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Abstract

This paper discusses a special kind of a simple yet possibly powerful algorithm, called single-kernel Gradraker

(SKG), which is an adaptive learning method predicting unknown nodal values in a network using known nodal

values and the network structure. We aim to find out how to configure the special kind of the model in applying

the algorithm. To be more specific, we focus on SKG with a Gaussian kernel and specify how to find a suitable

variance for the kernel. To do so, we introduce two variables with which we are able to set up requirements on the

variance of the Gaussian kernel to achieve (near-) optimal performance and can better understand how SKG works.

Our contribution is that we introduce two variables as analysis tools, illustrate how predictions will be affected under

different Gaussian kernels, and provide an algorithm finding a suitable Gaussian kernel for SKG with knowledge

about the training network. Simulation results on real datasets are provided.

Index Terms

Graphs, Gaussian kernel, adaptive learning, random Fourier features.

I. INTRODUCTION

C
OMPLEX systems can be described by means of graphs. An example is abstracting the citing behavior

of a set of papers into a two-dimensional matrix [1]. In those abstracted graphs, links denote relationships

between nodes. Nodes can carry information only about themselves, which are called nodal values. Nodal values

can be inaccessible for part of the nodes. They might be, however, inferred from the nodal values of other nodes

which are known, together with the network structure.

The problem of inferring unknown nodal values can be considered as semi-supervised learning [2]. The estimation

problem can also be dealt with by techniques of signal reconstruction [3], [4] or signal interpolation [5] in the

emerging field of Graph Signal Processing (GSP) [6]–[9]. Noticing that the majority of GSP studies focus on linear
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graph filters [10], researchers try to design nonlinear graph filters [11] to cope with the nonlinearity residing in

signals over graphs. Another way to consider the nonlinearity is to apply kernel methods on graphs [12]–[14].

Nonlinear algorithms usually outperform their linear counterparts, however, their computational costs also grow

faster with more known nodes, making them less practical for large networks.

Fortunately, [15] discovers that for shift-invariant kernels, the value can be approximated using random features

drawn from the Fourier transform of the kernel. Based on that, [16] proposes a simple yet possibly powerful

algorithm called graph-adaptive learning method using random feature approximation with multiple kernels,

abbreviated as Gradraker. The algorithm takes connection information of a node as input and trains a model

to output the corresponding nodal value under supervised learning. Since only vector additions and multiplications

are needed, acquiring predictions is convenient and updating the model parameters online becomes possible, which

makes the Gradraker algorithm promising to large dynamic networks. What is more, the usage of different kernels or

their mixtures might also extend usable applications. Additionally, the Gradraker algorithm reserves nodal privacy to

some extent thanks to the incorporation of the random feature approximation [15]. So, we think the algorithm or its

variants are applicable for an extensive set of scenarios, e.g., traffic dynamic estimation, account anomaly detection

in social software, recommendation systems, etc. The authors of [16] have shown the impressive performance of

the algorithm in terms of Normalized Mean Square Error (NMSE) and its low complexity. Authors of [17] propose

a similar algorithm, Graph Kernel Least Mean Squares-Random Fourier Features (GKLMS-RFF), which contains

the same model but takes graph-filtered nodal value time sequence of a node as input, instead of the adjacency

vector of a node, and provide the convergence condition. Gradraker is extended to exploit multi-hop information

for estimation in [17], and has the potential to be applied on multi-layer graphs.

There are few papers guiding how to configure the model in Gradraker-like algorithms, especially in a theoretical

view. We aim to fill this gap. The purpose of doing so is not only to have guidance in configuration, but also to

have a better understanding on the pros and cons of the algorithm, recognizing its applicable situations and possibly

giving hints on the design of its variants. We choose the Single-kernel Gradraker (SKG) algorithm as the entry point.

A Gradraker model consists of several SKG models which share the input of the Gradraker model. Each component

SKG model outputs an estimation which is then used for acquiring the final estimation of the Gradraker model via

an aggregation algorithm. That is, SKG models are building blocks of Gradraker-based algorithms and Gradraker

performance is highly influenced by the best performance among all the components. Thus, understanding SKG

performance in a detailed manner is of great importance for future studies.

To achieve the best performance for an SKG model, there are a few hyperparameters, i.e., the loss function,

the learning rate, the number of repeated times for training, the number of random features, and the Gaussian

kernel variance, which should be properly chosen. The loss function is selected based on applications. For instance,
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Least Squares (LS) loss function is usually applied in regression problems. A suitable value of the learning rate is

proposed in [18]. The number of repeated times for training can be found by techniques like monitoring validation

loss during training and stopping training when the validation loss does not improve [19] as done in the field of

machine learning. The number of random features does not play a major role affecting the model performance once

it is sufficiently large. Thus, we will focus on the problem of choosing a suitable kernel for a training set for there

is no discussion on it prior to our paper to the best of our knowledge. The study of choosing a suitable kernel

is not trivial. Gradraker is proposed using a kernel dictionary with multiple kernels, letting the algorithm choose

suitable ones. However, noticing that the computational cost grows linearly with the size of the dictionary, when

inappropriate kernels are inside, computation complexity grows beyond what is needed with appropriate kernels.

What is worse, if the kernel dictionary does not contain any suitable kernel, the performance would be bad, and

adding more kernels blindly to the dictionary may not be beneficial. So, distinguishing suitable kernels helps to

achieve the best performance with the lowest cost. Among many kinds of shift-invariant kernels [15], e.g., Gaussian

kernels, Laplacian kernels, and Cauchy kernels, we will focus on Gaussian kernels. Noting that the kernel being

used models how similarity changes with difference, and that the laws of large numbers indicate wide application of

the Gaussian distribution, it is intuitive to use Gaussian kernels in most situations [16], [17], [20]. For this reason,

in this paper we will discuss SKG with a Gaussian kernel in detail.

To do an analysis on SKG, we build an analysis framework based on two new variables, the similarity measure

and the contribution weight. Our contributions are

• Introducing two variables to do analysis regarding the SKG algorithm;

• Illustrating the impact of different Gaussian kernel variance on prediction performance;

• Providing an algorithm to find a suitable Gaussian variance for an SKG model given a training dataset.

The rest of the paper is organized as follows. Section II gives a review of SKG. Mathematical tools will be

introduced in Section III followed by the impact analysis of different Gaussian kernels and an algorithm to find

a suitable Gaussian kernel for a given training set in Section IV. Section V shows simulation results to verify

properties of introduced variables and effectiveness of the proposed algorithm. Discussions and conclusions are

provided in Section VI and Section VII, respectively.

Notation: Vectors are denoted by bold lowercase characters. Matrices are denoted by bold uppercase characters.

The symbol (·)⊤ denotes the transpose of a vector or a matrix. The (m,n)-th (m-th) element in an M ×N matrix

A (M × 1 column vector or 1×M row vector a) is denoted by [A]m,n ([a]m) where 1 ≤ m ≤M and 1 ≤ n ≤ N .

