of negative values caused by R < π, we
will discuss this in detail starting from Section VII and in
subsequent sections.

IV. NONUNIFORM DISCRETE PHASE SHIFTS AND
QUANTIZATION SOLUTION
In this section, we will approach the received power max-
imization problem with an intuitive quantization algorithm,
which we call NPQ. This quantization approach is an ex-
tension to the uniform polar quantization (UPQ) algorithm
proposed in [19]. It is similar to the closest point projection
(CPP) algorithm in [12]. Using an analytical approach with
this algorithm, we will develop closed-form solutions of the
approximation ratios of arbitrary discrete phase shifts to the
continuous solution, and develop a framework on how to
place the nonuniform discrete phase shifts regarding the RIS
phase range.

Consider the problem in (4) but without the condition
θn ∈ ΦK , n = 1, 2, . . . , N . We call the solution of this
problem the continuous solution to (4). Given a continuous
solution to the problem in (4), say θcont

n , NPQ selects the
closest possible angle from the set ΦK . Therefore, for this
purpose, we first relax θn and redefine the received power
maximization problem as

maximize
θcont

f(θcont)

subject to θcont
n ∈ [−π, π), n = 1, 2, . . . , N,

(19)

where

f(θcont) =

∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(αn+θcont

n )

∣∣∣∣2. (20)

In the above equation, f(θcont) is calculated by adding N+1
complex numbers, where each complex number represents a
two-dimensional vector on the complex plane. Among N+1
vectors, the only vector we do not have control over is h0 =
β0e

jα0 . Therefore, in order to achieve the maximum value
of f(θcont), we can select

θcont
n = α0 − αn, for n = 1, 2, . . . , N, (21)

so that all vectors will be aligned on top of each other,
resulting in the maximum achievable value of (

∑N
n=0 βn)

2.
In other words,

f(θcont) = |ejα0 |2
∣∣∣∣β0 +

N∑
n=1

βne
j(αn+θcont

n −α0)

∣∣∣∣2
=

∣∣∣∣β0 +

N∑
n=1

βne
j(αn+θcont

n −α0)

∣∣∣∣2
(22)

and the choice in (21) maximizes f(θcont). Given θcont
n ∈

[−π, π), NPQ projects to the closest available phase value
in ΦK . Therefore, assuming without loss of generality that
−π ≤ ϕ1 < ϕ2 < · · · < ϕK < π, the decision rule for NPQ
is defined as

θNPQ
n =

ϕ1 if − π ≤ θcont
n <

ϕ1 + ϕ2

2
,

ϕ2 if
ϕ1 + ϕ2

2
≤ θcont

n <
ϕ2 + ϕ3

2
,

...

ϕK−1 if
ϕK−2 + ϕK−1

2
≤ θcont

n <
ϕK−1 + ϕK

2
,

ϕK otherwise.

(23)

where θcont
n is the continuous solution in (21).

From the definition of NPQ, similar to UPQ and CPP
approaches, the solution cannot be guaranteed to be glob-
ally optimum. In other words, NPQ can only provide a
suboptimal solution. Yet, with the quantization approach,
the beamforming process can be substantially simplified
by using look-up tables, as NPQ only requires αn for
n = 0, 1, . . . , N to select the discrete phase shifts.

We present the cumulative distribution function (CDF)
results for signal-to-noise ratio (SNR) Boost [14] in Fig. 3
for K = 4, and in Fig. 4 for K = 8. In these results, we
consider the RIS phase range to be larger than or equal to
π, i.e., R ∈ {180◦, 240◦}, leading us to use large values
of K so that R < 2πK−1

K . The CDF results are presented
for N = 9, 25, and 64, using 10,000 realizations of the
channel model defined in [19] with κ = 0. We employed
UPQ in [19] and the optimum algorithm [19, Algorithm 1] to
generate the performance results for uniform discrete phase
shifts and quantify the loss due to nonuniformity. We also
employ Algorithm 1, and the NPQ algorithm presented in
this paper, with the equally separated nonuniform discrete
phase shifts structure given in Fig. 1. Finally, to provide
a comparison with the literature, we employed the block
coordinate descent (BCD) algorithm [24] as it is a commonly
used approach [12], [14], [19], where phases are selected
for each element at a time to successively refine the perfor-
mance. All algorithms ran over the same channel realization
in each step. Between Fig. 3 and Fig. 4, it can be seen that
the loss due to the RIS phase range restriction increases for
larger K. Note the UPQ with the uniform discrete phase
shifts is always superior to NPQ, provided R < 2πK−1

K .
However, we remark that the optimum performance provided
by Algorithm 1 with nonuniform discrete phase shifts can
surpass the UPQ algorithm with uniform phases. In other
words, the loss due to the RIS phase range limitation is
larger for the quantization approach rather than the optimum
solution with R ≥ π and βr

n = 1 for n = 1, . . . , N.
In the next section, we will analyze the achievable perfor-

mance under nonuniform discrete phase shift constraints by
deriving approximation ratios with NPQ.
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FIGURE 3: CDF plots for SNR Boost with [19, UPQ], [19, Algorithm 1],
BCD [24], Algorithm 1, and NPQ, for K = 4.
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FIGURE 4: CDF plots for SNR Boost with [19, UPQ], [19, Algorithm 1],
BCD [24], Algorithm 1, and NPQ, for K = 8.

V. APPROXIMATION RATIO OF NONUNIFORM DISCRETE
PHASE SHIFTS WITH NPQ
Having the quantization approach in hand, we will define
an approximation ratio to quantify the effect of the NPQ
algorithm, the nonuniform discrete phase shifts, and the
RIS phase range on the overall performance of the system.
Specifically, the approximation ratio will quantify how well
the continuous solution can be approximated. Similar to the
approach in [9], [19], where we developed an approximation
ratio for the UPQ algorithm [19] with uniform discrete phase
shifts, we will first approximate the received power f(θcont)
for asymptotically large N as

f(θNPQ) =

∣∣∣∣β0e
jα0 +

N∑
n=1

βne
j(αn+θNPQ

n )

∣∣∣∣2
=
∣∣ejα0

∣∣2 ∣∣∣∣β0 +

N∑
n=1

βne
j(αn+θNPQ

n −α0)

∣∣∣∣2
=

∣∣∣∣β0 +

N∑
n=1

βne
j(θNPQ

n −θcont
n )

∣∣∣∣2
≈
∣∣∣∣ N∑
n=1

βne
j(θNPQ

n −θcont
n )

∣∣∣∣2, (24)

where the gain from the direct link, i.e., β0, is practically
discarded. Let δn = θNPQ

n − θcont
n for n = 1, 2, . . . , N. The

resulting absolute square term in (24) can be expressed as

f(θNPQ) ≈
∣∣∣∣ N∑
n=1

βne
j(θNPQ

n −θcont
n )

∣∣∣∣2
=

N∑
n=1

β2
n + 2

N∑
k=2

k−1∑
l=1

βkβl cos(δk − δl). (25)

Assume that in (25) all βk, βl, δk, and δl are independent
from each other. Taking the expectation yields

E[f(θNPQ)] = NE[β2
n] +N(N − 1)E[βkβl]E[cos(δk − δl)].

(26)
Finally, we need to normalize the result in (26) with the
maximum achievable result to get a ratio from 0 to 1, where
the continuous solution would achieve 1. We know from
(21) that the maximum achievable number is (

∑N
n=0 βn)

2.
Therefore, E[(

∑N
n=0 βn)

2] = NE[β2
n] +N(N − 1)E[βkβl].

