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ABSTRACT The problem of optimizing discrete phases in a reconfigurable intelligent surface (RIS)
to maximize the received power at a user equipment is addressed. Necessary and sufficient conditions
to achieve this maximization are given. These conditions are employed in an algorithm to achieve the
maximization. New versions of the algorithm are given that are proven to achieve convergence in N or
fewer steps whether the direct link is completely blocked or not, where N is the number of the RIS
elements, whereas previously published results achieve this in N or 2N number of steps where K is the
number of discrete phases. Thus, for a discrete-phase RIS, the techniques presented in this paper achieve
the optimum received power in the smallest number of steps published in the literature. In addition, in each
of those N steps, the techniques presented in this paper determine only one or a small number of phase
shifts with a simple elementwise update rule, which result in a substantial reduction of computation time, as
compared to the algorithms in the literature. As a secondary result, we define the uniform polar quantization
(UPQ) algorithm which is an intuitive quantization algorithm that can approximate the continuous solution
with an approximation ratio of sinc®(1/K) and achieve low time-complexity, given perfect knowledge of
the channel.

INDEX TERMS Intelligent reflective surface (IRS), reconfigurable intelligent surface (RIS), discrete phase
configuration, global optimum, linear time discrete beamforming for large IRS/RIS, discrete quadratic
program, uniform quantization.

I. INTRODUCTION

N wireless communications, the performance demand has

significantly grown with the advancements in technology,
requiring to cope with many challenges in the propagation
environment. In dense urban outdoor-indoor areas, the prob-
lems of shadowing and fading can become severe. In specific
scenarios where the direct link between the base stations and
users is blocked, despite the more extensive beamforming
capability of the base stations, the performance can be
significantly degraded [1]. In order to catch up with the
ever-growing quality of service (QoS) and energy efficiency
requirements in mobile communications, the challenges due

to blockages must be overcome to prevent performance
degradation [2].

A reconfigurable intelligent surface (RIS), also known
as intelligent reflective surface (IRS), can manipulate the
incident electromagnetic waves to control the propagation
environment by varying the phases of the incident signals
with its low-cost passive reflecting elements [3]. In recent
years, RISs have been studied in many communication sys-
tems in the literature, and it is shown that RIS can become a
crucial enabler for communication environments, especially
when there is a loss in line-of-sight (LOS) between the base
station (BS) and user equipment (UE) [4], [5].
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For complex communication scenarios, algorithms are
developed with the assumption of continuous phase shifts
at the RIS, for ease of optimization [6], [7], [8], [9]. In
[6], to achieve a globally optimal solution, the authors
developed an algorithm which is based on the branch-
and-bound method. In [7], the authors developed a secure
wireless communication system for a single-user case by
adopting the majorization-minimization and block coordinate
descent (BCD) techniques. Assuming perfect knowledge of
the channels in [8], the authors jointly designed the active
and passive beamforming to minimize the transmit power,
subject to individual signal-to-interference-ratio constraints
of the users. In [9], the authors consider an RIS-aided multi-
antenna transmission with the effect of channel fading and
phase noise impairments at the RIS, to maximize the signal-
to-noise-ratio (SNR) at the receiver.

Practical large RISs can usually employ quantized phase
shift as they are more cost-effective [10]. A two-stage
approach to address the discrete phase shifts constraints is
to project the continuous solution to the closest value in the
discrete set [10], [11], [12], [13]. Although, as shown in
the present paper, the quantization approach can potentially
provide high performance and low computational complex-
ity, it can only give marginal insight on the actual optimum
discrete phase shifts selection problem.

When it comes to designing algorithms with discrete
phase shift constraints, as the number of possible solutions
increases exponentially with the number of RIS elements, ex-
ponential search techniques are required [14], and a closed-
form solution is practically unavailable, as we discuss in
Section IV-A. As an example, the authors in [15] stated
that the discrete beamforming problem for the RIS turns
out to be a generally NP-hard discrete quadratic program
(QP), and a generic K-ary discrete QP remains as an open
problem. To guarantee the optimal solution, most of the prior
work in single-user scenarios had exponential complexity,
sometimes over the number of RIS elements (N) [10],
and sometimes over the phase shift levels (K) [16]. In
this regard, probabilistic optimization techniques have also
drawn attention [17], [18], [19]. In [17], the idea of prob-
abilistic data association (PDA) is used to address general
binary quadratic problems (BQPs) for multi-user detection in
code division multiple access. Machine-to-machine wireless
communication with high reliability is considered in [18],
where authors approached BQPs by developing a PDA
algorithm, achieving near-optimal results. Recently, authors
in [19] developed a comprehensive probabilistic technique
to address the quantization error and scalability issues in
a variety of discrete RIS optimization problems, where the
proposed technique outperforms general approaches such as
the closest point projection (CPP) method given in [13].

To the best of our knowledge, there is still a gap in the
literature for further research in the optimal discrete beam-
forming problem. Regarding the previously published work
addressing the optimal discrete beamforming, the authors

in [20] pointed out that an /N-step search algorithm for K -ary
beamforming can be developed. In [13], the authors provided
an optimal algorithm for the binary case, where 2N + 2
steps are required for convergence. Also in [13], the authors
provided an approximation algorithm (APX), and a simple
quantization algorithm for K-ary beamforming, where the
performance is evaluated over the estimated channels. The
authors in [21] proposed a K-ary optimal discrete beam-
forming algorithm with a polynomial search complexity, i.e.,
2N (K —1) steps to ensure optimality. Recently, the authors
in [15] proposed the first K-ary linear time algorithm with
KN steps to converge, which could be reduced to 2N steps
when the direct link is not completely blocked.

In this work, we address the problem of optimizing
discrete phases in an RIS to maximize the received power at
a UE for a single-input single-output (SISO) system with
full channel state information (CSI). We also extend our
solutions to special cases of multiple-input multiple-output
(MISO), multiple users, and imperfect CSI scenarios. The
main contributions are given as follows:

e We provide necessary and sufficient conditions to
achieve this maximization. We employ these conditions
to develop a linear time algorithm achieving provable
optimality convergence in N or fewer steps, whether
the direct link between the BS and the UE is blocked
or not. Employing the geometric approach in [15], we
develop a formal elementwise update rule to be used,
so that in each of those IV or fewer steps, one or a
small number of elements are updated, respectively.

e We prove the periodicity in elementwise updates for
the optimal beamforming, and exploit this periodicity
to both reduce the number of steps, and to provide
a simple initialization for the search algorithms. With
this, we show the relation between the channel phases
and the pattern of elements in which the periodicity
must occur.

e Our developed algorithms are shown to give a sub-
stantial reduction of computation time, as compared to
the algorithms in the literature [13], [14], [15], [20].
Besides providing improved optimal discrete phase shift
selection algorithms, this work gives further insights
on the discrete beamforming optimization, with the
periodicity rule.

e We formally define an intuitive, quantization-based,
discrete phase shift selection algorithm, which we will
call uniform polar quantization (UPQ). We show that
provided full CSI is available, it performs well, in
terms of both performance and the computational time
complexity. With UPQ, we reveal that the optimal
discrete beamforming can be closely approximated as
a quantization solution.

The received power maximization problem in this work is
connected to generic K-ary discrete QP, where the objective
is to maximize xT Qx, with rank(Q) = 1 [14], [15], where
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the single eigenvector is positive. Therefore, the linear time
algorithms with the elemental update rules in the present
paper can be employed in similar maximization problems,
so that the global optimum can be achieved in linear time.

Il. SYSTEM MODEL
Consider a point-to-point communication scenario aided by
an RIS, where there is a non-line-of-sight (NLOS) channel
between the BS and the UE. The RIS has N elements
located over IV, rows and N, columns, in a uniform planar
array (UPA) structure, as shown in Fig. 1. We consider K
discrete phase shifts for the RIS, i.e., 0,, € P and O =
{w,2w,..., Kw} with w = 2T and j = \/—1. The set ®x
can equivalently be described as {0,w,2w,..., (K — 1)w}.
Hence, the RIS introduces amplitude 3 and phase shift 6,
for n = 1,2,..., N in the N-element reflection coefficient
vector

W = [ﬁfejel,ﬁfejGQ...,Bﬁejel\’] (1

where for practicality, we let 3 = 1 in this paper. Let s € C
be the transmitted symbol. The received signal at the UE is
given as [8]

y = (hWhy, + ho)s + z, 2)

where W = diag(w), hg € C is the direct link between the
BS and UE, h,, € CV*! and h;, € CV*! are the equivalent
channels of the RIS-UE and BS-RIS links, respectively, and
z is the additive white Gaussian noise (AWGN) at the UE
antenna.