The l2 norm is denoted by ‖ · ‖. The notation | · | represents the absolute value for a number, or the cardinality of a

set. The (conditional) expectation is denoted by E[·] (E[·|given variable]), and the (conditional) variance is denoted

by V[·] ((V[·|given variable])). The minimum value of a sequence s is denoted by min s.
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II. PRIOR WORK: STEPS WHEN APPLYING SKG

The basic sequence of steps applying SKG is preparing the training set, building up and initializing the model,

training sequentially, and performing prediction (updating trainable parameters if available).

A. Preparing a Training Set

Let there be a set of sampled nodes V = {vn}Nn=1 with known nodal values {yn}Nn=1, a set of referencing

nodes Vr = {vr,m}Mm=1, and a description of connection between the two sets of nodes. Note that nodal values

of referenced nodes do not play a role. The description of connection can be in the form of a matrix A, of size

M ×N , whose element [A]m,n is 0 if the sampled node vn is not connected with the referencing node vr,m, or 1

if the two nodes are connected in the case of unweighted graphs, or the weight over the edge connecting the two

nodes in the case of weighted graphs. Note that a column of A reports the description of connection between the

corresponding sampled node and all the referencing nodes. So, we call the description vector adjacency vector of

the sampled node. Denote the adjacency vector of the sampled node vn as an with size M × 1. Combining with

the nodal value yn of vn, we get the pair (an, yn) for vn, and the set of pairs {(an, yn)}Nn=1 is called the training

set.

The sampled node set V and the referencing node set Vr are not necessarily the same. In [16], V = Vr, and

thus the N adjacency vectors can be formatted in an adjacency matrix of size N ×N . In our paper, we generalize

applicable scenarios such that Vr can be any set of nodes, without the need to modify the Gradraker algorithm.

B. Building Up the Model and Initialization

The model takes an adjacency vector an of vn ∈ V as input. The first part of the SKG model is for acquiring a

nonlinear transform z(an) of the input an through a nonlinear mapping z : RM×1 7→ R
2D×1. Specifically,

z(an) = [sin(ξ⊤1 an), sin(ξ
⊤
2 an), ..., sin(ξ

⊤
Dan), cos(ξ

⊤
1 an), cos(ξ

⊤
2 an), ..., cos(ξ

⊤
Dan)]

⊤/
√
D (1)

where {ξi}Di=1 are random features [15] drawn from a distribution which is the Fourier transform of the kernel κ

in SKG. Note we have to manually choose κ. Recall that we will focus on Gaussian kernels in the paper, then the

problem is reduced to choosing a variance σ2 for the Gaussian kernel. Once the kernel is chosen, the following

claim is helpful to generate {ξi}Di=1.

Claim 1. Supposing a Gaussian kernel κ with variance of σ2, i.e., κ(x1, x2) = e−
‖x1−x2‖2

2σ2 , random features

{ξi}Di=1 should be drawn from the Gaussian distribution N (0, σ−2I) when using the random feature approximation

for κ [15], [16].

Proof. The proofs of all the claims in the paper are provided in the Appendix.
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According to Claim 1, random features {ξi}Di=1 should follow N (0, σ−2I). Note that D is also preselected and

that random features are fixed during training and predicting phases once they are chosen.

Then, z(an) goes through the second part of the model, which is linear, and provides a prediction as

f̂n = θ⊤z(an) (2)

where f̂n denotes the prediction. The column vector θ whose size is 2D × 1 is the trainable parameter.

Prior to the training phase, the trainable parameter is initialized as θ0 = 0. Since θ is updated every time, we

will use θt to denote the θ value at the end of time (iteration) t.

C. Sequential Training

The parameter θ is updated by the gradient descent algorithm, i.e., θt, 1 ≤ t ≤ T where T denotes the training

duration is updated via

θt = θt−1 − η∇θLt (3)

where ∇θLt is the gradient of the loss function L with respect to θ at time t and η is the preselected learning rate.

Noting that LS loss is used, we have L(ytrue, f̂) = (ytrue − f̂)2. Then, the gradient at time t which is employed

in (3) is

∇θLt = −2(ynt
− f̂nt

)z(ant
) (4)

where ynt
, f̂nt

, and ant
are the true nodal value, the prediction, and the adjacency vector of the node used at time

t, respectively. Note that ant
is not any specific adjacency vector but random because there is no assumed order

for sampled nodes being processed. For notational simplicity, we will use at, f̂t, and yt instead of ant
, f̂nt

, and

ynt
from now on.

In [16] and other papers about kernel-based predicting methods, sometimes an overfitting-controlling term is

summed with the squared difference (ypred−ytrue)2 in calculating the loss L(ypred, ytrue). However, the overfitting-

controlling term does not greatly affect the level of best performance of SKG achieved on a graph signal, so we

ignore it in our analysis.

During the training phase, we process a sampled node at a time, i.e., getting its adjacency vector which is then

put through the model to get a prediction, and updating the model. The process is repeated until all sampled nodes

are processed. It is possible for the training set to be used multiple times during the training phase, and the number

of times the training set is repeatedly used is called the number of epochs, denoted by E. The parameter E is also

preselected. The training duration is T = EN .
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D. Predicting

When the adjacency vector a′ of a tested node v′ to the set of referencing nodes is known, we can use the

well-trained model to predict the nodal value. To that end, we first acquire the nonlinear transform z(a′) via (1),

and then get a prediction via (2). If its true value can be known, the trainable parameter θ of the model can be

updated via (3).

III. MATHEMATICAL TOOLS

A convincing way to illustrate the influence of σ2 on predictions is to express predictions explicitly in terms of

σ2. It is a hard problem due to the training process. Alternatively, we express predictions as weighted averages

of observations, where the influence of σ2 on the weights is easier to show. To do so, we have to introduce two

variables. One is used as weights of observations in predictions, called contribution weight. The other one, called

similarity measure, is an intermediate variable in finding contribution weights. In this section, we give definitions

of the two variables, and state their properties; preparing for analysis on how prediction behaves under different σ2

in the next section. We introduce the similarity measure Bi,j first as it is basic to the definition of the contribution

weight Fi,j .

A. Similarity Measure

The definition of the similarity measure Bi,j for the pair of nodes seen at time i and j, 1 ≤ i < j ≤ T + 1, is

Bi,j , 2ηz⊤(ai)z(aj) (5)

where ai and aj are the adjacency vectors of nodes used at time i and time j. As its name suggests, Bi,j can

be seen as a similarity measure between ai and aj recalling that κ(ai, aj) ≈ z⊤(ai)z(aj) [16], and that a kernel

function is a form of similarity measure.

Note that Bi,j is a random number. Its randomness comes from both the random features {ξi}Di=1 and ai and aj

because adjacency vectors vary among different datasets. Even for a given dataset, ai and aj cannot be determined

because of the random sampling for the sampled nodes. Considering the uniform distribution of when a specific

node is processed within an epoch, the distribution of Bi,j is identical for all qualified pairs of i and j. We keep

the indices to denote the time when the adjacency vectors are processed.

Since weights of observations in predictions build on similarity measures Bi,j , studying properties of Bi,j not

only helps understanding how σ2 changes Bi,j , but also paves a path to the impact of σ2 on observations weights.