As a result, with (26) , the ratio of the two expected values
can be calculated for asymptotically large N as

lim
N→∞

E[f(θNPQ)]

E[(
∑N

n=0 βn)2]
= E[cos(δk − δl)]. (27)

Hence, E[cos(δk − δl)] will be the approximation ratio for
NPQ. As we have the independence assumption among δk
and δl, E[cos(δk − δl)] can be simplified further as

E [cos (δk − δl)]

= E [cos (δk) cos (δl) + sin (δk) sin (δl)]

= E [cos (δk) cos (δl)] + E [sin (δk) sin (δl)]

= E [cos (δk)]E [cos (δl)] + E [sin (δk)]E [sin (δl)]

= (E [cos (δn)])
2
+ (E [sin (δn)])

2 (28)

for n = 1, 2, . . . , N . Therefore, for a given discrete phase
shift selection set ΦK , the approximation ratio can be
calculated with (28). We will calculate this for two different
scenarios. First, we will provide the approximation ratio for
arbitrary ϕk, k = 1, 2, . . . ,K , and then for equally separated
nonuniform phase shifts over the RIS phase range, as given
in Fig. 1. In between the two steps, we will also analyze the
special connection between the two and show that the latter
maximizes the potential of the RIS with nonuniform discrete
phase shifts.
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Given the set ΦK of arbitrary discrete phase shifts, the
approximation ratio will be denoted by E(ϕ1, ϕ2, . . . , ϕK).
This will be a measure to represent the average performance
for an RIS. For this purpose, as a common assumption from
the literature to define the quantization error [9], [12], [19],
we will assume that θcont

n is uniformly distributed, i.e., θcont
n ∼

U [−π, π] to apply the law of total expectation.
Let ΦK = {ϕ1, ϕ2, . . . , ϕK} be the set of arbitrarily

selected nonuniform phase shifts. Assume without loss of
generality that −π ≤ ϕ1 < ϕ2 < · · · < ϕK < π.
Let θcont

n ∈ [ϕk, ϕk+1] for k = 1, . . . ,K with probability
ϕk+1−ϕk

2π , in which case θNPQ
n will either be ϕk or ϕk+1.

Note that δn = θNPQ
n − θcont

n will be uniformly distributed in[
−ϕk+1−ϕk

2 , ϕk+1−ϕk

2

]
, i.e., δn ∼ U

[
−ϕk+1−ϕk

2 , ϕk+1−ϕk

2

]
.

To find E(ϕ1, ϕ2, . . . , ϕK), we need to calculate the
result in (28). First, note that the distribution of δn is
always symmetric around zero, which gives (E [sin (δn)])

2
=

0, n = 1, 2, . . . , N . Therefore, E(ϕ1, ϕ2, . . . , ϕK) =
(E [cos (δn)])

2. Now, introduce the law of total expectation
given as E[X] = E[E[X|Y ]] =

∑
i E[X|Ai]P (Ai), so that

E [cos (δn)] can be calculated as

E [cos (δn)] =

K−1∑
k=1

ϕk+1 − ϕk

2π

∫ (
ϕk+1−ϕk

2 )

−(
ϕk+1−ϕk

2 )

1

ϕk+1 − ϕk
cos(δn)dδn


+

2π + ϕ1 − ϕK

2π

∫ (
2π+ϕ1−ϕK

2 )

−(
2π+ϕ1−ϕK

2 )

1

2π + ϕ1 − ϕK
cos(δn)dδn

(29)

where inside the integral, 1
ϕk+1−ϕk

comes from the uniform

distribution and ϕk+1−ϕk

2π is the probability of the event
θcont
n ∈ [ϕk, ϕk+1] occurring. Now, we calculate the term

inside the square brackets as

ϕk+1 − ϕk

2π

∫ (
ϕk+1−ϕk

2 )

−(
ϕk+1−ϕk

2 )

1

ϕk+1 − ϕk
cos(δn)dδn

=
1

π

∫ (
ϕk+1−ϕk

2 )

0

cos(δn)dδn

=
1

π
sin

(
ϕk+1 − ϕk

2

)
. (30)

Similarly, the last term in (29) will be 1
π sin(ϕK−ϕ1

2 ) as
sin( 2π+ϕ1−ϕK

2 ) = sin(ϕK−ϕ1

2 ). Therefore, from equations
(28), (29), and (30), the approximation ratio for an arbitrary
nonuniform discrete phase shift set is

E(ϕ) =

1

π2

[(
K−1∑
k=1

sin

(
ϕk+1 − ϕk

2

))
+ sin

(
ϕK − ϕ1

2

)]2 (31)

where we used the shorthand notation ϕ for ϕ1, ϕ2, . . . , ϕK

with −π ≤ ϕ1 < ϕ2 < · · · < ϕK < π.
Now, without loss of generality, let −π ≤ ϕ1 < · · · <

ϕK = ϕ1 + R < π with R < 2πK−1
K , as given in Fig. 1.

Substituting ϕK = ϕ1 +R in (31), we have

E(ϕ) =
1

π2

[(K−2∑
k=1

sin

(
ϕk+1 − ϕk

2

))
+sin

(
ϕ1 +R− ϕK−1

2

)
+ sin

(
R

2

)]2
,

(32)

where it is clear that R will directly impact the average
performance. We leave the discussion of this to Section VI.

VI. OPTIMUM PLACEMENT OF THE PHASE SHIFTS
In this section, we use our approximation ratios calculated in
Section V to find the optimal placement of the discrete phase
shifts, analytically. More specifically, we first use equation
(31) to show that the optimal placement of the discrete phase
shifts would be uniformly distributed, when there is no RIS
phase range limitation. Secondly, we extend this calculation
considering a limited RIS phase range, i.e., R < 2πK−1

K ,
and show that the optimal placement of the discrete phase
shifts would be equally separated over the RIS phase range,
i.e., over [−R

2
R
2 ] as in Fig. 1. Finally, by considering the

equally separated nonuniform discrete phase shifts, we reveal
the effect of R and K on the overall discrete beamforming
performance of the RIS. In (31), we derived the closed-
form expression for the approximation ratio of the set of
arbitrary nonuniform discrete phase shifts, i.e., how well the
continuous solution can be approximated for large N . Now
we will prove that given K, arranging the phase shifts uni-
formly will maximize the approximation ratio, and therefore
will also maximize the average quantization performance.
Define ∆k = (ϕk+1 − ϕk)/2 for k = 1, 2, . . . ,K − 1 and
∆K = (2π + ϕ1 − ϕK)/2. Note that ∆k ∈ (0, π) for
k = 1, 2, . . . ,K and

∑K
k=1 ∆k = π. Ignoring the factor

1/π2 in (31), the maximization problem can be equivalently
expressed as

maximize

K∑
k=1

sin(∆k)

subject to ∆1 +∆2 + · · ·+∆K = π,

∆k ∈ (0, π), k = 1, 2, . . . ,K.

(33)

Using Lagrange multipliers, let

F (∆1,∆2, . . . ,∆K , λ)

=

K∑
k=1

sin(∆k) + λ

(
K∑

k=1

∆k − π

)
,

(34)

where, the derivatives will be
∂F

∂∆k
= cos(∆k) + λ

∂F

∂λ
= ∆1 +∆2 + · · ·+∆K − π

for k = 1, 2, . . . ,K . Letting ∂F
∂∆k

= 0 gives cos(∆1) =
cos(∆2) = · · · = cos(∆K) = −λ. Since, ∆k ∈ (0, π), the
solution will be ∆1 = ∆2 = · · · = ∆K = π/K to satisfy the
second condition ∂F

∂λ = 0. Therefore, the optimum placement
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of the phase shifts is uniformly distributed. Note that this is
achievable as long as the RIS phase range R is large enough
for a desired number of phase shifts K. Therefore, if there
is to be a restriction due to the RIS phase range to force
nonuniform phase shifts, the condition R < 2πK−1

K must
be satisfied. When there is a sufficient restriction due to the
RIS, i.e., R < 2πK−1

K , there is no way that the arbitrary
discrete phase shifts can be distributed uniformly over the
range [−π, π). However, we can still question the placement
of the discrete phase shifts over the range R that the RIS can
reach and show that equally separated discrete phase shifts
over the range R will maximize the performance. Note from
(32) that this time we need to define ∆k′ for k′ = 1, . . . ,K−
1. Therefore, let ∆k′ =

ϕk′+1−ϕk′

2 , k′ = 1, . . . ,K − 2 and
∆K−1 = ϕ1+R−ϕK−1

2 . Now, focusing on the placement of
discrete phase shifts, we will omit the sin

(
R
2

)
term.