Let h = h} ©h;, where © is the elementwise (Hadamard)
multiplication of the two vectors, and the additive noise z
be a complex Gaussian random variable with variance o2,
i€, z ~ CN(0,0%). Assuming a mean power constraint at
the BS, i.e., E[|s|?] < P, the achievable ergodic data rate in

bps/Hz is given by
P
7:1[43[10g <1+02‘h0+hTW‘2):|. 3)

Therefore, the maximization of the channel power inside the
logarithm in (3) amounts to maximizing the ergodic data rate,
which is a commonly used performance metric in wireless
communications. With this, the problem of maximizing the
overall channel gain, i.e., the received signal power by
performing discrete beamforming at the RIS is given as

(P1) max |ho+hTw|% 4)
{[W nEPK

The received power maximization problem in (P1) is shown

to belong to the class of general quadratic programming

problems, i.e., K-ary discrete QP, where the objective is to

maximize xT Qx, with rank(Q) = 1, which has been known

to be NP-hard [14], [15], [22]. Furthermore, authors in [14]

show that the problem (P1) can be reformulated as

(P2) _ max g wl? 5)
M ..... wa+1€<I>K
where w = [e/%,e%2 . eI~ e%N+1]T and g cor-

responds to the unique eigenvector of Q with Q =
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[h, hol[h, ho]. So, the solution of (P1) can be extracted
as w = g&:ivl)), where w(1 : N) correspond to the first N
elements in W and W(N +1) is the element at the last index.
Therefore, the problem of interest is the maximization of the
inner product either in (P1) or (P2) with discrete phase shift
constraints at the RIS!.

The equivalent maximization problems (P1) and (P2)
frequently arise in RIS-aided communications systems. For
example, in RIS-assisted single-user multiple-input multiple-
output (MIMO) localization systems, in two-stage ap-
proaches to refine the localization performance, the objective
boils down to solving the discrete beamforming design for
the RIS to maximize the passive beamforming gain [23],
[24]. In fact, in [23], the authors develop a discrete beam-
forming approach named Fast Passive Beamforming (FPB)
algorithm that can achieve the global optimum for the very
same problem in (P2) and used for improving the localization
performance in mmWave MIMO. Also, a joint framework for
channel estimation and passive beamforming for an RIS is
developed with the discrete phase shift constraints at the RIS
[12], where the exact problem (P2) needs to be solved for
the channel-gain-maximization approach in the progressive
passive beamforming refinement.

The special case of single-antenna assumption has im-
portance and draws attention in the literature, as problems
(P1) and (P2), especially for analyzing the potential of the
RIS in general scenarios [4], practical codebook design and
optimization for RISs [25], [26], and experimental setups
with an RIS where the system is tested and optimized
with discrete phase shifts [5], [27], [28]. Therefore, having
an efficient algorithm with provable global optimality as a
benchmark is crucial to properly assess the performance of
the developed algorithms in experimental setups, as well as
to determine how reliable the direct quantization approach
can be under different channels.

Beyond the extent of (P1) and (P2), ample research in
the context of MISO and MIMO systems with discrete
beamforming at the RISs has been conducted in the re-
cent literature [29], [30]. In [29], authors performed joint
active and passive beamforming with the generalized Ben-
ders decomposition (GBD)-based algorithm with codebook-
based passive beamforming at multiple RISs for a multi-
user MISO system to minimize the transmit power subject
to signal-to-interference-and-noise-ratio (SINR). The results
are shown to approximate the global optimum. In [30], the
authors consider a RIS-aided MIMO system with transceiver
hardware impairments, where the aim is to minimize the
total mean squared errors (MSEs) of multiple data streams.
They propose a two-tier majorization-minimization (MM)
based and a modified Riemannian gradient descent (RGA)
algorithm to obtain the sub-optimal solution of the RIS
reflection matrix. Thus, regarding the recent work with more

IStrictly speaking, it is the magnitude squared of a complex-valued
inner product, but we will use the informal statement “inner product” as
in [14].
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comprehensive scenarios and problems than (P1) and (P2),
the aim of maximizing the channel gain has not attracted
attention due to the non-convex and NP-hard constraints
as well as the solutions can only approximate the global
optimum solution.

A. Special Case of Achieving Global Optimum with MISO
In this section, we remark on a special case of a point-to-
point downlink MISO communication scenario aided by an
RIS, by considering a special case similar to [30] to achieve
optimality, where the direct BS-UE link is blocked. With
this, (2) can be rewritten as

y =hfWGxs + 2, (6)

where x € CM is the transmit beamforming vector, G €
CNXM jg the equivalent channel of the BS-RIS link, and
W = diag(w). The channel from RIS to UE is denoted by
h, € CV. Taking the far-field regime into account with
a physical model that is based on angle directions [31],
the received signal power in equation (6), i.e., |y\2, can be
expressed as

ly* = [bWCx|? (7

where C = [a(y,1, ¥5,1), a(Vb.2, ¥5,2), -, a(Vp, a1, 0o,01)]5
b = a (¥, ¢.), with {9, ¢,} is the departing direction
of the reflected signal and {Up m,0o.m},m = 1,...,.M
is the arriving signal direction from BS antenna m. Here,
a(¥,p) is the array response vector defined in (9) in the
next section.

Similar to the analysis in the Appendix of the fifth version
of [14], equation (7) can be rewritten as

ly]> = [bWCx|?
=wl(PTOR)W
=w"Qw, (8)

where Q = PT O R, P = CxxCH, and R = bfb.
Since Q is a semi-positive definite matrix with rank one,
maximizing (8) boils down to maximizing |z w|, where z
is the eigenvector associated with the maximum eigenvalue
of Q.

In this paper, one of the primary objectives is to address
the problem in (P1), equivalently (P2), with a highly effi-
cient algorithm. In fact, to the best of our knowledge, our
proposed algorithms are the fastest converging to the global
optimum in the literature to perform discrete beamforming
optimization for (P1), and a general K -ary discrete quadratic
programming. The extension of this framework with elemen-
twise updates for a general MISO scenario is left as a future
work. In Section IV, we define the problem formally and
then introduce several algorithms to solve it.

lll. CHANNEL MODEL

This section describes the channel model we employed. The
RIS is placed such that the origin is at the first row and the
first column of the RIS, as shown in Fig. 1. We let {3, ¢3}
and {V,, @, } pairs be the elevation and azimuth angles for

N, columns

FIGURE 1. RIS structure.

the BS and the UE. The array response vector for the RIS is
calculated by considering two uniform linear arrays (ULA)
along the y-axis and the z-axis with array response vectors
a, (¥, ) and a, (), which are calculated as

d d T
_ —j2n =L sin 9 sin —j27(Ny—1)=Z sin ¥ sin
ay—[Le X P e (Ny=1)% ®

T
iomdz s i _1)%= s
az(ﬁ) |:1’e—_]271' % 005197 e j2m(N.—1)% 00519}

where d;, < A\/2 and d, < \/2 and where we used the short-
hand notation a, for a, (¥, ). In this formulation, d, and
d, are the spacing between the elements in respective axes,
and A is the wavelength of the incident signal. Therefore,
for the described uniform planar array (UPA) structure, the
array response vector can be calculated as

a(d,¢) = a,(d, p) @ a(v) ©

where ® is the Kronecker product and a(d, ¢) € CV. Note
that, in a(¥, @), elements are ordered column-wise.

We employ the channel model from [10], [32], where the
BS-RIS link h; undergoes Rician fading:

K 1
h, = PL, <, /1 — by 4y [ — - KthLOS> (10)

where PL;, = 30+221log;,(dp) is the path loss (in dB) in the
BS-RIS link with d, being the distance between the BS and
RIS, the LOS component is calculated with the RIS steering
vectors given the angle-of-arrival (AoA) information of the
BS, i.e., {Up, s}, with equation (9) as hiOS = a(dy, ¢p).
The NLOS component, h)*©5 ~ CA(0,Iyx ), consists
of circularly symmetric complex Gaussian random variables
and x is the Rician factor. The RIS-UE link h, also
undergoes Rician fading in (10) with the same parameters
except for the distance and the AoA information, i.e., d,, and
{¥u, @u}, respectively.