So, we illustrate two properties of Bi,j , exponential approximation and positive average, in the following.
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Substituting (1) into (5), we have

Bi,j =
2η

D

D
∑

k=1

[sin(ξ⊤k ai) sin(ξ
⊤
k aj) + cos(ξ⊤k ai) cos(ξ

⊤
k aj)]

=2η

∑D
k=1 cos[ξ

⊤
k (ai − aj)]

D

=2η

∑D
k=1 cos[ξ

⊤
k di,j ]

D
(6)

where di,j = ai − aj . It is shown in (6) that Bi,j is actually the sample average of D terms of cos(Ck,i,j) where

Ck,i,j = ξ⊤k di,j multiplied by a scalar 2η. Whereas, di,j is a random vector with respect to different training data

and the random processing order of sampled nodes, {ξk}Dk=1 are related to model configuration. We will focus on

how Bi,j changes with respect to {ξk}Dk=1 (viewing ai and aj as given for now). Recalling from Claim 1 that

elements of ξk, k = 1, ..., D are independently and identically distributed (i.i.d.) Gaussian random numbers with

variance σ−2, we know that Ck,i,j follows N (0, ‖di,j‖2/σ2) for a given di,j . Notice {Ck,i,j}Dk=1 are i.i.d. because

of i.i.d. {ξk}Dk=1. Supposing D is sufficiently large, we can follow the weak law of large numbers and get

Bi,j
∼= 2ηE[cos(Ck,i,j)|di,j ]. (7)

Note Bi,j is a random number but varies in a small range given di,j and a sufficiently large D. The following claim

can be useful to get the explicit expression of the conditional expectation.

Claim 2. Suppose X is a Gaussian random number such that X ∼ N (0, σ2X). Then,

E[cos(X)] = e−
σ2
X
2 , (8)

V[cos(X)] =
1

2
(e−σ2

X − 1)2. (9)

1) Exponential Approximation: Substituting (8) into (7), we get the exponential approximation

Bi,j
∼= 2ηE[cos(Ck,i,j)|di,j ] = 2ηe−

‖di,j‖
2

2σ2 (10)

when D is sufficiently large.

The equality in (10) is the same expression as the random feature approximation [15], [16], but in a reverse

order. Recall that for a Gaussian kernel κ(ai, aj) = e−
‖ai−aj‖

2

2σ2 , its mathematical expression of the random feature

approximation is κ(ai, aj) = e−
‖ai−aj‖

2

2σ2 ≈ z⊤(ai)z(aj) where z(·) is defined in (1). If we replace Bi,j and di,j in

(10) with the definition in (5) and ai − aj , respectively, we get 2ηz⊤(ai)z(aj) ∼= 2ηe−
‖ai−aj‖

2

2σ2 which is the same

as the random feature approximation. The equality in (10) explicitly shows how σ2 affects Bi,j .
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2) Positive Average: Taking expectation for (6), we get

E [Bi,j ] = 2ηE [E [cos (Ck,i,j) |di,j ]] . (11)

In (11), E [Bi,j ] is with respect to the joint distribution of {ξk}Dk=1 and di,j . On the right hand side, the inner

expectation is with respect to the conditional distribution of {ξk}Dk=1 given di,j while the outer expectation is with

respect to the distribution of di,j . Recall that when di,j is given and D is sufficiently large, Bi,j varies within a small

range and can be approximated via (10). For a real dataset, di,j is usually not deterministic but has a distribution

under random sampling without replacement, and thus Bi,j may greatly vary with different di,j values. From Claim

2, it is known that 0 < E [cos (Ck,i,j) |di,j ] ≤ 1 for any di,j , where the equality holds when ‖di,j‖2 = 0. So, for

real datasets where nonzero di,j exists, we get from (11) that 0 < E [Bi,j ] < 2η.

B. Contribution Weight

As we mentioned before, we aim to express a prediction of SKG in terms of observations. We are able to do so

via contribution weights introduced in the following. The definition of the contribution weights Fi,j for the pair of

nodes seen at time i and j, 1 ≤ i < j ≤ T + 1 is

Fi,j ,















Bi,j , for i = j − 1,

Bi,j −
∑j−1

k=i+1Bi,kFk,j , for 1 ≤ i < j − 1,

(12)

and undefined otherwise. Because of the randomness in Bp,q, i ≤ p ≤ q ≤ j, Fi,j is also a random number. The

definition in (12) indicates that Fi,j is affected by σ2 indirectly via Bi,j .

We show two useful properties for Fi,j , weighting and conformity with Bi,j .

1) Weighting Property: Firstly, the following claim shows {Fi,j}j−1
i=1 are used as coefficients of previously seen

nodal values in prediction.

Claim 3. Assume we are applying SKG on a training set. During the training phase, at time t, 1 < t ≤ T , we

have

f̂t =

t−1
∑

i=1

yiFi,t (13)

where f̂t denotes the prediction at time t, yi denotes the true nodal value at training time i, and {Fi,t}t−1
i=1 are

defined as in (12).

Although Claim 3 mentions the training phase only, it is easy to extend (13) to the predicting (testing) phase. If

the nodal value for a tested node is known somehow, the node will work as a sampled node and the SKG model

can be trained further in which case (13) works fine for the tested node directly. If a tested node comes without a
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true nodal value, it will have no impact on the model, and all such nodes share exactly the same model in which

case all these nodes can be seen as the node at time T +1. In practice, tested nodes with and without known nodal

values may be mixed, however, only those with known nodal values will affect the model and later predictions.

So, without loss of generality, we will only consider the case where nodal values for tested nodes are unknown.

Then, the prediction for a tested node can be expressed as

f̂T+1 =

T
∑

i=1

yiFi,T+1 (14)

where f̂T+1 represents the prediction of the tested node. Note that at the time, we only show a prediction is a

weighted summation of observations. Based on the following claim, we could step further and show a prediction

can be a weighted average of observations using Fi,T+1.

Claim 4. According to the definition in (12), we can get the expectation of the sum of Fi,T+1 with all qualified

i, i.e., 1 ≤ i ≤ T , as

E

[

T
∑

i=1

Fi,T+1

]

= 1− (1− b)T

where b = E[Bi,j ] and 1 ≤ i < j ≤ T + 1.

It has been confirmed by the positive average property of Bi,j in Section III-A that 0 < b < 2η. For most cases

where η ≪ 1, we get

lim
T→∞

E

[

T
∑

i=1

Fi,T+1

]

= 1. (15)

In practice, the training duration T is usually more than hundreds which is sufficient to get E
[

∑T
i=1 Fi,T+1

]

≈ 1.

The small variance of the summation is observed from experiments such that the summation is close to 1. Thus,

using (15) together with Claim 3, we can draw a conclusion that, when T is suitable, the SKG prediction for a

tested node is actually a weighted average of all previously seen nodal values, and how much contribution that the

nodal value seen at time i makes to the prediction is determined by the Contribution Weight Fi,T+1. We call this

the weighting property of Fi,T+1.