Similar to the arbitrary case, using the Lagrange multipli-
ers, we define the equivalent maximization problem as

maximize

K−1∑
k′=1

sin(∆k′)

subject to ∆1 +∆2 + · · ·+∆K−1 =
R

2
,

∆k′ ∈
(
0,

R

2

)
, k′ = 1, 2, . . . ,K − 1.

(35)

Define

F ′(∆1,∆2, . . . ,∆K−1, λ) =
K−1∑
k′=1

sin(∆k′) + λ

(
K−1∑
k′=1

∆k′ − R

2

)
,

(36)

where, the derivatives will be

∂F

∂∆k′
= cos(∆k′) + λ

∂F

∂λ
= ∆1 +∆2 + · · ·+∆K−1 −

R

2

for k′ = 1, . . . ,K − 1. Letting ∂F
∂∆k′

= 0 gives cos(∆1) =

cos(∆2) = · · · = cos(∆K−1) = −λ. Since ∆k′ ∈ (0, R
2 )

and in this range the cosine function is monotonically
decreasing, the solution is provided by ∆1 = ∆2 = · · · =
∆K−1 = R

2(K−1) . Note that this also satisfies ∂F
∂λ = 0.

Therefore, the optimum placement of the phase shifts is
equally separated over the range R to maximize the average
normalized performance of the RIS. At this point, we have
shown that given the RIS phase range R, the placement of the
nonuniform discrete phase shifts over the RIS phase range
needs to be equally separated, to harness the potential of the
RIS and maximize the approximation ratio. This placement
of the nonuniform phase shifts will also be adopted for
the rest of the paper, including the numerical results, as
suggested by the performance maximization approach and
practicality. Therefore, as shown in Fig. 1, we let ΦK ={
−R

2 ,
R

K−1 −
R
2 , 2

R
K−1 −

R
2 , . . . , (K − 1) R

K−1 −
R
2

}
. So

that, with the equally separated discrete phase shifts, the

FIGURE 5: PDF of δn, i.e., the quantization error.
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FIGURE 6: E(R,K) vs R for K ∈ {2, 3, 4, 6, 8}

decision rule for the NPQ can alternatively be defined as

θNPQ
n =


R
2 if R

2 ≤ θcont
n ,⌊

θcont
n +R

2

ω′

⌉
× ω′ − R

2 if −R
2 ≤ θcont

n < R
2 ,

−R
2 if θcont

n < −R
2 ,

(37)
where ⌊·⌉ is the rounding function defined as ⌊x⌉ =
sgn(x) ⌊|x|+ 0.5⌋ and ω′ = R

K−1 .
Let us define the approximation ratio as E(R,K) =

E [cos (δk − δl)], where we have δn = θNPQ
n − θcont

n . From
the definition of θNPQ

n and θcont
n in (37) and (21) respec-

tively, clearly δn ∈
[
−(π − R

2 ), π −
R
2

]
. Remembering the

assumption that θcont
n ∼ U [−π, π], the probability density

function (PDF) of δn, i.e., f(δn), can be deduced simply
and it is plotted in Fig. 5. With the PDF f(δn), we need to
calculate the simplified version of the term E [cos (δk − δl)]
as given in (28). Note that, the second term in (28) will
be zero, since f(δn) is an even function. Therefore, we only
need to calculate (E [cos (δn)])

2 to find E(R,K). Let us first
calculate E[cos(δn)] as

E [cos (δn)]

VOLUME , 9
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FIGURE 7: Normalized Performance results vs. N , for R = 180◦ and
K ∈ {4, 8}.
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FIGURE 8: Normalized Performance results vs. N , for R = 240◦ and
K ∈ {4, 8}.

= 2

[∫ R
2(K−1)

0

cos(δn)
K

2π
dδn +

∫ π−R/2

R
2(K−1)

cos(δn)
1

2π
dδn

]

=
1

π

[
K

[
sin

(
R

2(K − 1)

)
− sin(0)

]
+

[
sin

(
π − R

2

)
− sin

(
R

2(K − 1)

)]]
=

1

π

[
(K − 1) sin

(
R

2(K − 1)

)
+ sin

(
R

2

)]
(38)

=
R

2π

[
sincu

(
R

2(K − 1)

)
+ sincu

(
R

2

)]
(39)

where from (38) to (39), we divide and multiply by R/2,
and sincu(·) represents the unnormalized sinc function
sincu(x) = sin x

x . Note that sincu(x) = sinc( xπ ). Also, note
that (38) is compatible with (31) with ϕk+1−ϕk

2 = R
2(K−1) for

k = 1, . . . ,K−1 and ϕK−ϕ1

2 = R
2 . Thus, the approximation

ratio for the NPQ algorithm is

E(R,K) =
R2

4π2

[
sinc

(
R

2π(K − 1)

)
+ sinc

(
R

2π

)]2
(40)

where R is the RIS phase range and sinc(·) is normalized
satisfying sinc(1) = 0. An illustration for the theoretical
calculations of the approximation E(R,K) is given in
Fig. 6, where it can be seen that E(R,K) converges to
the approximation ratio of the uniform phases, i.e., E∞(K)
in [19], as the RIS phase range increases. From our analysis
of the optimum selection of nonuniform discrete phases in
Section VI, we know that the equal separation in the RIS
phase range will maximize the average performance. Even
with the best case scenario with the optimal placement of
the nonuniform phases, Fig. 6 shows that the gain of using
K ≥ 3 is only marginal when R < π/2. Similarly, the gain
of using K = 4 or more discrete phase shifts is negligible
unless the RIS phase range is large enough, i.e., R > π.
We remark that the approximation ratio is calculated for

sufficiently large N . Further analysis to confirm the validity
of the theoretical calculation of E(R,K) is provided in the
numerical results.

Finally, the numerical results for the approxima-
tion ratio are calculated by dividing the expression∣∣∣β0e

jα0 +
∑N

n=1 βne
j(αn+θn)

∣∣∣2 to (
∑N

n=0 βn)
2 for each

channel realization and averaged. With this, the normalized
performance results are presented in Fig. 7 for R = 180◦,
and in Fig. 8 for R = 240◦. In both figures, the performance
of NPQ converges to the approximation ratio curve for
large N , falling in line with our analytical analysis on
E(R,K). Providing the optimum result, Algorithm 1 serves
as an upper bound. From Fig. 7 to Fig. 8, for larger R,
the performance gap between Algorithm 1 and NPQ gets
smaller. With this, we remark that increasing R from 180◦

to 240◦ helps significantly more in terms of performance
rather than increasing the number of discrete phase shifts K.
This confirms our analysis with Fig. 6 that the lower the RIS
phase range is, the less likely it is to achieve a performance
gain by increasing K.

VII. GLOBAL OPTIMUM SOLUTION WITH ON/OFF βr
n

In this section, we address the destructive selection issue by
relaxing the RIS gains, i.e., βr

n ∈ [0, 1]. With this, we will
define an updated maximization problem where we tune βr

n

together with θn, and develop an optimal discrete phase shift
selection algorithm with ON/OFF βr

n. We will also specify
how it can converge to the optimum solution in L ≤ N(K+
1) steps in linear time.