The developed algorithms do not require the direct BS-
UE link to be present to converge to the global optimum in
the least number of steps. Whenever the direct link is not
comlgletely blocked, it follows Rayleigh fading, i.e., hg =
10~ x pg, where, PLo(dg) = 32.6 4 36.71og;(do) is
the path loss (in dB) with dy being the BS-UE distance and
po ~ CN(0,1) is a circularly symmetric complex Gaussian
random variable.
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To compare the performance and time complexity of our
proposed algorithms with the existing methods from the
literature with discrete phase shift constraints for the RIS,
similar to [15], we consider NLOS transmission in BS-RIS
and RIS-UE channels with x = 0. The transmit power is
30 dBm with -90 dBm background noise power. Three-
dimensional coordinate vectors (—2,—1,0), (50, —200, 20),
and (0,0,0) are used as the locations of the RIS, BS, and
the UE, respectively.

Finally, we remark that all of the developed algorithms
can work not only with different Rician factors but also
with arbitrary «,, selections. Therefore, the proposed algo-
rithms can be applied to a general K-ary discrete Quadratic
Program, where the objective is to maximize x’ Qx, with
rank(Q) = 1, or equivalently, the inner product maximiza-
tion of |b”x/?, as in (P2).

IV. PROBLEM DEFINITION
In this paper, we address the problem of finding the val-

ues 01,0s,...,0N to maximize |ho + 22[21 h,,e?%"| where
0, € Px and P = {w,2w,...,Kw} with w = 27

and j = v/—1. The set ®x can equivalently be described
as {0,w,2w,...,(K — 1)w}. The values h, € C, n =
1,2,..., N are the channel coefficients and 0,, are the phase
values added to the corresponding h,, by a reconfigurable
intelligent surface (RIS).

The problem can be formally described as

maxiénize f(0)

(1D
subject to 6, € P, n=1,2,..., N
where
1 N 2
F(0) = =5 |Boe? + Y Bped et (12)
hy = Bne?®n forn =0,1,...,N,and 8 = (01,0s,...,0N).
Also, g is defined as
N .
g=ho+ Y _ hne’ (13)

n=1
where 6} are the outcomes of the optimization in (11) and
1 is defined as

p= (14)

gl
Note that, in (11), ﬂoz is a constant and therefore the
maximization affects only the numerator. For that reason,
the case with Ay = 0 can be taken care of by maximizing
the numerator only.

The solution to the problem can be achieved by making
use of the following lemma.

Lemma: For an optimal solution (67,63,...,0%), it is
necessary and sufficient that each 0}, satisfy
0, = arg max cos(0, + an — /i) (15)

0, €EPK

where /u stands for the phase of p in (14).
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Proof: We can rewrite (13) as

N
g = Boe? @0~/ + Z By, el nt0n=/H)

(16)
n=1
= Bocos(ag — /p) + jBosin(ao — /)
N
+ Z ﬁn COS(Q:; + Qp — M)
i
+5 ) Bosin(6] + o — /p). A7)
n=1

Because |g| is real-valued, the second and fourth terms in
(17) sum to zero, and

N
lg| = Bo cos(ao — /1) + Z B cos(0;, + an — yp), (18)
n=1
from which (15) follows as a necessary and sufficient con-
dition for the lemma to hold. |

Reference [15] attempts to decide a range of ;1 for which
0y = kw must hold. Towards that end, it first defines a
sequence of complex numbers with respect to each n =
1,2,...,N as

Sppp = € (@nt(E=05)w) por =1 9 K. (19)

Then, [15] defines, for any two points a and b on the unit
circle C, arc(a : b) to be the unit circular arc with a as the
initial end and b as the terminal end in the counterclockwise
direction; in particular, it defines arc(a : b) as an open arc
with the two endpoints a and b excluded. With this definition,
[15] states the following proposition holds.

Proposition 1: A sufficient condition for 0} = kw is

(20)

Proposition 1 is compatible with the lemma given above. To
see this, assume p satisfies (20). Then,

p € arc(Spk : Snk+1)-

i€ <an+(k—%>w,an+(k+%)w>. @1
Since w = 27”,
an — € ((—2k - 1)%, (—2k + 1)%) 22)

considering the reversal of order due to the subtraction of
/M- Now, let 0,, = kw = 2k . Then
s

ex) @
and thus cos(6, + a, — yu) is the largest among all other
possibilities for 6,, because the slice (— %, =) corresponds
to the largest values of the cosine function among all
slices corresponding to different values of 6, € Py for
n=1,2,...,N.

We remark that, as an open arc, arc(a : b) does not contain
the two endpoints a and b. This implies that we omit the
situation where y = s, for some n,k, or similarly when
p lies right in between arc(sy p—1 : Spk) and arc(sny :
Sn.k+1)- To justify this, assume p = s, for some n, k, i.e.,
M= an + (k— %)w With this, the lemma in (15) results

s
Hn_'_an_ﬂe <_
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in not one but two possible solutions, 6}, ; = kw and 0y, , =
(k—1)w, for which 0}, ; +a, — /= % and 0}, o+, —/p =
— 4, respectively. Note that ¢} ; and 6}, , cannot make |g] in
(17) real-valued at the same time, because sim(QJ;1 + oy —
/1) = (=1)sin(8}, 5+, — /p). Therefore only one of them
can be the optimum selection, which we already consider
separately for scenarios when p € arc(s, x—1 : Spk) and
p € arc(spk © Sn.k+1), 1.€., p is right before and right after
Snk, respectively.

We note that ¢g in (13) is defined for optimal phases
(07,05,...,0%). The p in (15), which comes from the
definition in (14) which follows from (13), is the optimum
one. On the other hand, in the rest of the paper, when we
refer to u, it is a value we are considering in search of the
optimal .

A. UNIFORM POLAR QUANTIZATION

To address the discrete constraint on the RIS phase shifts, a
straightforward approach is to project the relaxed continuous
solution to the closest discrete value in the discrete phase
shift set ®x. In [13], the authors named the discretization
process of the continuous solutions as the closest point
projection (CPP). Note that, by its definition, the CPP
approach can be employed over any other algorithm that
gives the relaxed solutions. Thus, the time-complexity of
the discrete beamforming problem with CPP is dependent on
the complexity of the algorithm that gives the preliminary
continuous solution. For example, in [14], the authors used
Discrete Manifold Optimization (Discrete-Manopt), which
corresponds to quantization of the continuous phase shifts
provided by Manifold Optimization, and the computational
time complexity to achieve the quantized solutions is ex-
tremely high.

In this section, we will define a practical intuitive algo-
rithm that can achieve a suboptimal solution, similar to the
CPP approach in [13], which we call uniform polar quanti-
zation (UPQ). For this purpose, we can redefine the received
power maximization problem with relaxed continuous phase
shifts as follows:

: : cont
maggnlllze fx(0°°™)

(24)
subject to 05™ € [0,27), n=1,2,...,N
where
_ N _ 2
fix(0) = |Boe?® + Y~ Bpedlonti)l - (25)
n=1

Note that in the magnitude of the objective term fi(6),
we are adding complex numbers, or equivalently two-
dimensional vectors on the complex-plane. Therefore, the
bounds on the received power in (25) can simply be given

2
as 0 < fx(0) < gzg_o Bn) . In this case, assuming
continuous phase shifts, the solution to the maximization
problem would be to find 65°™ such that

an + 05 = ag, forn=1,2,...,N. (26)

TABLE 1. Approximation ratio of the UPQ Algorithm to the continuous

solution.
K=2 K=3 K=4 K=6 K=38
Es(K) 0.4053 0.6839 0.8106 0.9119 0.9496
1/Es(2) - 227dB 3.01dB 352dB 3.70dB

Therefore, by letting 65" = g — v, for n = 1,2,..., N,
we can select the discrete phase shifts with the following
rule, which we refer to as UPQ in this paper:

oUPQ — Lao_a"-‘ xw, forn=1,2,....,N, (27)
w

where |-] is the rounding function defined as

|z] = sgn(z) ||z] +0.5] . (28)
The importance of defining UPQ for the problem in (11), or
equivalently for a discrete QP with the rank constraint is to
present a fair comparison in the computational complexity
results, where UPQ performs surprisingly well in terms of
both performance and computational complexity given full
CSI. We note that, in terms of full CSI, UPQ only requires
an for n = 0,1,..., N, and in a real scenario, look-up
tables can be employed to further simplify the beamforming
process.

Similar to UPQ, there are approaches used under different
names in the literature. Firstly, as mentioned, [13] uses a
similar approach for the CPP result where the authors show
performance over estimated channels. Another example is,
in [5], the authors derive a measurement based beamforming
algorithm that is called the “Greedy Fast Beamforming Al-
gorithm,” which is based on a similar quantization approach
employed for the binary case.