2) Conformity Between Bi,j and Fi,j: It can be observed from simulations that although Fi,j for any 1 < j ≤

T + 1 increases about exponentially when 1 ≤ i < j, Fi,j tends to be greater when Bi,j is obviously larger than

E [Bi,j ]. Due to the recursive definition of Fi,j , the direct derivation between Bi,j and Fi,j becomes complex. So,

we explain the conformity between Bi,j and Fi,j using induction.

For j > 1, because Fj−1,j = Bj−1,j , there is no question that Bj−1,j and Fj−1,j will be both large or small.



10

For j > 2, we see

Fj−2,j = Bj−2,j −Bj−2,j−1Fj−1,j = Bj−2,j −Bj−2,j−1Bj−1,j

= Bj−2,j

(

1− Bj−2.j−1Bj−1,j

Bj−2,j

)

.

Assuming a sufficiently large D, we consider the exponential approximation of Bi,j and get

Bj−2,j−1Bj−1,j

Bj−2,j
≈ 2ηe−

‖dj−2,j−1‖2

2σ2 · 2ηe−
‖dj−1,j‖

2

2σ2

2ηe−
‖dj−2,j‖

2

2σ2

= 2ηe−
‖dj−2,j−1‖2+‖dj−1,j‖

2−‖dj−2,j‖
2

2σ2 .

From Triangle Inequality, we know that ‖dj−2,j−1‖2 + ‖dj−1,j‖2 − ‖dj−2,j‖2 ≥ 0, so

0 <
Bj−2,j−1Bj−1,j

Bj−2,j
≤ 2η.

Set α2 =
Bj−2,j−1Bj−1,j

Bj−2,j
, we can express Fj−2,j as

Fj−2,j = Bj−2,j(1− α2) (16)

where 0 < α2 ≪ 1 since the learning rate η is usually a small number. Noting that α2 depends on the difference

between j and j − 2 which is 2 but not on j, we denote the fraction to be α2. From (16), we see that Fj−2,j and

Bj−2,j would also be both large or small although there exists the factor 1− α2.

For i, j satisfying i = j − 3, j > 3, we get

Fj−3,j = Bj−3,j [1− α3,2(1− α2)− α3,1] (17)

where α3,2 =
Bj−3,j−2Bj−2,j

Bj−3,j
and α3,1 =

Bj−3,j−1Bj−1,j

Bj−3,j
, and thus 0 < α3,1, α3,2 ≪ 1. For α2, α3,1 and α3,2 all being

small positive numbers, it is reasonable to have the following

1− α3,2(1− α2)− α3,1 = 1− α3,1 − α3,2(1− α2) ≈ (1− α3,2)(1− α2). (18)

The approximation is because α3,1 and α2 are small positive numbers. It would be an equality instead when

α3,1 = α2. Similarly, (1−α3,2)(1−α2) can be considered as a square term because α3,2 and α2 are small positive

numbers. In other words, we could choose α3 to satisfy

1− α3,2(1− α2)− α3,1 = (1− α3)
2 (19)

and α3 is close to α2, α3,1 and α3,2. For example, in an experiment with η = 0.05, it is possible to see α2 = 0.08,
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Fig. 1. A typical GNMSE curve with respect to σ2. The applicable interval of σ2 is divided into four parts, i.e., the chaos range, the extending

range, the disturbing range, and the averaging range, from left to right. The boundaries are denoted by σ2
ce, σ2

ed, and σ2
ea, respectively.

α3,1 = 0.06, and α3,2 = 0.1. Then, we should choose α3 = 0.079 which is around α2, α3,1 and α3,2 to satisfy (19).

Substituting (19) back to (17), we get

Fj−3,j = Bj−3,j(1− α3)
2 (20)

which implies that Bj−3,j and Fj−3,j are related with a factor (1− α3)
2.

Using mathematical induction we get the mathematical expression for the conformity property between Bi,j and

Fi,j for 1 ≤ i < j ≤ T + 1,

Fi,j = Bi,j(1− αj−i)
j−i−1 (21)

where αj−i is a small positive number.

The conformity property between Bi,j and Fi,j considers an exponential term, implying that when j− i is small,

it is easier to observe Fi,j and Bi,j to be large or small at the same time. However, when j− i is large, one observes

small Fi,j values no matter what Bi,j is.

IV. GAUSSIAN VARIANCE FOR A GRAPH

A. Impact of σ2 on Predictions

We illustrate how prediction changes when σ2 increases. Based on different behavior of Bi,T+1, Fi,T+1, we divide

the possible range of σ2, (0,+∞), into four parts, i.e., the Chaos Range, the Extending Range, the Disturbing Range,

and the Averaging Range, as shown in Fig. 1.

1) Chaos Range: In this range, σ2 is so small that Bi,T+1 is close to 0 when ai 6= aT+1.

Following the conformity property, Fi,T+1 keeps pace with Bi,j . Note that in this case, αT+1−i values are

generally close to 0. Take α2 ≈ 2ηe−
‖dj−2,j−1‖2+‖dj−1,j‖

2−‖dj−2,j‖
2

2σ2 as an example. Because of the small σ2 value,

the exponent is a large negative number when the numerator of the exponent is nonzero. The small αT+1−i values



12

Fig. 2. A simplified spacial illustration of sampled nodes and a tested node based on ‖di,T+1‖
2. The orange node represents the tested

node and the others are sampled nodes. The circle is centered at the tested node with the radius equal to the efficient distance. The different

lightness of green nodes implies different weights.

make the exponential term in (21) decay slowly with decreasing i from T , resulting in Fi,T+1 following Bi,T+1

closely. Like Bi,T+1, Fi,T+1 takes positive or negative values. Whereas positive Fi,T+1 values are viewed as

weights of previously-seen nodal values contributing to the prediction, negative Fi,T+1 values play a disturbing

role. Specifically, negative Fi,T+1 values cancel out positive Fi,T+1 with similar absolute values, resulting in taking

nodal value difference instead of nodal values into consideration for predicting. Thus, we can find a minimum

range which negative Fi,T+1 values fall in, and together with its positive counterpart, we get a symmetric range

around 0 which we call the noise range. When Fi,T+1 takes value in the noise range, we say the corresponding

nodes acquire an insignificant weight and do not contribute to the prediction.

Since most of Fi,T+1 values fall into the noise range when σ2 is in the Chaos Range, the output is less predictable.

2) Extending Range: When σ2 is in this range, Bi,T+1 values with small ‖di,T+1‖2 are significantly greater than

0 whereas Bi,T+1 values with large ‖di,T+1‖2 are still close to 0.