So far, we have developed a comprehensive analysis for
the approximation ratio of nonuniform discrete phase shifts.
Together with this, we provided two algorithms, i.e., NPQ
and Algorithm 1, where the first is an intuitive practical
algorithm and the latter achieves the global optimum with
βr
n = 1 for n = 1, 2, . . . , N in NK or fewer steps, provided
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R ≥ π. Then, we underlined the special case that arises
due to the nonuniform structure of the phase shifts, or
the RIS phase range constraint, that setting βr

n = 1 for
n = 1, 2, . . . , N right away can result in allowing paths that
are destructive when R < π.

In this section, we will develop a new algorithm, Al-
gorithm 2, for the special case of R < π. We will also
show that this algorithm can be interchangeably used with
Algorithm 1 with relaxed βr

n. Algorithm 2 will adjust the
RIS gains to manage the destructive paths through the RIS.
For this purpose, we will relax the gains and redefine the
optimization problem as

maximize
θ

f(θ)

subject to θn ∈ ΦK , n = 1, 2, . . . , N

βr
n ∈ [0, 1], n = 1, 2, . . . , N

(41)

where

f(θ) =

∣∣∣∣β0e
jα0 +

N∑
n=1

βnβ
r
ne

j(αn+θn)

∣∣∣∣2, (42)

βn > 0, n = 0, 1, . . . , N , θ = (θ1, θ2, . . . , θN ), and αn ∈
[−π, π) for n = 0, 1, . . . , N .

Similar to our Lemma 1, let

g′ = h0 +

N∑
n=1

hnβ
r∗
n ejθ

∗
n , (43)

so that we can state our second lemma as follows.
Lemma 2: To achieve the maximum of |g′|, a necessary

condition on (θ∗1 , θ
∗
2 , . . . , θ

∗
n) is that each θ∗n for n ∈

{n|βr∗
n > 0} must satisfy

θ∗n = arg max
θn∈ΦK

cos(θn + αn − µ) (44)

where µ stands for the phase of optimum µ = g′/|g′| with
g′ in equation (43).

Proof: We can rewrite equation (9) as

|g′| = β0 cos(α0− µ)+

N∑
n=1

βnβ
r
n cos(θ

∗
n+αn− µ), (45)

where βn > 0. Therefore, for |g′| to be the maximum value
possible, (44) follows as a necessary condition, completing
the proof. ■

So far, similar to the development of Algorithm 1, we are
proceeding with the assumption that we know the optimum
µ. Before coming up with the operational procedure for
Algorithm 2, we will state our third lemma regarding the
optimum RIS gain selection βr∗

n as follows:
Lemma 3: Given the optimum µ, the globally optimum

solution will be yielded by βr∗
n = ⌈cos(θ∗n + αn − µ)⌉.

Proof: In equation (45), define the function h(βr
n) =

βnβ
r
n cos(θ

∗
n + αn − µ) independently for every n =

1, 2, . . . , N . For |g′| to be the maximum value possible, given
θ∗n, the function h(βr

n) should be maximized independently
for n = 1, . . . , N . Note that h(βr

n) is a monotonic function.

FIGURE 9: Range of values of ∠µ − θn − αn for Case 1 with µ ∈
arc(snk̄ : sn,k̄⊕1).

FIGURE 10: Range of values of ∠µ − θ∗n − αn for Case 2 with µ ∈
arc(sn,k̄⊕1 : sn,k̄⊕2).

Therefore, to achieve the maximization in |g′|, βr∗
n needs to

satisfy

βr∗

n =

{
1, if cos(θ∗n + αn − ∠µ) > 0,

0, if cos(θ∗n + αn − ∠µ) ≤ 0.
(46)

Therefore, without loss of generality, the optimum solution
will be yielded by ON/OFF βr

n provided by the equality

βr
n = ⌈cos(θn + αn − µ)⌉. (47)

Therefore, the proof is complete. ■
To operate with Lemma 3, further analysis is required in

terms of finding when the cos(θ∗n +αn−∠µ) < 0 case will
arise. For this purpose, assume for R < π that we have the
unique k̄ such that ωk̄ > π. We will revisit equation (15)
from Proposition 1, as we know from Lemma 2 that it will
hold whenever βr

n > 0. Our θ∗n selections will make sure
that µ− θn − αn ∈

(
−ωk−1

2 , ωk

2

)
, given that µ ∈ arc(snk :

sn,k+1). Consider two cases, µ ∈ arc(snk̄ : sn,k̄⊕1) and µ ∈
arc(sn,k̄⊕1 : sn,k̄⊕2). As shown in Fig. 9 and Fig. 10, in both
cases the cosine value in (45) can take a negative value, i.e.,
cos(θn+αn−∠µ) < 0, resulting in the selection of βr

n = 0.
With this observation, we propose the following proposition
to be able to operate with Lemma 2 and Lemma 3.

VOLUME , 11
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Proposition 2: Let s1
n,k̄⊕1

= ej(αn+ϕk̄+
π
2 ) and s2

n,k̄⊕1
=

ej(αn+ϕk̄⊕1−π
2 ). A sufficient condition for βr∗

n = 0 is

µ ∈ arc(s1n,k̄⊕1 : s2n,k̄⊕1). (48)

Proof: Consider the two and only cases that cos(θn+αn−
∠µ) can take a negative value.

First, assume µ ∈ arc(snk̄ : sn,k̄⊕1). Since ωk̄/2 > π/2,
the cosine value can take a negative value as shown in Fig.
9. This happens if µ ∈ arc(sn,k̄⊕1e

−j(ωk̄−π)/2 : sn,k̄⊕1), as
there is no θn ∈ ΦK such that cos(θn + αn − ∠µ) > 0.

Second, assume µ ∈ arc(sn,k̄⊕1 : sn,k̄⊕2). Since
−ωk̄/2 < −π/2, the cosine value can take a negative value
as shown in Fig. 10. This happens if µ ∈ arc(sn,k̄⊕1 :

sn,k̄⊕1e
j(ωk̄−π)/2), as there is no θn ∈ ΦK such that

cos(θn + αn − ∠µ) > 0.
Finally, the two cases together can be expressed as a

single arc around sn,k̄⊕1 by using s1
n,k̄⊕1

and s2
n,k̄⊕1

as
µ ∈ arc(sn,k̄⊕1e

−j(ωk̄−π)/2 : sn,k̄⊕1e
j(ωk̄−π)/2). Since

ϕk̄⊕1 = ϕk̄ + ωk̄, the same arc can be expressed as
µ ∈ arc(ej(αn+ϕk̄+

π
2 ) : ej(αn+ϕk̄⊕1−π

2 )). Thus, the proof
is complete. ■

With Proposition 1 and Proposition 2 together, we need
to consider K + 1 arcs that the optimum µ can be in for
every n = 1, . . . , N independently as there is an extra arc
introduced in Proposition 2 for n = 1, 2, . . . , N. This is
because, when R < π and ωk̄ > π, we will let sn,k̄⊕1 =
{s1

n,k̄⊕1
, s2

n,k̄⊕1
} so that sn,k̄⊕1 will encode two complex

numbers.
We specify the procedure explained in this section, which

achieves the global optimum solution when the RIS gains are
relaxed, i.e., βr

n ∈ [0, 1], as Algorithm 2. Like Algorithm 1,
Algorithm 2 works as a search algorithm for the optimum
µ and therefore the optimum RIS configuration, based on
Lemma 2, Lemma 3, and Proposition 2. To initiate the
search, Algorithm 2 starts with µ = 0 and selects the
RIS coefficients with Lemma 2 and Lemma 3. Then, to
try every other candidate µ and the corresponding RIS
configuration, Algorithm 2 only updates one or a small
number of elements, e.g., it may turn ON/OFF or update the
phase of these elements, achieving linear time complexity.
After trying N(K+1) or fewer options, Algorithm 2 selects
the RIS configuration that achieves the maximum received
power that is guaranteed to be the global optimum by the
analytical analysis provided in this section. A complexity
analysis for Algorithm 2 is provided in Section X. We remark
that Algorithm 2 works with adjustable RIS gains, yet it
achieves the global optimum solution by setting an element
either ON or OFF. Also, note that Algorithm 2 is an extended
version of Algorithm 1 in Section III to work with adjustable
RIS gains when R < π.

