UC Irvine EECS 241A - Digital Communication I Fall Quarter 2025

Meets: TTh 11:00 AM -12:20 PM Social Science Trailer 101

Instructor: Ender Ayanoglu (pronounced A-ya-no-lu)

Recommended (Not Required) Text:

J. G. Proakis, M. Salehi, *Digital Communications*, 5th Edition, McGraw-Hill, 2008 (four former editions by Proakis).

Useful Texts:

- 1. A. Leon-Garcia, *Probability and Random Processes for Electrical Engineering*, 2nd Ed., Addison Wesley Longman, 1994.
- 2. A. Papoulis. *Probability, Random Variables, and Stochastic Processes,* 3rd Ed., McGraw-Hill, 1991 (or former or 4th Ed. with Pillai).
- 3. S. Haykin, Digital Communication Systems, Wiley, 2014.
- 4. J. Barry, E. A Lee, D. G. Messerschmitt, *Digital Communication*, 3rd Ed., Kluwer, 2004 (two former editions by Lee and Messerschmitt).
- 5. J. M. Cioffi, EE379A Course Reader, Stanford University. Available online.
- 6. U. Madhow, *Fundamentals of Digital Communication*, Cambridge, 2008.
- 7. W. Stark, Introduction to Digital Communications, Cambridge, 2023.
- 8. M. K. Simon, S. M. Hinedi, W. C. Lindsey, *Digital Communication Techniques: Signal Design and Detection*, Prentice-Hall, 1993.
- 9. F. Xiong, Digital Modulation Techniques, Artech House, 2000.
- 10. J. M. Wozencraft, I. M. Jacobs, Principles of Communication Engineering, Wiley, 1965.
- 11. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, Wiley, 1968.

Prerequisites:

A *strong* background in continuous and discrete linear signals and systems, Fourier transforms, probability theory, and multidimensional calculus is highly necessary. An undergraduate course in communications is useful.

Covers:

Random signals, response of linear systems to random signals, vector and signal spaces, maximum a posteriori and maximum likelihood detection, optimum receivers, digital modulation: PAM, QAM, PSK, FSK, MSK, DPSK, orthogonal, biorthogonal, and simplex signaling, coherent and noncoherent detection, probability of error and power spectra analysis of digital modulation techniques, maximum likelihood sequence detection (Viterbi algorithm).

Grading:

15% Homework (problem sets, course evaluation), 35% Midterm, 50% Final.

Policies:

Midterm and final are open book and notes. Homeworks will be graded randomly and on the basis of a mixture of effort and correctness. It is recommended that you turn in every homework and make it your own effort.

Course Schedule

		Notes	Proakis 4th Ed.	Proakis 5th Ed.	
Lecture D	Date Subject	Pages	Section	Section	Due
1 9	9/25 Introduction, Random Variables	1.1-2.4	2.1-2.1.3	2.3	
2 9	9/30 Averages, Characteristic Function, Gaussian Density	2.5-2.11	2.1.3-2.1.4		
3 1	10/2 Multivariate Gaussian Density, Central Limit Theorem	2.12-2.18	2.1.6	2.5-2.6	
4 1	10/7 Random Processes	3.1-3.8	2.2	2.7	
5 1	10/9 Bandpass Signals	3.9-4.7	4.1	2.1	HW1
6 1	0/14 Vector Space	4.8-5.3	4.2.1	2.2-1	
7 1	0/16 Signal Space, Orthogonal Signals	5.4-6.2	4.2.2-4.2.3	2.2-2 - 2.2-4	HW2
8 1	0/21 Optimum Receivers	6.3-6.9	5.1.1-5.1.2	4.1-4.2	
9 1	0/23 Maximum Likelihood Detection, Binary Modulation	6.10-7.2	5.1.3, 4.3.1, 5.2.1	3.1	HW3
10 1	0/28 Pulse Amplitude Modulation	7.3-7.8	5.2.6	3.2-1, 4.3-1	
11 1	0/30 Quadrature Amplitude Modulation	7.9-7.14	5.2.9	3.2-3, 4.3-3	HW4
12 1	11/4 MIDTERM				
13 1	11/6 Phase Shift Keying	7.15-7.20	5.2.7	3.2-2, 4.3-2	
14 1	1/11 Orthogonal, Biorthogonal, and Simplex Signaling	8.1-8.6	5.2.2-5.2.4	3.2-4, 4.4	
15 1	1/13 Frequency Shift Keying, Minimum Shift Keying	8.7-9.5			
	1/18 Calculation of Power Spectra	10.1-10.4			
	1/20 Power Spectra of Digital Modulation Techniques	10.5-10.10			
	1/25 Maximum Likelihood Sequence Estimation 1/27 Thanksgiving, No Class	11.1-11.6	5.1.4	4.8	HW6
	12/2 Maximum Likelihood Sequence Estimation, Continued				
	12/4 Review				HW7
	FINAL: December 9, 2025 10:30 AM-12:30 PM				