Considering the conformity between Bi,j and Fi,j , it is expected that Fi,T+1 values for those small ‖di,T+1‖2 are

significantly larger than 0 while Fi,T+1 values for large ‖di,T+1‖2 are close to 0. Due to the variation in Bi,T+1,

the noise range still exists. However, there are Fi,T+1 values falling out of the noise range. We call Bi,T+1 whose

corresponding Fi,T+1 falls outside the noise range the chosen Bi,T+1. With the exponential approximation of Bi,j ,

we can find corresponding ‖di,T+1‖2 for chosen Bi,T+1 and have the maximum as the efficient distance. Fig. 2

shows a simplified spatial distribution for sampled nodes and a tested node. With the efficient distance as the radius,

a circle centered at the tested node divides the sampled nodes into two groups. Then, we rewrite the prediction as

f̂T+1 =
∑

Fi,T+1 is significant

yiFi,T+1 +
∑

Fi,T+1 is insignificant

yiFi,T+1. (22)

Sampled nodes inside the circle contribute to the first summation in (22) with chosen Bi,T+1 and significant Fi,T+1.
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Sampled nodes outside the circle are assigned insignificant weights that fall into the noise range, so their nodal

values contribute to the second summation which is less predictable. Clearly, if the sampled nodes inside the circle

have nodal values close to that of the tested node, and if the second summation in (22) is not dominant, the

prediction would be close to its ground truth.

When σ2 is increased within the Extending Range, the efficient distance grows. That is, the circle is extending

to include more sampled nodes. This brings two benefits. First, more nodes are taken into consideration, instead of

just a few nodes. Note that sampled nodes inside the circle have significant influence on prediction. When the circle

includes only a few nodes all of which happen to have dissimilar nodal values with the tested node, the prediction

would not be ideal. Enlarging the circle by increasing σ2 within the Extending Range is helpful to include more

sampled nodes, lowering weights of nodes with dissimilar nodal values. Second, fewer nodes take part into the less

predictable part when the efficient distance grows. As a result, the performance of the SKG model gets better as

σ2 increases within the Extending Range.

3) Disturbing Range: In this range, Bi,T+1 for all ‖di,T+1‖2 becomes significantly larger than 0 but Bi,T+1

with small ‖di,T+1‖2 are significantly greater than Bi,T+1 with large ‖di,T+1‖2. Notice that it is the relative value

not the absolute value of Bi,T+1 that carries information of similarity in adjacency vectors.

We can calculate an efficient distance using chosen Bi,T+1 values and draw a circle as in Fig. 2. However, the

circle loses its role as a boundary. In fact, the circle includes most, if not all, of sampled nodes. Not all nodes inside

the circle are assigned significant weights. Sampled nodes with higher Bi,T+1 still tend to get higher weights, but

other sampled nodes would get significant weights if they show up at later times. Take the last sampled node in

training as an example. It is assigned weight FT,T+1 = BT,T+1 which is significantly greater than 0. That is, the

last nodal value is considered in prediction regardless of whether the node is spatially close to the tested node or

not. In other words, predictions consider closeness in time in addition to similarity among adjacent vectors.

When σ2 is increased within the Disturbing Range, Bi,T+1 values generally grow and predictions are focusing

more and more on proximity of time. If the recent nodes do not happen to have similar nodal values with the tested

node, the prediction will be far from its ground truth.

4) Averaging Range: In this range, σ2 is so large that Bi,T+1 are close to 2η for all ‖di,T+1‖2.

Note that αT+1−i values are close to 2η in this case. For example, α2 ≈ 2ηe−
‖dj−2,j−1‖2+‖dj−1,j‖

2−‖dj−2,j‖
2

2σ2 ≈ 2η.

Consequently, Fi,T+1 is close to an exponential function with the base 1− 2η as i goes from 1 to T .

Because of the exponential shape of Fi,T+1 with respect to i, it is unsurprising that only recent nodes are

taken into consideration in predicting. Besides, it is the same set of sampled nodes that take significant weights in

calculation for different tested nodes, and {Fi,T+1}Ti=1 are similar for different tested nodes. Thus, it is anticipated

that outputs of the model are about the same for all tested nodes.
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B. How to Choose a σ2

For clarity, let us denote the boundary between the Chaos Range and the Extending Range by σ2ce, the boundary

between the Extending Range and the Disturbing Range by σ2ed, and the boundary between the Disturbing Range

and the Averaging Range by σ2da. From the analysis in Section IV-A, we conclude that the performance is bad

in the Chaos Range, gets better in the Extending Range, might get worse in the Disturbing Range, and is bad in

the Averaging Range. As predictions in the Disturbing Range consider more proximity of time instead of network

topology than in the Extending Range, we choose the boundary between the Extending Range and the Disturbing

Range σ2ed as a suitable σ2 (cases where performance gets the best in the Disturbing Range are discussed in Section

VI-B1). Using Fig. 2 as an illustration, the radius of the circle achieves its maximum while not including nodes

with dissimilar adjacency vectors on this boundary. Intuitively speaking, what happens at σ2ed is Bi,T+1 values for

large ‖di,T+1‖2 are “just significantly greater than 0.”

We should find the largest possible ‖di,T+1‖2 value. However, we cannot know the distribution of ‖di,T+1‖2

when we configure the SKG model. So, we use the largest value of ‖di,j‖2 among all pairs of sampled nodes,

denoted by ‖d‖2max, instead. We also need to give a concrete math expression for “significantly greater than 0.”

Recall that Fi,T+1 is considered as significant if it falls out of the noise range. Following the conformity property

between Bi,j and Fi,j , Fi,T+1 is likely to fall out of the noise range when Bi,T+1 falls out of the noise range.

Then, Bi,T+1 is significant when it is greater than the upper bound of the noise range.

It can be observed that the noise range exists for different σ2 values. The existence is (partly) due to the variation

of Bi,T+1 for 1 ≤ i ≤ T . For example, in an extreme case where Bi,T+1 = 2η for 1 ≤ i ≤ T , Fi,T+1 is an exact

exponential function with respect to i and the noise range vanishes. Detailed analysis on the noise range is left for

future study. Although the noise range changes with Bi,T+1 variation, the change is limited. So, we can calculate

the noise range in the Chaos Range which is easier to derive and use it for all σ2. Recall in the Chaos Range,

Fi,T+1 values closely follow corresponding Bi,T+1 values. From (9), it is known that

V[Bi,j |di,j ] =
(2η)2

2D

(

e−
‖di,j‖

2

σ2 − 1
)2

which is a decreasing function with respect to ‖di,j‖2. That is, V[Bi,T+1] which is an upper bound of V[Fi,T+1]

is upper-bounded by V[Bi,T+1|0] ≤ (2η)2

2D . Then, the upper bound of the noise range noiseup can be approximated

by the standard deviation as

noiseup ≈
√

(2η)2

2D
=

1√
2D
× 2η. (23)

For a more precise noise range at the boundary between the Extending Range and the Disturbing Range, please

follow Algorithm 2.
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Once making sure noiseup and ‖d‖2max, we can apply the exponential approximation of Bi,T+1 and get

2ηe
− ‖d‖2max

2σ2
ed = noiseup

which is equivalent to

σ2ed = − ‖d‖2max

2 ln noiseup

2η

. (24)

The steps of how to choose a suitable σ2 are summarized in Algorithm 1. We would like to mention that, although

(23) and (24) indicate that D affects calculated σ2ed, the best σ2 is not influenced by D theoretically as long as D

is sufficiently large. Note that D cannot be arbitrarily small for the validity of the random feature approximation.

The proposed σ2 is close to the optimal one, but not exactly the same. In this case, (23) provides an approximation

of noiseup and we also provide Algorithm 2 to mitigate the impact of D on the proposed σ2.