We present the CDF results for SNR Boost in Fig. 11
for K = 2, and in Fig. 12 for K = 4. In these results,
we consider a notable limitation on the RIS phase range
such that R < π, i.e., R ∈ {90◦, 120◦}. The CDF results are
presented for N = 16, 64, and 256, using 10,000 realizations

Algorithm 2 Extended Algorithm 1 for the Special Condi-
tion When R < π.

1: Initialization: Compute snk and N (λl) as in Proposi-
tion 2 and equation (16), respectively.

2: Set µ = 0. For n = 1, 2, . . . , N , calculate

θn = arg max
θn∈ΦK

cos( µ− θn − αn).

3: Set βr
n = ⌈cos( µ− θn − αn)⌉ for n = 1, 2, . . . , N .

4: Update θn = ϕk̄⊕1 for n ∈ {n|βr
n = 0}, and store

θn, ∀n.
5: Set g0 = h0 +

∑N
n=1 hnβ

r
ne

jθn , absgmax = |g0|.
6: for l = 1, 2, . . . , L′ − 1 do
7: Set gupdate = 0.
8: for each double {n′, k′} ∈ N (λl) do
9: if βn′ = 1 then

10: if k′ = k̄ ⊕ 1 then
11: Set βn′ = 0 and θn′ = ϕk′

12: Let

gupdate − hn′ejϕk̄ ← gupdate.

13: else
14: Set θn′ = ϕk′

15: Let

gupdate + hn′
(
ejθn′ − ej(ϕk′⊖1)

)
← gupdate.

16: end if
17: else
18: Set βn′ = 1
19: Let

gupdate + hn′ejθn′ ← gupdate.

20: end if
21: end for
22: Let gl = gl−1 + gupdate
23: if |gl| > absgmax then
24: Let absgmax = |gl|
25: Store βr

n and θn for n = 1, 2, . . . , N
26: end if
27: end for
28: Read out βr∗

n and θ∗n, n = 1, 2, . . . , N .

of the channel model defined in [19] with κ = 0. The discrete
phase shift selections are equally separated and chosen as
given in Fig. 1. We employed Algorithm 1, Algorithm 2,
and NPQ algorithms that we proposed in this paper, as well
as BCD algorithm [24]. Since we have R < π, Algorithm 1
will only serve as a pseudo-optimal solution, assuming that
βr
n are strictly 1 for all n, so that we can observe the effect

of destructive paths and ON/OFF keying. All algorithms ran
over the same channel realization in each step. It can be seen
that the gap between Algorithm 2 and the other algorithms
increases for larger N , as well as for smaller R. This signifies
the power of using ON/OFF βr

n with larger RISs, having
more phase range limitations. Furthermore, using K = 4

12 VOLUME ,
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FIGURE 11: CDF plots for SNR Boost with BCD [24], nonuniform polar
quantization (NPQ), Algorithm 1, and Algorithm 2 for K = 2 and R ∈
{90◦, 120◦}.
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FIGURE 12: CDF plots for SNR Boost with BCD [24], nonuniform polar
quantization (NPQ), Algorithm 1, and Algorithm 2 for K = 4 and R ∈
{90◦, 120◦}.

instead of K = 2 mostly impacts the performance of NPQ
with R = 120◦, making it more desirable due to its low
complexity. Finally, BCD can outperform NPQ, as it is
seemingly benefiting from the phase range restriction, e.g.,
this can be observed by comparing Fig. 3 and Fig. 12. Yet,
BCD is still outperformed by Algorithm 1.

With Algorithm 2 and R < π, the normalized performance
results are presented in Fig. 13 for R = 90◦, and in Fig. 14
for R = 120◦. In both figures, the performance of NPQ
converges to the approximation ratio curve for large N , again
confirming our analytical analysis on E(R,K). Similar to
the CDF plots, the performance gain from using Algorithm 2
over both NPQ and Algorithm 1 increases for larger N . Also,
if R is sufficiently low, Algorithm 2 is always superior to
Algorithm 1. Similarly, Algorithm 1 is always superior to
NPQ, even if a larger K is used for the latter. The underlying
reason for this again is that the performance gain from using
larger K diminishes significantly for low R.

Finally, we present the average SNR Boost results of
our proposed algorithms versus R in Fig. 15 for K = 2,
and in Fig. 16 for K = 4. Both figures show that the
average performance of Algorithm 1 converges to that of
Algorithm 2, as R approaches π. On the other hand, NPQ
can provide an average SNR Boost that is significantly close
to both Algorithm 1 and Algorithm 2 as R increases, for
large N . Both Fig. 15 and Fig. 16 suggest in a sense that
Algorithm 1 and Algorithm 2 can be used interchangeably
to solve the problem in (41), where the selection depends on
whether R < π or R ≥ π.

Finally, we remark that the development of Algorithm 2
follows from the strict limitation on the RIS phase range, i.e.,
R < π. Otherwise, an important side conclusion that follows
from Lemma 3 is that, Algorithm 1 can be extended to solve

the problem in (41) with βr
n ∈ [0, 1] for n = 1, 2, . . . , N ,

when R > π. With R > π, we know from Lemma 3 that
the solution that yields the global optimum will select βr

n =
1 for n = 1, 2, . . . , N . Therefore, both Algorithm 1 and
Algorithm 2 can be used to solve the general problem in
(41) for R ≥ π and R < π, respectively. With this, the
number of required steps in the for loop would reduce from
N(K+1) to NK. Further analysis regarding the number of
required steps and complexity is provided in the following
section.

VIII. REVISITING THE QUANTIZATION SOLUTION WITH
ON/OFF βr

n: EXTENDED NONUNIFORM POLAR
QUANTIZATION
In this section, we will propose a novel quantization algo-
rithm by enhancing the NPQ algorithm with ON/OFF βr

n

selections. The importance of the ON/OFF selections has
been established so far, showing significant performance
gains for R < π. A similar approach to exploit βr

n in
Algorithm 2 can be used for the quantization solution.

The quantization approach comes from selecting the clos-
est option from the phase shifts set to the continuous
solution, which can achieve the maximum possible received
power given by (

∑N
n=0 βn)

2. Similar to our analysis in
Section VII, let δn = θNPQ

n − θcont
n for n = 1, . . . , N . When

R < π, depending on the value θcont
n , the difference between

θNPQ
n and θcont

n in (21) can be greater than π
2 , or less than −π

2 ,
i.e., |δn| > π

2 . Therefore, such a path through the nth RIS
element would contribute destructively to the overall perfor-
mance, as could be deduced from E(R,K) = (E[cos(δn)])2.
With the adjustable RIS gains, this can be eliminated by an
OFF selection, i.e., βr

n = 0. Therefore, we define the ENPQ
algorithm with ON/OFF βr

n, which is an algorithm to select

VOLUME , 13
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FIGURE 13: Normalized Performance results vs. N , for R = 90◦ and
K ∈ {2, 4}.
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FIGURE 14: Normalized Performance results vs. N , for R = 120◦ and
K ∈ {2, 4}.
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FIGURE 15: Average SNR Boost vs. R, for K = 2 and N ∈
{16, 64, 256, 1024}.
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FIGURE 16: Average SNR Boost vs. R, for K = 4 and N ∈
{16, 64, 256, 1024}.

the RIS coefficients, as

wENPQ
n = ⌈cos(δn)⌉ exp

(
jθNPQ

n

)
, (49)

where θNPQ
n are selected by the NPQ algorithm, and δn =

θNPQ
n −θcont

n . Note that for R ≥ π, ENPQ will select the same
RIS coefficients as the NPQ algorithm, because |δn| > π

2
will never occur.