We note that, a secondary result of equation (26) is to show
why the optimal discrete phase shift selection problem was
originally thought to be very difficult to solve. In (26), o,
and « values are continuous. When 6°™ are constrained by
the set @ g, it practically prevents a closed-form solution for
0, to be available, because in (25) each 6,, is related to each
other. Yet, in the following sections, our derivations with
the optimal algorithm show that the optimum discrete phase
shift selection problem turns out to be simpler, actually.

1) Efficiency Calculation for UPQ

In [13], the authors provide a lower bound on the per-
formance of quantization. In this section, similar to the
approach in [10], the performance loss in UPQ due to
quantization is quantified with respect to K. For this purpose,
the expected value of the normalized performance, i.e.,
Ey, is calculated for asymptotically large /N. For large N,
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equation (25) with the UPQ solution can be rewritten as
2

frx(eUpQ) _‘B 6Ja0 + Z ﬂnej a"+0U ?)

2
- ’ejao

2|8+ 3 gueiton o
n=1

2

N
o+ 3 B OO0

n=1

2
) (0570 —6%™) (29)

where, for asymptotically large N, 3y from the BS-UE direct
link in (29) is practically discarded. Therefore, the received
power for large N can be approximated as

N
=> 8
n=1

_ onm) _

f 0UPQ el (65F—65)
rx

(07 — g5°m)).

N k-1
+2 Z Z BrBy cos((0;7¢
k=2 I=1
(30)

Assume that in (30) all S, §;, 0k, and 6; are independent
from each other. Let §; = OEPQ — 6" for i = 1,...,N,
so that in (30), the argument of the cosine is equal to
0, — 0;. From equation (27), it follows that §; € [ o K]
Assume J;, and ¢; are ii.d. uniform random variables in
[f%,%], ie., Og,0; ~ L{[f?,%} which results in
E [cos (0, — 6,)] = sinc® (+). Therefore, the expected
value of fi, (8"P?) can be defined as

E[fx(0779)] = NE[82] + N(N — 1)E[S 5] sinc? <[1()

31
With this, we normalized the received power by the
expected value of the maximum achievable power, i.e.,

E[(X0, 8.)) = NE[32] + N(N — 1)E[8i/3]. which gives
» NE[BZ] + N(N — 1)E[B ] sinc? (4)
S N e+ N - DEBA]

Taking N — oo, the expected value of the normalized
performance can be represented as a function of K as

F(K) = sinc? (;{) )

which quantifies the effect of K, i.e., the number of available
discrete phase shift selections, as an approximation to the
optimal continuous solution. For example, as K — oo, i.e.,
the continuous case, Eo.(c0) = 1, therefore E(K) also
serves as an approximation ratio to the upper bound. Two
examples for different selections of K are given in Table
1, where it can be observed that gains from using at least
K =4 discrete phases over K = 2 are significant.

A final emphasis we want to make is to show that
the optimal result can be achieved as a quantization of
the relaxed solution. In other words, the optimal solution

(33)
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0y given p using UPQ, i.e., GS‘PB, can be achieved by
employing the UPQ algorithm with ;"™ = /u — a,. To
see this, assume p satisfies (20). From (22), we know that
/= an € ((2k— )=, (2k + 1) =
quantization in UPQ gives

{WW X = k.

w

, in which case the

HUPQ
nlp

(34)

for n = 1,..., N. Note that the quantization result in (34)
is compatible with Proposition 1, which proves that the
optimum result is actually a quantization solution. As the
two approaches (equation (15) and quantization) are akin,
UPQ can provide close-to-optimal solution given full CSI
knowledge. However, as p is unknown and one needs to
search for the optimal u, we present this as an insight on
the problem rather than an operational idea.

Finally, although both CPP and UPQ give the quantized
continuous solution without modification, they have a basic
difference. CPP is applied over any continuous solution and
defined by 0S*F = argming, coy [0, — 0™ [13]. On the
other hand, UPQ is specifically defined for the problem in
(11) by using the rounding operator in equation (28) to
determine §YFQ directly from o, and . Using the arg min
operator not only gives marginal insight on the problem of
interest, but it can lead to incorrect results for specific values
of 8,, € [0,27) and 5™ € [0, 27).

In the next section, we will define our discrete phase
shift selection algorithm that guarantees the global optimal
solution. We further improve it in the sequel to converge with
the least number of steps, and achieve significantly lower
computational complexity.

V. ANEW ALGORITHM
Reference [15, Algorithm 1], as published, employs the
criterion

¢, = arg min |(6, + o, — ) mod 27|

0,k (35)

instead of (15)>. We now specify Algorithm 1 as an alterna-
tive to [15, Algorithm 173.

We present the cumulative distribution function (CDF)
results for SNR Boost [15] in Fig. 2 for K = 2, and in
Fig. 3 for K = 4. Similarly, the ergodic rate results are
presented in Fig. 4 and 5, respectively. The CDF results are
presented for N = 16, 64, and 256, using the average of
10,000 realizations of the channel model defined in Section

2In this paper, we define the mod function (the modulus function or
the modulo operation) = mod y as the remainder after the dividend = > 0
is divided by the divisor y > 0. We write it as z mod y, = (mod y),
or mod (z,y). For # < 0 and y > 0, we use the convention that the
remainder should always be the smallest such nonnegative number.

3In Algorithm 1 we define (6 +w) mod ® as follows. First note that

(K —1)w} and {w, 2w, 3w, ..., Kw} have the
same members since w = 27/ K. Then, (6 + w) mod ® i can be defined
as (0 +w)mod ®x = ((k+ 1) mod K) w

the two sets {0, w, 2w, . ..,
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FIGURE 2. CDF plots for SNR Boost [15] with Uniform Polar Quantization
(UPQ), Algorithm 1, and Approximation (APX) Algorithm [13], K = 2.

T T
Algorithm 1

09r BCD i/ .
— — —UPQ /
0.8 4

o
3
T

N=256

o
o
T

Cumulative Distribution
o o o o
n w » [¢;]
T T T T

o
T

25 3 35
Ergodic Rate (bits/s/Hz)

FIGURE 4. CDF plots for Ergodic Rate (3) with Uniform Polar
Quantization (UPQ), Algorithm 1, and block coordinate descend
(BCD) [33], K = 2.

III with k = 0, where we employed UPQ, Algorithm 1,
and the Approximation (APX) algorithm from [13], where
all algorithms ran over the same realization in each step.
For the ergodic rate results, instead of APX algorithm, we
employed the block coordinate descend (BCD) [33] as a
typical benchmark where the phase shifts are optimized for
each RIS element at a time. Although the gains are not large,
especially with K = 4 in Fig. 3, these two figures serve
as a verification of the optimality of Algorithm 1, which
we already know from the analysis presented in this paper.
Besides, in Fig. 6, we focus on the low SNR Boost regime
and compare the 1st percentile results. For K = 2, while
there is only about 1 dB loss of using UPQ, it cannot be
recovered by increasing the number of RIS elements. On
the other hand, for K > 4, both APX and UPQ can provide
close-to-optimal results, with UPQ being quite efficient in
terms of complexity, which we discuss in Section XIII.

1 T
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FIGURE 3. CDF plots for SNR Boost [15] with Uniform Polar Quantization
(UPQ), Algorithm 1, and Approximation (APX) Algorithm [13], K = 4.
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FIGURE 5. CDF plots for Ergodic Rate (3) with Uniform Polar
Quantization (UPQ), Algorithm 1, and block coordinate descend
(BCD) [33], K = 4.

Finally, the normalized received power results are calcu-
lated by |B()eja0 + Zﬁle Bnej(a"JFG") 2/(27]2;0 Bn)z and
plotted in Fig. 7 for x = 10. The figure verifies that the
expected value approximation for large N, i.e., E.(K)
results in Table 1, fall in line with the numerical results.

In the Appendix, we discuss an alternative way to initialize
Algorithm 1, which significantly reduces the computational
complexity. We will use this technique in initializing Algo-
rithm 2 and Algorithm 3 in the sequel.

VI. ALGORITHM CONVERGENCE: TOWARDS TWO NEW
ALGORITHMS

We will now show the periodicity in the update rule in
Algorithm 1, i.e., in A/()\;). With this observation, we will
prove that Algorithm 1 takes N or fewer steps to converge,
as opposed to the statement that [15, Algorithm 1] takes
KN or 2N steps on average [15]. This will result in
two new versions of the algorithm, i.e., Algorithm 2 and
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FIGURE 6. 1st percentile SNR Boost results vs. NV, for K € {2,3,4}.