Algorithm 1 Choosing σ2 for the Gaussian Kernel in SKG

Input: adjacency vectors for all sampled nodes, and the number of the random features D.

Get noiseup via (23) (alternatively, for a more precise noise range, use Algorithm 2);

Get ‖di,j‖2 for all pairs of sampled nodes and record the maximum value;

Get a σ2 value via (24);

Algorithm 2 Finding a More Precise Noise Range

Run a simulation with σ2 found with noiseup in (23);

Get Fi,T+1 via (12) for 1 ≤ i ≤ T and record its minimum;

Using the absolute value of the minimum as the new noiseup, the new noise range is [−noiseup, noiseup];

We can have similar definitions for the boundary between the Chaos Range and the Extending Range σ2ce and

the boundary between the Disturbing Range and the Averaging Range σ2da, which are used in later simulations.

The boundary σ2ce should be such that Bi,T+1 for the smallest nonzero ‖di,T+1‖2 is greater than noiseup. With the

exponential property, we get

2ηe
− ‖d‖2

min,nonzero

2σ2
ce = noiseup

where ‖d‖2min,nonzero denotes the smallest nonzero ‖di,T+1‖2, or equivalently,

σ2ce = −
‖d‖2min,nonzero

2 ln noiseup

2η

. (25)

The boundary σ2da should result in Bi,T+1 for the largest ‖di,T+1‖2 to be close to 2η. That is, σ2da satisfies

2ηe
− ‖d‖2max

2σ2
da = 2η(1− closeness)
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or equivalently,

σ2da = − ‖d‖2max

2 ln(1− closeness) . (26)

where closeness should be chosen as a small value which indicates how much the value is expected to be close

to 2η. For example, closeness has to be within (0, 0.5) to imply the value is closer to 2η than 0. The choice is

somewhat arbitrary as long as it indicates nearness to 2η.

V. SIMULATIONS

In this section, we provide simulation results confirming some properties of Bi,j and Fi,j , and show the

performance of the proposed algorithm on four real datasets.

A. Performance Measure for SKG

When talking about the performance of SKG, we follow [16] and use generalization normalized mean squared

error (GNMSE) as the metric. GNMSE is defined as

GNMSE =
‖ytrue − ypred‖2
‖ytrue‖2

(27)

where ypred and ytrue are vectors whose elements are the predicted and the true nodal values for all tested nodes,

respectively. Besides, we will use normalized true values and predictions to calculate GNMSE.

B. Real Datasets

We use four real datasets, the Temperature-Jan dataset, the Cora-Con dataset, and the Email-EU-Core dataset.

1) The Temperature-Jan Dataset: The Temperature-Jan dataset is a part of the Temperature dataset. The Temper-

ature dataset contains the average monthly temperature information of 93 weather stations during 1961-1990 [21]

and that of 91 weather stations during 1981-2010 [22] in Switzerland. We take the intersection of the two sets of

stations and get 83 stations. We view the 83 weather stations to be nodes. Note that the Temperature dataset does

not contain any graph. It has altitude information of the stations. We used the altitude information to create two

graphs. The first graph was created in the same way as authors of [23] created their ground truth graph based on

the altitudes of stations. That is, an edge exists between a pair of nodes only when the altitude difference between

the corresponding stations is less than 300 meters. The second graph is the same except that weights of connected

nodes are not 1 but follow e−∆/300 where ∆ corresponds to the absolute value of the altitude difference between a

pair of connected nodes. The Temperature-Jan dataset contains the monthly average temperature information of all

the 83 stations in January during 1961-1990, and the created graph of the 83 stations during the same period. Note

that the first graph is unweighted whereas the second one is weighted. The temperature for the stations is viewed

as nodal values.
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2) The Cora-Con Dataset: The Cora-Con dataset is part of the Cora dataset. The Cora dataset [1] contains a

citation network of 2708 scientific papers each of which is categorized as one of seven topics in the field of machine

learning. We view the papers as nodes. Note that the citation network is an unweighted directed graph where edges

can point from a citing paper to a cited paper. Then, the (column) adjacency vector of a node is actually an indicator

vector of whether the paper cites a list of papers. We assign an integer from {1, 2, ..., 7} representing paper classes

as nodal values. The Cora dataset contains 486 papers with no citing. That is, these nodes have the adjacency

vector of 0. But they carry different nodal values. To avoid these nodes confusing the SKG model, we create the

Cora-Con dataset by excluding the 486 nodes, remaining 2222 nodes and the related network.

3) The Email-EU-Core Dataset: The Email-EU-Core dataset [24] contains email communication among 1005

members in a European research institution. Every member belongs to one of 42 departments. We view the

members as nodes and assign an integer from {1, 2, ..., 42} representing their membership as their nodal values.

The communication network is unweighted and directed.

4) The Wikipedia-Math-Daily Dataset: The Wikipedia-Math-Daily dataset is part of the Wikipedia-Math dataset

[25]. The Wikipedia-Math dataset contains a weighted link network among 1068 Wikipedia pages about Mathematics

topics. The web pages are viewed as nodes and the network is directed. Weights on the links denote relevance.

The dataset also contains daily visits for those pages between 2019 and 2021 March, 731 days in total. The daily

visits on any day can be used as ground truth. The Wikipedia-Math-Daily contains the directed weighted network

and daily visits on March 16th, 2019.

C. Exponential Approximation of Bi,j

The exponential approximation property is one of the core assumptions for other properties of Bi,j and Fi,j . We

aim to compare the exponential approximation with practical distributions of Bi,j . The Temperature-Jan dataset is

used where 40% of total nodes (33 nodes) are randomly selected as sampled nodes. Referencing nodes are the

sampled nodes. The parameter D is 200. The learning rate η is set to 0.1. The Gaussian variance σ2 is set to 10.

Following the SKG algorithm and the definition of Bi,j in (5), Bi,j values for all pairs of sampled nodes are

calculated. We select Bi,j values with ‖di,j‖2 = 15 as an example and get their distribution. There are 21 qualified

pairs of nodes and the corresponding similarity measure take values within (0.085, 0.105). The sample mean is

0.0976, and the sample variance is 5.80× 10−5. Recall that the exponential approximation in (10) states that Bi,j

can be approximated as 2ηe−
‖di,j‖

2

2σ2 = 0.094 when ‖di,j‖2 = 15. Comparing with the potential range (0, 0.2] for

Bi,j with no ‖di,j‖2 constraints, we could say the exponential approximation is valid.
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Fig. 3. Values of Bi,T+1 and Fi,T+1 for a tested node in the Temperature-Jan dataset with different σ2 values. (a) σ2
= 0.1. (b) σ2

= 2.

(c) σ2
= 10. (d) σ2

= 300.

D. Conformity Property and the Impact of σ2

The conformity property is at the core of the analysis of the impact of σ2. We show Bi,j and Fi,j behavior

with σ2 in different ranges using the Temperature-Jan dataset. Again, 40% of total nodes are randomly chosen as

sampled nodes which are also referencing nodes. The parameters are D = 200, η = 0.1, and E = 3.