IX. APPROXIMATION RATIO CALCULATION FOR ENPQ
We extend our approximation ratio calculations to find
the approximation ratio for the ENPQ algorithm, i.e.,
Eon

off(R,K). With the independence assumption among δn,
it can be deduced from (25)–(28) that Eon

off(R,K) =
(E [⌈cos(δn)⌉ cos (δn)])2 + (E [⌈cos(δn)⌉ sin (δn)])2 by in-
cluding the ⌈cos(δk)⌉ and ⌈cos(δl)⌉ terms. Due to the
symmetry in δn, (E [⌈cos(δn)⌉ sin (δn)])2 = 0, so that
Eon

off(R,K) = (E [⌈cos(δn)⌉ cos (δn)])2. Now, with the PDF

of δn given in Fig. 5, the expected value can be calculated
as follows:

E [⌈cos(δn)⌉ cos (δn)]

= 2

[ ∫ R
2(K−1)

0

⌈cos(δn)⌉ cos(δn)
K

2π
dδn

+

∫ π−R/2

R
2(K−1)

⌈cos(δn)⌉ cos(δn)
1

2π
dδn

] (50)

where in the first integral, ⌈cos(δn)⌉ = 1 as R
2(K−1) < π

2 .
Whereas, in the second integral, when π − R/2 > π

2 , i.e.,
R < π, the upper limit of the integral should be updated
as π

2 as ⌈cos(δn)⌉ = 0 when |δn| > π
2 . Therefore, (50) is

rewritten as

E [⌈cos(δn)⌉ cos (δn)]
= E [cos (δn)]

14 VOLUME ,
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FIGURE 17: Eon
off(R,K) vs R for K ∈ {2, 3, 4, 6, 8}

= 2

[∫ R
2(K−1)

0

cos(δn)
K

2π
dδn +

∫ π
2

R
2(K−1)

cos(δn)
1

2π
dδn

]

=
1

π

[
(K − 1) sin

(
R

2(K − 1)

)
+ 1

]
. (51)

where we keep the sin(·) function instead of sinc(·) this time
for a clearer notation. Thus, the approximation ratio for the
ENPQ algorithm is

Eon
off(R,K) =

1

π2

[
(K − 1) sin

(
R

2π(K − 1)

)
+ 1

]2
. (52)

An illustration for the theoretical calculations of the approx-
imation Eon

off(R,K) is given in Fig. 17, where it can be seen
that Eon

off(R,K) converges to the approximation ratio of the
NPQ, i.e., E(R,K), as R reaches π. We remark on the
importance of using the ON/OFF βr

n for R < π. This can be
seen from Fig. 17 that as R approaches zero, while E(R,K)
becomes zero with all the elements being ON, Eon

off(R,K) on
the other hand becomes 0.1. Therefore, even with θn being
the same for n = 1, . . . , N , i.e., no phase shifts selection as
R becomes zero, ON/OFF selections solely could beat the
performance of βr

n for up to K = 8 phase shift selections
when R < π/3. Furthermore, when there are K = 2 discrete
phase shifts with ON/OFF βr

n, the average performance is
better than the case when βr

n = 1 with up to K = 8 discrete
phase shifts, for R < 2π/3.

With NPQ and R < π, the normalized performance results
are presented in Fig. 18 for R = 90◦, and in Fig. 19 for R =
150◦. As a validity check for our Eon

off(R,K) calculation, we
remark that the numerical results for ENPQ indeed converge
to the theoretical approximation ratio. For a lower value of
R = 90◦ in Fig. 18, the simple quantization approach with
ON/OFF βr

n selections outperforms the optimum solution
with βr

n = 1 for N ≥ 100. On the other hand, when R is
high enough, say R = 150◦ as in Fig. 19, there is not such
a loss due to the limited RIS phase range that ENPQ could

exploit with ON/OFF βr
n, resulting in Algorithm 1 being

superior.

X. CONVERGENCE TO OPTIMALITY
We will now discuss the convergence of Algorithm 1 and
Algorithm 2 to the optimal solution for βr

n = 1 and
βr
n ∈ [0, 1], n = 1, . . . , N , respectively. We know from

Lemma 1 and Proposition 1 that Algorithm 1 will converge
to the global optimum. Whereas, convergence to the global
optimality of Algorithm 2 is guaranteed by Lemma 2,
Lemma 3, Proposition 1, and Proposition 2. The required
complexity is analyzed under two main components, which
are the search complexity and the time complexity. The
number of steps required will correspond to the search
complexity. On the other hand, the number of complex
vector additions will quantify the time complexity [20]. We
remark that since θn′ = ϕk′ in Step 6 of Algorithm 1 and
in Step 15 of Algorithm 2, by using the Euler’s formula,
the term hn′

(
ejθn′ − ej(ϕk′⊖1)

)
can simply be expressed

as 2hn′ sin(ωk′⊖1/2)e
j(ϕk′⊖1+(ωk′⊖1+π)/2). Therefore, each

iteration of these algorithms will only incur one complex
vector addition. Next, we will discuss the required com-
plexity of both algorithms to achieve global optimality,
individually.

First, for Algorithm 1, the for loop from Step 4 to Step
11 takes

∑L
l=1O(|N (λl)|) = O(NK) steps. With this,

one vector addition is performed for each updated element.
Together with the N vector additions in Step 3, Algorithm 1
incurs N(K + 1) vector additions in total.

Second, for Algorithm 2, the for loop from Step 6 to Step
27 takes

∑L′

l=1O(|N (λl)|) = O(N(K+1)) steps. With this,
there are K+1 arcs to be considered for each element, where
only one vector addition is performed for each of those arcs.
Together with the N vector additions in Step 5, Algorithm 2
incurs N(K + 2) vector additions in total. Note that, since
the number of steps is larger for Algorithm 2, the required
number of vector additions performed is also slightly larger
than for Algorithm 1.

Finally, since in each step of both Algorithm 1 and
Algorithm 2, only one or a small number of elements are
updated, the time complexity of both algorithms will be
linear in N . A detailed comparison with the recent literature
is provided in the next section.

XI. PERFORMANCE AND COMPLEXITY COMPARISONS
In this section, we will discuss performance and complexity
in a comparative way with the works from the literature.
Firstly, to give a comparative trade-off between the presented
algorithms in this paper, we present the performance results,
i.e., 1st percentile SNR Boost [12], in Fig. 20, and complex-
ity results, i.e., number of vector additions, in Fig. 21 for
K = 2. Moreover, in Fig. 20, we consider R = 90o and R =
150o to analyze the severe restriction and mild restriction on
the RIS phase range, respectively, for K = 2. In these results,
we assume that the quantization algorithms will incur N
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FIGURE 18: Normalized Performance results vs. N , for R = 90◦ and
K ∈ {2, 4}.
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FIGURE 19: Normalized Performance results vs. N , for R = 150◦ and
K ∈ {2, 4}.
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FIGURE 20: 1st percentile SNR Boost results vs. N , for K = 2 and
R ∈ {90o, 150o}.
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FIGURE 21: Time complexity results vs. N , for K = 2.

vector additions to produce the resulting SNR Boost value.
Yet, even for the 1st percentile performance, ENPQ can
perform surprisingly well while requiring lower complexity,
especially for lower R. Regarding the comparison of the
optimum algorithms and the quantization algorithms, we
focus on Algorithm 2 versus ENPQ and Algorithm 1 versus
NPQ. Algorithm 2 incurs four times the vector additions
required by ENPQ while providing about 1 dB and 2 dB gain
for R = 150o and R = 90o, respectively. On the other hand,
Algorithm 1 incurs three times the vector additions required
by NPQ yet can provide more than 3 dB gain for R = 90o.
This additional gain that Algorithm 1 can provide vanishes
for larger R. Finally, in Fig. 20, BCD can provide more
performance than NPQ and ENPQ for R ∈ {90o, 150o} and

R = 150o, respectively. However, it comes with a significant
jump in complexity.