Algorithm 1 Update for [15, Algorithm 1]
1: Initialization: Compute s,,, = e/(@n+(k=05)w) for p —
1,2,...,Nand k=1,2,... K.
2: Eliminate duplicates among s,,;, and sort to get e/* such
that 0 < Ay < Ag < -+ < Ap < 27
3: Let, for [ =1,2,...,L, N(\) = {n|/snx = Ai}-

4 Set yu = 0. For n = 1,2,..., N, calculate 6, =
arg maxg, cd cos(0 + ozn — /1)
5: Set go = ho —|—Zn 1 hn el%, absgmax = |go|.
6: for [ =1,2,...,L —1do
7: For each n € N (), let (6, +w + 6,,) mod Pg.
8: Let
g =gi-1+ Z eg@ ej(enfw) mod @K)
neN ()
9: if |g;| > absgmax then
10: Let absgmax = |g;|
11: Store 6, forn=1,2,..., N
12: end if
13: end for

14: Read out 0} as the stored 0,,, n =1,2,..., N.

Algorithm 3, with a simple elementwise update rule, in
the sequel. Towards this end, we first make the following
statement.

Claim 1: As in (19), set s, = eilnt*k=F) p —
1,2,...,N, k=1,2,... K, a,, € [0,27). Let \; = /s,
such that 0 < X\ < Ay < -+ < A\ < 27 Let N ()
{n|\i = ssnk}. Assuming for now that N (X\;)| = 1,
1,2...,L = NK, which we will relax in the sequel, we
claim that N'(A\;) = N(Apgn) for ! =1,2,... N(K —1).

To prove Claim I, we will first introduce Claim 2 and
prove it.

Claim 2: Without loss of generality, we can assume that
o, <2 . n=12,...,N.

=

N\_/
I
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FIGURE 7. Normalized Performance results vs. N, for x = 10 and
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Proof of Claim 2: Suppose that for some n, we have 27” :
m<a, <2 (m+1),m=12...,K—1 Let 3,
Q, —m - %’g, so that 3, < 27“ We will write below each
phase value in (19), o, + w, fork=1,2,..., K (note
that the (mod 27) notation below applies to both sides of
the equation).

o k=1:

an + % o Bn (2m+1)7r

(mod 27)

where (M)K ) {3?#’5%,“.’ (2Kgl)rr}7
m=1
e k=2:
ap + 35 = 8, + BT (1064 277)
_ [ B+ BT (mod 27), m <K -2
Bn + % (mod 27), m=K-—1
K—2
(2m+3)7 _ 57 7x (2K-x
where (T))m:1 — {?7?""7T}7
[ ] k:
an + (21(71 — B, + CmE2E=Dm (104 o)
= B, + Zm2ln fir (mod 27)
where (M)K_l — {L 3m M}
K m=1 K> K> K :

Thus, if there is an a,, > 2% to generate K phase values,
there is always a 3,,, 8, < 3% with which one can generate
the same K phase values in a similar fashion. Therefore, in
order to prove Claim 1, one can work with the assumption
thatozn<K,f0rn—12...N |

Proof of Claim 1: Assuming 0 < a3 < ag < -+ <
ay < 27”, without loss of generality, we will now show that
N) =NApyn) forl’ =1,2,...,N(K — 1). For this,
there are NV + 1 cases to consider.

Case 0: In this case, we assume o, < %, n =
1,2,..., N. We write all possible values of /s, as follows.

n=1:
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£ 3 (2K*1)Tr} 36 T 3T
&6{01+K3041+ K,...,Oé1+ K ) (36) ZS(N_iJ,-Q)kE{aN7i+2+?7aN7i+2+?7-‘-7
n=2 L CK =3 3
D QN_; " JQN—i12 — == (s
oo € {az + Fan + B, ap + ZETL 37 N TR N TR
n=N: n=N:
{SNkG{OLN‘F%,OLN‘F%,...,O&N“F@}- {stE{aN—&—i,aN—l—B—Tr,...,
K K
(38) (2K - 3)7 ™ (“44)
Sorting (36)—(38), we have an + S an - E}
o+ <ot < --<an+ g
! I;T ? K37T N KSW Sorting (40)—(44), we have
<041+7<052+?<"'<05N+7
™ ™
AN—itl = Jo < S AN T g
<al+w<a2+w<...<a1\,+w. . -
Thus, <a1+?<.”<aN_i+?
(N(Al))lL_leK:{]—723"'7Na]-72a"'3N7 < +7T< < +7T
- a 72 —_— e a JR—
v Y N-it+1 T 7= Nt 5
.,1,2,...,N}. I Lo
— a1+ = < <an_;+ —
P 1t N K
Therefore, for Case 0 and for I’ = 1,2,...,N(K — 1), we
have/\/'(/\l/):/\/'(/\%/_fN). ) . <04N—i+1+3£<"'<aN+3£
There are N remaining cases. We will discuss these cases K K
as Case i where 1 = 1,2,..., N.
Case i, (i =1,2,...,N): In Case i, we have i occurrences <+ o <o <an_i+ om
of a, > 7 as follows. K K
0§a1<a2<--~<aN,i<1
K (39)
< < < < 27
= ON—itl aN s K B L@E=3)r (K -3)r
aN—i 2R 9 < A )7
We write all possible values of /s, as follows. N=itd K N K
n=1 (2K — 1) (2K — 1)
s 3 <o+ —77F7—7 < - <anN—; + ——.
/S1k S {al—&-?,al—I—??..., K K
(2K — 3)7 @K —1)ry 40 Thus,
(€51 K , (1 K }7
(NO0) SN =
{N—i—i—1,...,N,1,2,...7N—z’,
n=N —i: 1
T 3 _ — 3
S(Nfi)ke{aN—i+?,aN—i+?,~wa N—-i+1,...,N,1,2,...,N — 1, (45)
(2K -3 . (2K71)7r} @1 2
anos e ) M T
N—1i K 9 N—1 K )
n=N-itl ; N—z’+17...,N,172,...,N—i}
e Y
S(N—i+1)k € {OLN—12+1+*,04N—11+1+*,-~-7 K
—_ K K 42)
N1 + (2K —3)m N1 — ﬂ} for i = 1,2,..., N. Therefore, for Case 7, 7+ = 1,2,..., N,
o K N KD and for ' = 1,2,...,N(K — 1), we have N(\y) =
n=N-—-1+2: N (Arr4n). With this, Claim 1 is proved. ]

10 VOLUME ,



Algorithm 2 Simplified Algorithm 1 with [N ()\;)| = 1 for
all [
1: Initialization: Set /u = ap — %

Compute ¢,, = (a, — ag) mod 27”, n=12...,N
Sort ¢y, such that 0 < o, < p, < - < Ppy < 27”
Set 0, = argmaxy, ¢, cos(0;, + an — /), store O,
n=12...,N
Set go = ho + ZnN:1 hpe??, absgmax = |go|
for=1,2,...,N do

Let (0, + w < 0y,) mod @

Let

g = gi—1+ hy, (ejenl — ¢ (On;—w)mod ‘I’K)

9: if |g;| > absgmax then

Ll

10: Let absgmax = |g;|
11 Store updated 6,,,
12: end if

13: end for

14: Read out 8} as the stored 0,,, n =1,2,..., N.

VIl. N STEPS SUFFICE WHEN |\ (\;)] =1 FOR ALL [
Given |N(X\)| =1 and

N) =NAwin),

we want to show that N steps will suffice for conver-
ence. Now, consider the main problem of maximizing

I'=1,2,...,N(K—1), (46)

ho + 22’:1 hy, el ’, where it is clear that our discrete phase

shift selections can only tune the second term in the absolute
value. Let

N N
ge 2 Y hnel™ =y el et @)
n=1 n=1
In each step of the Algorithm 1, we define
gc,légl_hOu l:1727"‘7L' (4’8)

Note that, in (48), ho, gi, and g.; are complex numbers, with
[ being a generation index. From Proposition 1, we know that
whenever (£ is anywhere in arc(spk : Spk+1), On does not
change. The angle 6,, only changes when p changes from
one arc to another, i.e.,

p € arc(ed™ : edNH) oy € arc(e?NH : edNH2) (49)
in which case 60,, must be updated as
O, — 0 +w, ne€NNi1). (50)

With (49)—(50), the naive approach in Algorithm 1 gathers all
possibilities for g; in N K steps by considering all possible
arcs that p can be in. To show that N steps will suffice,
we want to point out the redundancy in those NK steps.
Consider any consecutive N steps in Algorithm 1. In those
steps, the phase shifts will be updated as 6,, — 0, + w with
n € (/\/'(/\l))flzﬁfv_l, I'=1,2,...,N(K —1) + 1. Since we
have (46), the following must hold

NN ={1,2,...,N}, (51)

VOLUME ,

which says that after any N consecutive steps in Algo-
rithm 1, 6,, — 0,, + w, n =1,2,..., N. To proceed further,
we need an intermediate result, which we discuss below.