We first make sure the boundaries between adjacent ranges. Checking with the Temperature-Jan dataset, we know

‖d‖2min,nonzero = 1, and ‖d‖2max = 27. With noiseup in (23) and closeness = 0.1, we get σ2ce = 0.22, σ2ed = 5.87,

and σ2da = 135. Fig. 3 shows examples of Bi,T+1 and Fi,T+1 with σ2 in different ranges. The conformity between

Bi,j and Fi,j can be observed from the figures. Additionally, Fig. 4 displays an example of αT+1−i values when

σ2 is in its Disturbing Range.

Given detailed look, it is seen from Fig. 3(a) that when σ2 is in its Chaos Range, Bi,T+1 values are around 0,

and so do Fi,T+1 values. Fig. 3(b) verifies that when σ2 is in its Extending Range, positive and negative values of
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Fig. 5. True nodal values and predicted values when σ2
= 0.1, σ2

= 2, σ2
= 10, and σ2

= 300 for tested nodes in the Temperature-Jan

dataset.

Bi,T+1 become unbalanced, and some Fi,T+1 values are greatly larger than 0. The Bi,T+1 values are greater than 0

in Fig. 3(c), and Fi,T+1 for the penultimate node are relatively large although its Bi,T+1 is close to min{Bi,T+1}Ti=1.

In Fig. 3(d), Bi,T+1 values are all close to 2η, and Fi,T+1 is roughly an exponential function with respect to i.

Fig. 5 plots predictions for the tested nodes under different σ2 as well as their true nodal values. Predictions

with σ2 = 0.1 have the greatest error whereas predictions with σ2 = 300 are almost the same. In summary, as σ2

grows, predictions tend to get closer to their ground truth, while σ2 grows furthermore than needed, predictions

are roughly the same for different tested nodes for the Temperature-Jan dataset.

E. Performance of the Proposed Algorithm

To show the performance of the proposed algorithm, we compare the theoretical σ2ed value from Algorithm 1

with the best σ2 found by simulations using the three real datasets. In each dataset, 40% of total nodes are randomly

selected as the sampled nodes which are also referencing nodes. The noiseup in (23) of Fi,j is used. Simulation
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results will be denoted in blue solid curves and their corresponding proposed σ2ed will be denoted in red dotted

line.

For unweighted graph in the Temperature-Jan dataset, the value of ‖d‖2max is found to be 27, and the theoretical

result is σ2ed = 5.86. For the weighted graph, the value of ‖d‖2max is found to be 12.49 resulting in the theoretical

result σ2ed = 2.08. When finding the relationships between GNMSE and σ2 by simulations, we set E = 3, D = 200,

and η = 0.1. The results are shown in Fig. 6a and Fig. 6b, respectively. Note that the shown values of GNMSE

are averaged over 50 repeated experiments.

For the Cora-Con dataset, the value of ‖d‖2max is found out to be 8, resulting a theoretical value σ2ed = 1.05.

For simulations, we set E = 3, D = M = 888, and η = 0.05. The results are shown in Fig. 6c noting that

the shown values of GNMSE are averaged over 30 repeated experiments. The GNMSE curve is not as smooth as

in the previous case since fewer repeated experiments are carried out due to the larger network size and higher

computational cost.

For the Email-EU-Core dataset, the value of ‖d‖2max is found out to be 107, resulting a theoretical value σ2ed =

15.29. For simulations, we set E = 3, D =M = 403, and η = 0.05. The results are shown in Fig. 6d. The shown

values of GNMSE are averaged over 50 repeated experiments.

For the Wikipedia-Math-Daily dataset, the value of ‖d‖2max is found out to be 671 followed by a theoretical value

σ2ed = 95.67. For simulations, we set E = 3, D = 500, and η = 0.03. The comparison between the simulation

result and the theoretical value is shown in Fig. 6e. The shown values of GNMSE are averaged over 50 repeated

experiments.

VI. DISCUSSIONS

A. Complexity of the Proposed Algorithm

The majority of computational source for the proposed algorithm is used for calculating ‖di,T+1‖2 for all pairs

of sampled nodes. For a training set containing N sampled nodes, it would take N(N − 1)/2 vector additions

and inner products. Finding the largest ‖di,T+1‖2 value can be done along with its calculation, and takes minor

computational resource and memory resource.

B. Performance of the Proposed Algorithm

1) Impact From Dataset Statistics: It is noticed that the proposed algorithm finds the best σ2 in terms of GNMSE

for the Temperature-Jan dataset, whereas for the other three datasets, the best σ2 is slightly larger than what is

found via the proposed algorithm. That is partly because similar adjacency vectors leading to similar nodal values

is not guaranteed in later datasets. We take the comparison between the Temperature-Jan dataset and the Cora-Con

dataset as an example.
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Fig. 6. The GNMSE values with respect to the Gaussian kernel variance σ2 for different datasets and graphs. (a) For the Temperature-Jan

dataset with the unweighted graph. (b) For the Temperature-Jan dataset with the weighted graph. (c) For the Cora-Con dataset. (d) For the

Email-EU-Core dataset. (e) For the Wiki-Math-Daily dataset.

Let us first understand the relationship between similarity in nodal values and similarity in adjacency vectors in

the two datasets. We use ‖di,j‖2 to show dissimilarity of adjacency vectors and |yi − yj | to show dissimilarity of
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Fig. 7. Scatter plot of the relationship between norm square of adjacency vector difference ‖di,j‖
2 and absolute difference between nodal

values |yi − yj | for all pairs of sampled nodes in the Temperature-Jan dataset.

nodal values for a pair of nodes. Notice the smaller the values, the more the similarity. Fig. 7 and Fig. 8 show

|yi − yj | versus ‖di,j‖2 for the two datasets, respectively.

In Fig. 7, the horizontal axis takes discrete values because the graph is unweighted, and the vertical axis

takes continuous values because the nodal values, i.e., temperature for the stations, take continuous values. More

importantly, it is seen that when ‖di,j‖2 is small, the nodal value difference is also small. For instance, when

‖di,j‖2 = 5 for a pair of nodes, |yi − yj | may take a value within [0, 0.35]. Whereas, for a pair of nodes with

‖di,j‖2 = 15, the nodal value difference is likely to be greater than 0.3 and could be up to 1. (The behavior for

‖di,j‖2 ≥ 15 corresponds to the fact that stations with higher altitudes have smaller temperature difference. Although

such stations may largely vary in altitudes and thus adjacency vectors, they have relatively low temperature.) This

property of the dataset is due to the fact that connected nodes have closer altitudes. Since connected nodes tend

to have similar adjacency vectors in the graph, considering correlation between altitudes and temperature, it is

expected that similar adjacency vectors tend to have closer nodal values (temperature).

In Fig. 8, the horizontal axis takes discrete values. The vertical axis also takes discrete values because the nodal

labels in the dataset represent categories. It is seen that |yi − yj | takes large values with nonnegligible probability

even when ‖di,j‖2 = 0. Recalling that the graph indicates citing behavior among papers, such a relationship between

nodal values and adjacency vectors implies that the category of a citing paper is weakly correlated with the categories

of the cited papers. That is, it is possible that two papers citing the same reference belong to different classes,

and that two papers with different citing patterns are categorically the same. From the SKG model perspective,

similarity in adjacency vectors may not lead to similarity in nodal values in the Cora-Con dataset.