Regarding the comparisons with the literature, as we
discussed in Section I, the works that deal with the exact
problem introduced in this paper, i.e., the nonuniform dis-
crete phase shifts and RIS phase range restriction, are not
extensive, being restricted to [20]–[22]. Therefore, we will
provide a discussion as to the comparative performance of
this work with those from the literature, i.e., [20]–[22].

A. PERFORMANCE COMPARISON WITH THE
LITERATURE
The work in this paper is an extension of [19] in that the
problem is the same power maximization one but the phase
range R is less than 2π, the discrete phase shifts set ΦK can
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be arbitrary, and the RIS gains βr
n ∈ [0, 1] can be adjustable.

We first show that the same set of necessary and sufficient
conditions apply to the problem with the limited phase range
when βr

n = 1 for n = 1, 2, . . . , N and we develop new
conditions on the optimality when βr

n ∈ [0, 1]. Assuming
βr
n = 1 for n = 1, 2, . . . , N , we developed an optimal

algorithm, Algorithm 1, an extension of [19, Algorithm 1], as
well as a suboptimal algorithm called NPQ. For βr

n ∈ [0, 1],
using the new conditions on the optimality, we developed
another optimal algorithm, Algorithm 2, as an extension of
Algorithm 1 in this paper for R < π, as well as a novel
suboptimal algorithm called ENPQ. Simulation results show
that the performance results of Algorithm 1 and NPQ, or
similarly Algorithm 2 and ENPQ, for single-input single-
output (SISO) systems are close, especially for large N . We
remark that the algorithms in this paper cover a wide range of
scenarios regarding discrete beamforming optimization with
RISs, e.g., RIS phase range restriction, adjustable RIS gains,
and arbitrarily selected nonuniform discrete phase shifts.

The work in [20] attempts to maximize the capacity in
the channel from the BS to the UE via the RIS, where they
only consider R < π. Since it claims global optimality, the
performance would be the same as Algorithm 2 for R < π,
but, we will see in the next subsection that Algorithm 2
will require significantly fewer number of complex vector
additions. With this, the work in [20] compares its capacity
results with that of CPP, a suboptimal algorithm similar
to NPQ. However, our novel algorithm ENPQ is more
competitive against Algorithm 2 than NPQ for R < π, e.g.,
in Fig. 18, and in [20] this kind of analysis is not present
as they only compare with CPP, which does not perform
well when R < π. Reference [21] tries to maximize Long-
Term Average Received Power (LARP), where the average
is taken in the statistical sense via an expectation operator.
This paper provides simulation results in terms of a number
of channel models, i.e., Rician, Rayleigh, and pure LOS
fading. Performance results for LARP are provided in [21,
Fig. 4] for the three fading models for RIS sizes of 1–
104 elements employing continuous phase shifts. There are
other simulation results provided, such as LARP against
decrement of phase shifting capability, incident angle, phase
shifting capacity, or control voltage. However, [21] does
not have a result we can use to compare with ours. And,
unlike this work, [21] does not provide an indication of
what the theoretical maximum gain in LARP is. Neither
does it have a similar result to our necessary and sufficient
conditions for global optimality. Reference [22] studies the
problem of minimizing the transmit power at the BS while
the received power is above a certain threshold. It can be
considered as the extension of divide-and-sort (DaS) search
algorithm proposed in [25] for uniform discrete phase shifts
and it can be perhaps interpreted as the dual of our received
power maximization problem. Reference [22] proposes an
algorithm called partition-and-traversal (PAT) for that pur-
pose. Reference [22] claims to ensure global optimality and

Table 1: Comparison of Algorithms 1-2 and NPQ-ENPQ with algorithms
from the literature.

Search Steps Time Optimality

Complexity Guarantee

[12] Projection of — Local

CPP Phase Selections

[20] N(K + 1) O(N(2K + 3)) Global

PBO For R < 180o

[21] K(K−1)
2

+N ≈ O(N) Local

GBQ (N ≫ K)

[22] 2NK — Global, R ≥ 180o

PAT (SISO) Local, R < 180o

NPQ Deterministic — Local

For R ≥ 180o

ENPQ Deterministic — Local

For R < 180o

Algo. ≤ NK O(N(K + 1)) Global

1 For R ≥ 180o

Algo. ≤ N(K + 1) O(N(K + 2)) Global

2 For R < 180o

shows a perfect fit with exhaustive search results for RIS
elements up to 50 in [22, Fig. 4]. In addition, [22] discusses
two suboptimal algorithms, which are manifold optimization
(Manopt) and semidefinite relaxation-semidefinite program
(SDR-SDP). We remark that in [22], RIS gains are set to be
always ON for the sake of optimization. Yet, in this work,
our extensive analysis shows the importance of ON/OFF
selections when R < π, and this kind of analysis is missing
in [22]. In [22, Fig. 7], the performance of PAT, exhaustive
search, Manopt, and SDR are depicted. Since the PAT claims
global optimality, it would give the same performance as
Algorithm 1. With this, neither Manopt nor SDR comes any
close to the performance of NPQ as suboptimal algorithms.
Yet, we remark that Algorithm 2 is guaranteed to perform
better than PAT whenever R < π and ENPQ can also
perform better than PAT when, for example, R = 90o as
shown in Fig. 18.

B. COMPLEXITY COMPARISON WITH THE LITERATURE
Among [20]–[22] from the literature that deal with the same
problem considered in this paper, only [20] and [22] claim
global optimality. Hence, we compare the complexity of our
optimum algorithms with these references. We remark that
the solution for the same problem using uniformly distributed
discrete phase shifts requires significantly less complexity. A
detailed complexity analysis for the uniform case is provided
in [19]. Now, we will carry out the complexity analysis
for the nonuniform case in three main components: The
sorting requirement, the number of search steps required, and
the number of complex vector additions. While the number
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of search steps corresponds to the search space size, the
number of complex vector additions will represent the overall
computational time complexity.

Firstly, the algorithms work with the sorted snk according
to their arguments, i.e., the update rule N (λl) requires
sorting. The sorting enables elementwise updates between
the search steps to achieve linear time complexity, which was
mostly ignored by the literature when solving the problem
with uniform discrete phase shifts [19]. The same require-
ment persists with the nonuniform phase shits. Assuming
λl are uniformly distributed, the sorting in N (λl) will take
O(N) time on average [14]. Besides this, more generally,
to sort the L ≤ NK or L

′ ≤ N(K + 1) arguments
in the update rules of Algorithm 1 and Algorithm 2, tra-
ditional sorting algorithms may require O(L log(L)) and
O(L′

log(L
′
)) complexity for Algorithm 1 and Algorithm 2,

respectively. We remark that the authors in [20] develop
a special sorting algorithm that can work with complexity
O(N(K + 1) log(K + 1)), however, it is assumed that the
sorting of the cascaded channel phases would be readily
provided, i.e., αn are assumed to be sorted.