Remark: Let g. = Y. B,e/®»Fn) be the cascaded
channel term in (47). For any angle ¢, g.(6, + 0') =
9e(0,)e?? | resulting in |ge(61,0a,...,0,) = |ge(01 +
0,05+ 6¢,...,0n + 0)]. This remark illustrates that the
rotation by a phase shift of an arbitrary angle 6" does not
change the received power. Therefore, if 6,, — 0,, + w with
n=12,...,N,

|90,l'| = |gC,l’+N|a l/ = 1a2aaN(K_ 1) (52)

must be true. Therefore, among the NK possibilities in
Algorithm 1, there are only N unique values of |g.|. Conse-
quently, as the algorithm is tuning g. to maximize |g. + ho|,
it is sufficient to consider N arcs that are closest to hg.

The algorithm to implement when [NV ()| = 1 for [ =
1,2,..., N is given under Algorithm 2. The initialization
technique introduced in the Appendix for Algorithm 1 is
employed in Algorithm 2.

VIll. FEWER THAN N STEPS SUFFICE WHEN [NV ()| > 1
FOR SOME |

With N (\;) given in Claim 1, for |AV(\;)| > 1 to be true for
some [, consider a repetition among Sy, i.e., assume there
are ny, ng, k1, and ko such that s, x, = Sy, &y, 1.€.,

(2]{,‘1 - 1)7T

o2

(anz + %Igl)ﬂ) mod 27.

) mod 27 =
(53)

Equation (53) is possible only if 3, = Bn, as [, are defined
in Claim 1. Therefore, all K phase values represented by [3,,,
and f,, must be equal, meaning there is an N’ such that
M = (N — N’)K. Consequently, the problem of sorting s,
according to their phase values with 0 < a; < ag < -+ <
an < 2Z reduces t0 0 <y < yp < - - <Ya_n_nr < 2
for

g = €Ot E=2)FE) 1y = 1,2,...,%,k =1,2,....K

(54)
where v, = min{w,,, 1,%n,,2,-..,%n,, .G, such that
Brmia = Bnn2 = - = PBn,. . Gn- S0, this time, there are

X +1=N—N'+1 many cases.

11
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For unique s,,,, let M(X\;) = {m|\; = /s, }. We know
from (45) that the following must hold

(M) TR =

{M 1 M 19 M
7 itLhen b2 2
1
M M M
— —1+1,...,—,1,2,...,— —1
K Z+ 9 7K7 )< ’K 2 (55)
2
M i, M, Y }
K 1 7"'7K‘7 < "K 1
K
fori:1,2,...,%where in each one of the K groups there

are % = N — N’ elements. To calculate AN'()\;), we define
the following sets

Rm - {nm,ly Nm,2y - - ;nm,Gm|
Ym = min{anm,la Qpp 250058 Gy Sy (56)
ﬁnnul = Bnme2 == /Gnrruam}

where G, = |R;,| and U:%:;LRm ={1,2,...,N} must
hold. As a consequence, one can calculate N'(A;) = Rq(x,)-
Therefore, the “update loop” in Algorithm 1 can be written
as

M=(N—-N")K
(N()‘l))l:1( =
{R%,m,...,R%,Rl,nz,...,n%,i,

1

Rt sorr s Rot R, Raveo Ru o (57)
2
RM_M,...,RM,Rl,RQ,...,RM_Z.}
K K K
K

where the periodicity in the update rule still holds in (57),
e, N(w) = N(\pym), U = 1,2,...,2(K — 1). With
the new update rule, after any % consecutive steps in
Algorithm 1, the phase shift selections will be updated such
that 6,, — 0, + w, n=1,2,..., N. This will result in
M
K
Therefore, the sufficiency of % = N — N’ steps follows
from (52) and the text that follows it in Section VII.

Algorithm 3 implements the technique described in this
section. The initialization technique introduced in the Ap-
pendix for Algorithm 1 is employed in Algorithm 3.

Note that if the BS-UE link is completely blocked, i.e.,
ho = 0, the for loop in Step 7 can end at | = % -1 =
N —N’—1, which is one fewer step to run Algorithm 3. This

l'=1,2,..., (58)

9] = |9e g1z (K —1).

3

is because, we can guarantee in (58) that |g. ;| = e |,

Algorithm 3 Simplified Algorithm 1 where |N'();)| > 1 for
some [
1: Initialization: Set /u = ap — %

2: Find v,, and R, as in (54) and (56), m = 1,2,..., %
3: Compute ¢, = Y — g (mod22), m=1,2,..., 3¢
4: Sort ¢, such that 0 < ., < @, < -0 < Py <2z
5: Set 0, = argmaxy cq, cos(0;, + an — /u), store Oy,

n=12,...,N
6: Set go = ho + 25:1 h,e??, absgmax = |go|
7. for 1 =1,2,...,4 =N—N'do
8: Let (0, + w + 6,) mod Px n € Ry,
9: Let

g =gi-1+ Z hy, (ej‘g"' — ej(‘g”_‘“)m‘)d‘I’K)

nG'le

10: if |g;| > absgmax then

11: Let absgmax = |g;|

12: Store updated 6,, for n € R,
13 end if

14: end for

15: Read out 6} as the stored 0,,, n =1,2,..., N.

10710 |o1[* and |geg|? plots for: N =16, K = 4 for different channels: chl, ch2, and ch3
3r © = P -
|

,
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| |
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¢ (Update Steps)

FIGURE 8. Variation of |g;|? and |g.;|? with [.

whereas we cannot say right away that |g.; + ho| =
‘ Geprq + ho‘ will be satisfied. In [15], the authors reduce
the number of steps from KN to 2NN exploiting hg. In this
work, with the periodicity proof, we reduce to N or fewer
steps whether the direct link is blocked or not.

Step 7 in Algorithm 2 and Step 8 in Algorithm 3 are
such that the phase shifts updates are restricted to just one
or just a few. These steps ensure that the running times of
these algorithms are much less than those published in the
literature, e.g., [14], [20].

Figure 8 shows the behaviors of |g;|? and |g.|* against [
for a number of channel realizations at N = 16 and K = 4.
The periodicity of |g.,|? is clearly observable in this figure.
It is this periodicity that we take advantage of in reducing
the number of steps for the algorithm to converge to N with
a simple elementwise update rule in this paper.
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FIGURE 9. 1st Percentile Ergodic Rate (3) results vs. «, for K € {2,4}

IX. EFFECT OF RICIAN FACTOR

Using the given definition of the Rician channel model
in equation (10), we extend the 1st percentile SNR Boost
results in Fig. 6 by showing the 1st percentile ergodic rate
performance results for N € {36,64,144}, with different
values of x, in Fig. 9. The performance of UPQ against
Algorithm 2 shows how closely UPQ can approximate the
global optimum with increasing LOS gain, i.e., k. Even with
K = 2 and lower values of N, the UPQ performance gets
significantly closer to Algorithm 2, unveiling the potential
of the simple quantization approach, i.e., UPQ. We remark
that, as x increases, variation among each [, realization
decreases. This results in more reliable performance provided
by UPQ.

X. EXTENSION TO MULTIUSER SCENARIO

Similar to [13], we extend our Algorithm 2 to optimize
a multicast network, assuming perfect CSI with Rayleigh
fading. Consider a max-min SNR problem with U > 2
receivers with a transmit power of P = 30 dBm, i.e.,

' P|So LR ZN—1 Bn, uej(an,qu%) 2
max min : S ,
U?L

0,€Px u

(59)
where o2 =

- —90 dBm is the noise variance at each
receive antenna, hg ., = 60,uej @o.u ig the direct channel, and
By = Bruel®w is the reflected channel through the n-th
RIS element for the u-th receiver.