Secondly, the number of search steps required to ensure
global optimality should be considered. In this paper, our
algorithms consider repetitions among snk and have the
potential to reduce the search steps further, i.e., L ≤ NK
and L ≤ N(K + 1) for Algorithm 1 and Algorithm 2,
respectively. In [20], the required number of steps is fixed to
N(K + 1), which is more than or the same as Algorithm 2
and is not reduced for R ≥ π. In [22], the complexity
analysis is provided in terms of the search space size only,
where the proposed PAT algorithm would incur 2NK steps
for the special case of SISO. In [22, Fig. 5], the plot for
the SISO scenario shows around 7 dB increase in the search
space for increasing the number of elements from 20 to 100.
Since 10 log(100/20) ≈ 7 dB, this would correspond to a
linear complexity in the number of elements.

Finally, the number of vector additions required by our
algorithms is N(K + 1) when R ≥ π and N(K + 2) when
R < π, i.e., for Algorithm 1 and Algorithm 2, respectively.
In [20], the proposed partitioning based optimization (PBO)
requires N(2K+3) complex vector additions. Consequently,
PBO incurs at least N(K + 1) extra vector additions com-
pared to our algorithms, with the number of extra additions
increasing linearly with both the number of RIS elements
and the number of discrete phase shifts.

We summarize the performance comparisons in Table 1
for clarity. While the focus was on the optimal algorithms
in this section, the suboptimal algorithms are also presented
in Table 1.

XII. EXTENSION TO THE MULTIUSER SCENARIO
In the literature, ample research on RIS deals with multiple
users, where the problem is generally formulated as an
optimization problem to maximize the overall throughput
[26], [27], or similarly the sum rate [28]–[31]. These ap-

proaches commonly consider inter-user interference. In [26],
the authors investigate the joint beamforming problem for
a multiuser SISO communication aided by an active RIS.
Reference [27] maximizes the throughput of an RIS-assisted
UAV-to-ground user communications while simultaneously
minimizing the average total power consumption, where the
RIS is assumed to have continuous phase shifts. From the
perspective of sum rate maximization, the sum of weighted
rates is maximized with successive convex approximation
in [28], the sum rate is maximized in [29] via joint beam-
forming for the BS and an RIS with discrete phase shifts,
achievable sum rate maximization is performed while the
RIS uses continuous phase shifts in [30], and the authors
in [31] maximize the sum rate by eliminating the inter-user-
interference with the assumption of zero force precoding at
the BS and continuous phase shifts at the RIS. Moreover, the
problem of maximizing the minimum SNR among multiple
users has also drawn significant attention from the recent
literature, with continuous [32], [33], and discrete phase
shifts [34]–[37]. In [32], the authors consider maximizing
the minimum of the achievable rates of the users given SNR,
whereas, in [33], the max-min beamforming gain is achieved
based on matrix lifting and linear matrix inequality tech-
niques. For the max-min SNR problem with discrete phase
RISs, SDR and gradient descent/ascent (GDA) approaches
are used in [34], BCD is used in [35] for passive beam-
forming, and a blind beamforming approach is developed
in both [36] and [37] based on the received power data. In
these works, the optimization problems are naturally NP-
hard and global optimality is hard to achieve with discrete
phase RISs. Therefore, results are mostly approximations and
sub-optimal.

RIS partitioning has also drawn attention as an alternative
approach to the aforementioned solutions. The main idea is
to partition the RIS into multiple groups of elements, where
a certain group serves a single user [38]–[42]. It is shown
in [42] that the interference among other groups of elements
in a multiuser scenario can be neglected when the RIS is
a uniform linear array. So, the multiuser problem can boil
down to optimizing an RIS partition for a single user, which
is a motivating factor to study the single-user problem [20],
as we did in this paper.

We extend our results for a multicast network, assuming
perfect channel state information (CSI), similar to the sce-
narios considered in [12], [14], [19]. Consider a max-min
SNR problem with U ≥ 2 receivers with a transmit power
of P = 30 dBm, i.e.,

max
θn∈ΦK

min
u

{
P |β0,ue

jα0,u +
∑N

n=1 βn,ue
j(αn,u+θn)|2

σ2
u

}
,

(53)
where σ2

u = −90 dBm is the noise variance at each
receive antenna, h0,u = β0,ue

jα0,u is the direct channel, and
hn,u = βn,ue

jαn,u is the reflected channel through the n-th
RIS element for the u-th receiver.
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FIGURE 22: CDF of the minimum SNR across U = 4 users for K = 2,
N ∈ {16, 64, 256}, and R = 90o.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N=256

N=16

N=64

FIGURE 23: CDF of the minimum SNR across U = 4 users for K = 2,
N ∈ {16, 64, 256}, and R = 150o.

The way we extend our algorithms is as follows. For NPQ
and ENPQ, each algorithm is repeated for each user, then the
RIS configuration that maximizes the minimum SNR among
the users is selected. On the other hand, while performing
Algorithm 1–2 for user u, we decide the best possible
solution in the for loop of Algorithm 1–2 by maximizing
the minimum channel gain among all users. Therefore, Al-
gorithm 1 and Algorithm 2 incur NU(K+1) and NU(K+2)
vector additions, respectively. Then, this process is repeated
for each user, to select the best option among U possibilities,
which results in O(NU2(K+1)) and O(NU2(K+2)) time
complexity in total for Algorithm 1 and Algorithm 2. We
remark that NPQ and ENPQ algorithms will also require
vector additions unlike the single-user scenario, because we
need to search for the maximum available powers. Therefore,
both suboptimal algorithms will result in O(NU2) time
complexity.

The CDF plots for the minimum SNR performance of
the multicast extension are given in Fig. 22 and Fig. 23 for
R = 90o and R = 150o, respectively when K = 2 and
N ∈ {16, 64, 256}. The results show that both Algorithm 1
and NPQ with the always ON approach perform better than
their extended versions with ON/OFF consideration when
R < π. This difference gets smaller for larger R since these
pair of algorithms would provide the same outcome, as given
in Fig. 15. Overall, it can be seen that Algorithm 1 can
provide superior performance compared to the quantization
approach, i.e., NPQ. When R = 90o, the average gain
of Algorithm 1 against NPQ is 3.0 dB for N = 16 and
4.4 dB for N = 256. When R = 150o, the average
gain of Algorithm 1 against NPQ is 3.6 dB for N = 16
and about 5.0 dB for N = 256. Therefore, considering
the complexity jump in the quantization approach for the
multiuser extension, our optimal algorithm can become an

even better option. Note that these gains with Algorithm 1
get larger as N increases.

XIII. CONCLUSION
In this paper, to maximize the received power at a UE, we
provided necessary and sufficient conditions for determina-
tion of the RIS coefficients that are subject to nonuniform
discrete phase shifts. We employed these conditions to
achieve the optimum solution in linear time and with less
complexity than the existing solutions in the literature. Also,
we established a foundation on the RIS phase range R with
the nonuniform discrete phase shifts structure. We proved
that the optimum placement of the nonuniform discrete phase
shifts would be equally separated over the RIS phase range.
Then, we showed that whenever R < π, adjusting RIS gains
can bring significant performance, and the globally optimum
solution would be yielded by the RIS elements being either
ON or OFF.

In addition to the optimum algorithms, we also calculated
the approximation ratio for the nonuniform discrete phase
shifts by employing the intuitive quantization algorithm. Fur-
thermore, with the ON/OFF RIS gains, we proposed a novel
quantization algorithm named ENPQ, a low-complexity al-
gorithm that can bring significant performance when there
is a notable limitation in the RIS phase range, with which
we also provided a secondary closed-form solution for the
approximation ratio for nonuniform discrete phase shifts.
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