The way we extend our algorithm is as follows. While
performing Algorithm 2 for user u, we decide the best
possible solution in the for-loop of Algorithm 2 by maximiz-
ing the minimum channel gain among all users. Therefore,
the for-loop of Algorithm 2 for a multicast network takes
Zf\il O(U) = O(NU) steps. Then, this process is repeated
for each user, to select the best option among U possibilities,
which results in O(NU?) complexity in total. We remark
that the complexity of the APX algorithm in this multicast
scenario is O(NU).
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FIGURE 10. CDF of the minimum SNR across U = 4 users for K = 2 and
N € {16, 64, 256}.

The CDF plots for the minimum SNR performance of the
multicast extension are given in Fig. 10 for K = 2 and
N € {16,64,256}. It can be seen that Algorithm 2 can
provide superior performance compared to both APX and
UPQ. The average gain against UPQ is 3.0 dB and against
APXis 1.3 dB for N = 16. When N = 64, the average gain
against UPQ is 4.0 dB and against APX is 2.3 dB. Note that
these gains with Algorithm 2 get larger as NV increases.

Xl. PERFECT CSI ASSUMPTION

In this paper, we consider a wireless communications sce-
nario assisted by an RIS to examine the performance of
our algorithms. The proposed algorithms are highly efficient
compared to the current state of the literature, as shown
by numerical results. One of the main contributions is the
improved performance that our algorithms can achieve. With
this, the proposed algorithms in this paper take ay,,n =
1,...,N, ie., the channel phases, together with 3,,n =
1,..., N as input to give the optimal discrete beamforming
solution. We assume perfect CSI while deciding the RIS
phase shifts, similar to [15]. One concern can be that, since
the RIS elements are passive and there is a lack of signal
processing capabilities, perfect CSI for the cascaded BS-
RIS-UE link practically may not be available. However,
the perfect CSI assumption can relate to some scenarios
with certain assumptions. For example, with a two-stage
approach in RIS-aided localization systems, the passive
beamforming at the RIS is performed with the available
channel information from the last localization step [23], [24].
Also, in experimental setups with RISs, the locations of the
transmitter and receiver are known and passive beamforming
is performed assuming that the location information of the
UE is available [5], [14], [20], [21].

As described in Section III, the channels undergo Rician
fading. While the performance and numerical results are
provided with x = 0 to compare with similar algorithms
from the recent literature, for scenarios with the dominant
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FIGURE 11. CDF plots for SNR Boost [15], N = 200, o'

2 = —90dBm,
k=0,and K € {2,4}.

line-of-sight assumption in both BS-RIS and RIS-UE, i.e.,
large x, the user’s direction-of-arrival (DoA) information
would be sufficient to find the channel phases, similar to
the geometrical optimal model proposed in [31]. Whereas, if
the channels are strictly NLOS, i.e., k = 0 corresponding to
Rayleigh fading, an example in the literature for estimating
the channels in BS-RIS and RIS-UE links is to estimate the
channels [34], which is the technique used in [13] for per-
formance analysis. Another example is the joint channel es-
timation and passive beamforming framework in [12], where
both are refined in each step with the CSI assumption for
channel-gain-maximization. Therefore, in many scenarios,
our perfect CSI assumption does not violate the applicability
of our algorithms for future work in the literature.

A. Performance Results with the Estimated CSI

We investigate the performance of our proposed algorithm
also considering the effect of imperfect CSI, similar to [13],
by using the ON-OFF strategy in [34]. In these results, the
APX algorithm is from [13], whereas UPQ and Algorithm 2
are as proposed in this paper. We adopt the same system
parameters as in [13] to give a fair comparison, where the
background noise power in the channel estimation phase o2,
is set to -90 dBm as in the transmission phase. With this, the
CDF of the performance results are given in Fig. 11 for K =
2 and K = 4 where the channels follow Rayleigh fading,
i.e., K = 0. The performance results show that Algorithm 2
outperforms both UPQ and APX. The average gain against
UPQ is 1.5 dB and against APX is 0.8 dB for K = 2. When
K =4, the average gain against UPQ is 0.5 dB and against
APX is 0.3 dB. However, it is important to note that in the
worst-case scenario, i.e., the lower SNR Boost regime, the
gain of Algorithm 2 over UPQ and APX is much higher,
especially when K = 2.

Xll. CONVERGENCE TO OPTIMALITY

We will now discuss the convergence of Algorithm 2 and
Algorithm 3 to the global optimum. This will be given in
the Theorem below. The proof of our Theorem is similar to
but actually different than the proof of Theorem 1 of [15].

Theorem: Algorithm 2 and Algorithm 3 yield the global
optimum solution (07,63,...,60%) to (11) in average time
O(N).

Proof: First, we will discuss the global optimality of our
Algorithm 2 and Algorithm 3. This follows because each 6,,
is optimally decided from (15) as in Proposition 1 and all
the possible arcs have been considered for p that yields to
all unique values of |g.|, for which the optimality follows
from (52) and the text that follows it in Section VII.

Next, we will discuss the complexity of Algorithm 2 and
Algorithm 3. Similar to [15], assuming «,, are uniformly
distributed in [0, 27), ¢, and @, are uniformly distributed
in the interval [0,2Z). As in [15], it can be argued that
sorting in both algorithms will take O(N) time on average.
For Algorithm 2, the for loop from Step 6 to Step 13 takes
Zl]il O(1) = O(N) steps. For Algorithm 3, the for loop
from Step 7 to Step 14 takes Z\LIN, O(|Rm,|) = O(N)
steps. As our algorithms are working with elementwise
updates, the time complexity of the steps is also linear in
N, as discussed in Section XIII. This means the overall
complexity is O(N) on the average for both Algorithm 2 and
Algorithm 3. Note that in contrast to [15], when hy = 0, we
do not need to try out all possible arcs, and the average com-
plexity will remain as O(N), instead of becoming O(K N).
|

Although we intend Algorithm 1 as a conceptual stepping
stone towards Algorithms 2 and 3, a proof for its convergence
to the optimal solution can be deduced in a fashion similar
to that for Algorithm 2.

Finally, we remark that our algorithms do not require
the uniformity assumption on «,, to be able to assure the
global optimum. We assume «,, to be uniform for calculating
the complexity, as in [15]. In fact, both Algorithm 2 and
Algorithm 3 can be applied to a scenario and assure the
global optimum where «, are arbitrarily selected.

Xlll. COMPUTATIONAL TIME RESULTS

We now provide computational complexity figures for our
algorithms Algorithm 1 and Algorithm 2 in Fig. 12 and
Fig. 13 for K = 2 and K = 4, respectively. We compare our
algorithm with a number of algorithms from the literature,
which are Approximation algorithm (APX) [13], and Divide-
and-Sort (DaS) algorithm [14]. We also tabulate these results
in terms of simulation time on the same computer (Dell XPS
15 9530 employing Intel Core i19-13900H CPU, 2.6 GHz,
with 14 cores and 20 logical processors) with implemen-
tations carried out in Matlab. We note that all the results
provided are obtained with our own implementation of the
algorithms in the most efficient way we were able to achieve.
In Table 2, we have the simulation time results in seconds
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TABLE 2. Execution time [s] comparisons for 1000 channel realizations in non line-of-sight channel (NLOS), K = 2.

Method N=10 N=50 N=100 N=200 N =500 N =1000 N = 2000
DaS 0.1319 0.6268 1.2641 3.0912 18.2086 60.3753 2772977
Algorithm 1 0.0804 0.1722 0.3874 0.9425 5.2790 16.2042 55.7506
Algorithm 2 0.0192 0.0416 0.0650 0.1107 0.2836 0.5130 1.1875
APX 0.0233 0.0377 0.0596 0.1036 0.2373 0.3732 0.9257
UPQ 0.0007 0.0011 0.0016 0.0024 0.0061 0.0094 0.0211
TABLE 3. Execution time [s] comparisons for 1000 channel realizations in NLOS, K = 4.
Method N=10 N=50 N=100 N=200 N =500 N =1000 N = 2000
DaS 0.1552 0.9806 1.9666 6.9802 30.7800 105.6092 491.2088
Algorithm 1 0.0796 0.3384 0.7967 2.2021 10.0270 33.7036 115.7444
Algorithm 2 0.0211 0.0521 0.0934 0.1609 0.3180 0.5718 1.2623
APX 0.0249 0.0506 0.0890 0.1475 0.2648 0.4460 1.0281
UPQ 0.0007 0.0012 0.0016 0.0028 0.0063 0.0090 0.0204
plotted against the number of RIS elements N for K = 2. 1,...,L, and then perform each of them separately to

Then, in Table 3, we have the simulation results for X = 4.
We note that among these algorithms, APX and UPQ do not
have optimal performance, whereas DaS is claimed to be
optimal. Recall that Algorithm 1 and Algorithm 2 achieve
the optimal result.

In Fig. 12 and Fig. 13, the computational complexities of
the algorithms are plotted against the number of RIS ele-
ments, N. Algorithm 2, APX, and UPQ provides execution
times that increase linearly with IN. Moreover, it is seen
that our Algorithm 2 can achieve comparable computational
complexity with APX, for K = 2 and K = 4, thanks to our
practical initialization technique presented in the Appendix.
Therefore, Algorithm 2, or Algorithm 3 when applicable,
can be considered as benchmark algorithms instead of the
APX algorithm, to get the optimum result with negligible
additional computational costs. DaS is claimed to be optimal,
but requires extremely high execution time, which makes
it difficult to increase K. Our algorithms Algorithm 1 and
Algorithm 2 are optimal in terms of performance. With
the substantial reduction in computational complexity from
Algorithm 1, Algorithm 2 can achieve substantially lower
execution times, which is robust to increasing K, as shown
in Tables 2 and 3, still ensuring the optimum result.

A. Remarks on the Complexity
Finally, we note that, to achieve a linear time-complexity as
in [15], the main enabling factor is using the incremental
update of g; with N'()\;) in the for-loop of Algorithm 1, 2,
and 3, rather than calculating 6,,n = 1,2,..., N for each
candidate su. In order to do the elementwise updates, the
sorting of channels in the initialization steps of Algorithm 1,
Algorithm 2, and Algorithm 3 are required. It could be possi-
ble to avoid sorting of the channels by quitting elementwise
updates.

Assume we adopt an approach, similar to [14], [21],
where we first gather possible phase shift selections 0,1 =
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find the maximum solution, for which the time complexity
becomes O(N?) [15]. With this approach, [14], [21] require
the sorting algorithm, in fact, [21] reports the complexity of
the sorting requirement as it is the dominant term. However,
we claim that, if we were to quit the elementwise approach,
we could avoid the requirement of sorting in our algorithms.
The main function of sorting is to try out all “arcs” for
1, so, we need to know the sorting of /Snk- On the other
hand, if we were to try u = s, for all unique s,/ and
decide 0,,,n € {1,..., N}\n/ with our Lemma, then setting
0, = (k' —1)w, we could generate the same set of solutions.
Note that, in that case, the information of which s,,;, should
come before or after would be unnecessary. Therefore, we
could avoid sorting. However, it still would not perform
better than Algorithm 1, as the elementwise update plays a
significant role in terms of lower time complexity. Moreover,
using our initialization technique with the least number of
steps can reduce the overall computational time substantially
with the elementwise updates.

XIV. ALGORITHM COMPARISONS

To highlight the novelty and contribution of our paper, we
compare our work with the existing literature for the problem
defined in (11) in Table 4. There are two main comparisons:
The first is the number of search steps to ensure convergence
to the global optimum, and the second is the required time
complexity to run the algorithms. Note that, although the
number of search steps is linear in N, an incremental or
elementwise structure is required for trying all the candidate
phase shift configurations. Among those algorithms with
ensured global optimality, our Algorithm 2 and Algorithm 3
are the only ones that can ensure global optimality in NV or
fewer search steps for any scenario. Regarding the algorithms
that converge to a local optimum, APX requires three search
steps to approximate the global optimum. Other algorithms
that achieve a local minimum are CPP and our algorithm

15
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FIGURE 12. Plot of execution time [s] comparisons for 1000 channel
realizations in NLOS, K = 2. Note vertical scale is logarithmic.

TABLE 4. Comparison of Algorithms 2-3 and UPQ with algorithms from the

literature. See the text for definition of /().

Search Steps Time Optimality
Complexity Guarantee
[13] 3 O(N) Local
APX
[13] Projection of Each — Local
CPP Phase Selection
[13] 2N + 2, for K =2 O(N) Global
Optimal (K = 2 Only)
[14] N, K =2 O(N?) Global
DaS KN, K >2 (not elementwise)
[15] 2N, hg #0 O(N) Global
KN, hg=0 O(KN)
[20] N, for hg =0 O(N?) Global
(not elementwise)
[21] N+ 1, K =2 O(N?) Global
2N(K — 1), K > 2 | (not elementwise)
[23] KN O(N?) Global
FPB (not elementwise)
UPQ Deterministic — Local
Algorithm N, any ho O(N) Global
2 N =1, alll
Algorithm < N, any hg O(N) Global
3 N (X)) > 1, some [

UPQ. The detailed comparison of CPP and UPQ is discussed
in Sec. IV.

XV. CONCLUSION

In this paper, we provided necessary and sufficient conditions
for determination of optimum phase values in order to
maximize the received power at a UE which receives its
transmission by means of reflections from an RIS, when the
phase values are from a discrete-valued set. Algorithms are
provided to achieve this in a number of steps equal to IV,

Simulation Execution Times for K=4
T T T T T

=——#—DaS
== Algorithm 1
Algorithm 2| |

0 200 400 600 800 1000 1200 1400 1600 1800 200C
N (Number of Reflecting Elements)

FIGURE 13. Plot of execution time [s] comparisons for 1000 channel
realizations in NLOS, K = 4. Note vertical scale is logarithmic.

the number of RIS elements, or fewer. In the literatute, the
number of steps to achieve this maximum is given as KN
or 2N on the average, e.g., [14], [15]. In conclusion, for
a discrete-phase RIS, the techniques in this paper achieve
the optimum received power in the smallest number of
steps published in the literature with an elementwise update
rule. In addition, in each of those IV steps, the techniques
presented determine only one or a small number of phase
shifts, which result in a substantial reduction of computation
time, as compared to the algorithms in the literature, e.g.,
[14], [20], [21].

Finally, we want to make the following important point.
In this paper, we addressed the ongoing problem in the
literature of finding an optimal solution to the problem
(11) within the fewest number of steps, or with minimum
computational complexity. Our Algorithm 2 (or Algorithm 3
when applicable) achieves this goal. Yet, a secondary result
of this paper is that the intuitive UPQ solution, which is
based on the independent uniform quantization of 6,, on the
unit circle with K points, results in suboptimal but very
close to the optimal solution with very small complexity for
all practical cases, provided full CSI.

XVI. ACKNOWLEDGMENT

The authors would like to thank Professor Thomas Ket-
seoglou for discussions on the asymptotic analysis of the
UPQ algorithm.

APPENDIX: ELEMENT-BASED SIMPLE UPDATE RULE
We now further simplify Algorithm 1 by employing our
periodicity proof, so that there is no need for calculating s,,x
or )\;. What we need to have is, given an initial /M selection,
say e/t € arc(e?ri-1 : e92i) we want to know the N-step
update rule N'(\;),l =4,i+1,...,5+ N —1 in the for loop
of Algorithm 1.

Claim: Let U be the set to define the N consecutive
updates in the for loop of Algorithm 1. For an initial /uo
selection, the update rule in the for-loop of Algorithm 1 will
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be U = {n1,ne,...,nN[0 < pn, < Pny, < o+ < Ppy <
2 o = (o, — /Mo + 7 ) mod 2 n=12,...,N}

Proof: First, consider the case when = 0. We know
that the initial arc is arc(e** : ¢71), Therefore, the update
rule must be U = (N ()\;))Y,. We have already calculated
this in (45) for any Case ¢ given in (39). Note, from (39)
to (45), (N (\))NE follows from the indexes of the sorted
values of

On = (ozn + %) mod 2% (60)

Now, consider the case when ,u = suo where eltto ¢
arc(e/*t : 7). In this case, instead of moving p to a
new arc, we can introduce an offset of — /Mo for all )\;. Note

that this corresponds to a,, — &, — /po, for all n. Therefore
(60) will be updated as

2
O = (an—ﬂ—i— %) mod % 61)
Thus, the proof is complete. |

us

Now, when hg # 0, to initialize with /b= a0 — ¢, we
can simply insert /o = g — % in (61) and get
2T
on = (an — ap) mod — (62)

K
to be used in the initialization step. When the BS-UE link is

completely blocked, or hg = 0, initializations can be updated
as v = 0 in Step 4 and ¢, = (a, — %) mod 3% for
n=1,2,...,% in Step 2.

It is important to note that, the simplification in (61)
relieves Algorithm 1 from the burden to calculate NK
instances of both s,; and A;, and significantly reduces the
computational complexity, as shown in Section XIII.
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