Now we explain how such a relation between adjacency vectors and nodal values impacts the choice of best

σ2. Recall at the boundary between the Extending Range and the Disturbing Range, the efficient distance shown

in Fig. 2 divides sampled nodes based on similarity in adjacency vectors, and the prediction can be considered as
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Fig. 8. Scatter plot of the relationship between norm square of adjacency vector difference ‖di,j‖
2 and absolute difference between nodal

values |yi − yj | for all pairs of sampled nodes in the Cora-Con dataset.

a weighted average of the inner nodes. For the Temperature-Jan dataset, the inner nodes have small nodal value

difference from the tested node, and thus the prediction would be close. Whereas, for the Cora-Con dataset, the

predictions are precise for some tested nodes while they have large errors for the rest. However, these large errors

can be reduced in the Disturbing Range. Recall at this range, predictions are weighted averages over all sampled

nodes. Large errors at the boundary σ2ed will become less in the Disturbing Range, but meanwhile, small errors may

increase. Since GNMSE penalizes more on larger error, GNMSE performance could get better in the Disturbing

Range than at σ2ed for the Cora-Con dataset.

In summary, for datasets where similar adjacency vectors lead to dissimilar nodal values with nonnegligible

probability, the resulting σ2ed of the proposed algorithm is smaller than the best σ2 which is in the Disturbing

Range in terms of GNMSE.

2) Impact From Other Hyperparameters: We would like to note that our analysis applies for ideal cases where

the number of random feature D is sufficiently large and the learning rate η and the number of epochs E are

properly chosen.

If D is not large enough, the validity of the exponential approximation of Bi,j would weaken, leading to larger

GNMSE values. The impact from D applies to all σ2 such that the chosen D does not affect the best σ2 theoretically.

Our proposed algorithm provides σ2 which is near-optimal, σ2ed is affected by D without Algorithm 2. However,

the impact of D decays as D increases due to the log(·) function in the denominator of (24). In practice, D is

usually more than tens or hundreds and thus the impact of D on σ2ed is limited.

The parameters η and E should be jointly chosen such that
∑EN

i=1 Fi,EN+1 ≈ 1. Note that η cannot be very

large to avoid parameter explosion. When η becomes smaller, E should be increased accordingly. In this case,

our analysis applies and σ2ed is close to optimum. If E is not sufficient either, σ2ed would not be ideal because the

weighting property of Fi,j is invalid. In this case, the best σ2 should be much larger than σ2ed to mitigate the biased
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sum of the contribution weights.

C. Similarity Transfer of SKG

We refer the reader to Figs. 6a–6d. Note that GNMSE values vary considerably among the three datasets. Thus,

it is believed that SKG has better performance on some datasets than others. This can be understood via the

weighting property together with the characteristic of a dataset. With σ2ed, predictions are weighted averages of a

group of nodes. The weights are acquired from adjacency vectors and applied for nodal values. If similar adjacency

vectors do not lead to similar nodal values, predictions would have large errors. If similar adjacency vectors lead

to dissimilar nodal values with nonnegligible probability in a dataset, the SKG performance would be less ideal on

the dataset. This is clear when comparing SKG performance between Temperature-Jan dataset on which GNMSE

could be lower than 0.05 and the Cora-Con dataset on which GNMSE values are above 0.35. From the comparison,

we concluded that SKG with a Gaussian kernel assumes that similarity of adjacency vectors leads to similarity of

nodal values.

D. Extension of the Analysis

We used SKG with a Gaussian kernel to illustrate our analysis framework based on similarity measures and

contribution weights. The analysis framework is not constrained in the cases of Gaussian kernels. In fact, it is

applicable to all shift-invariant kernels [15]. Specifically speaking, as we mentioned before, the exponential approx-

imation is the same expression as the random feature approximation but in a reverse order. So, any shift-invariant

kernel that has a Fourier transform can easily build its similarity measure. In what follows, the proposed properties

of contribution weights apply no matter what kernel is used because they are built only on the similarity measure.

Take Laplacian kernels as an example. The mathematical expression of a Laplacian kernel is κl(ai, aj) = e−
‖ai−aj‖

b

where ai and aj are two input vectors, ‖ · ‖ denotes the l1-norm, and b is the tunable diversity. Then we can build

Bi,j
∼= 2ηe−

‖ai−aj‖

b with a sufficiently large D. As a result, we have the requirement 2ηe−
‖d‖max

b = noiseup where

‖d‖max denotes the maximum l1-norm among all pairs of sampled nodes to find a suitable diversity b.

Our analysis framework can be helpful for other algorithms which have a (shift-invariant-)kernel-based learning

model. For example, GKLMS-RFF in [20] has the same learning model, but uses filtered nodal value time series

by a known graph filter as the model input. Our analysis can explicitly point out how to configure the model in

the GKLMS-RFF algorithm. In addition, our analysis indicates a requirement on the graph filter that similarity in

the filtered nodal value time series should result in similarity of the nodal value, since the model assumes that

similarity of inputs leads to similarity of outputs.
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VII. CONCLUSIONS

The paper dealt with the problem of how to choose a suitable Gaussian kernel for SKG given a training set. Two

variables, the similarity measure Bi,j and the contribution weight Fi,j as well as their properties were introduced.

Using the properties, we were able to find the impact of Gaussian kernel variance in SKG and divide possible

σ2 range into four ranges, i.e., Chaos Range, Extending Range, Disturbing Range, and Averaging Range. Given

detailed Bi,T+1 and Fi,T+1 behavior in each range, we conclude that the boundary between Extending Range and

Disturbing Range should be a suitable σ2 for SKG. Important properties of the introduced variables have been

confirmed by simulations. Effectiveness of the proposed algorithm on the Temperature-Jan dataset, the Cora-Con

dataset, the Email-EU-Core dataset, and the Wikipedia-Math-Daily has been verified in experiments. Additionally,

by comparison of GNMSE between the Temperature-Jan dataset and the Cora-Con dataset, we drew a conclusion

that SKG assumes that similarity of adjacency vectors leads to similarity of nodal values.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers whose comments improved the quality of the paper.

APPENDIX

PROOFS OF CLAIMS

Proof of Claim 1. Since the value of a Gaussian kernel relates with the difference of its input vectors, its

expression can also be κ(x) κ(x) = e−
‖x‖2

2σ2 where x = [x1, ..., xN ]⊤, and its Fourier transform ρf(f) can be written

as in [26]

ρf(f) =

∫

Rn

κ(x)e−j2πf⊤xdx

where f = [f1, f2, ..., fN ]⊤, and f⊤x denotes the inner product of f and x, i.e., f⊤x =
∑N

i=1 fixi. Since x ∈ Rn,

‖x‖2 =∑N
i=1 x

2
i , then

ρf(f) =

∫ ∞

−∞
...

∫ ∞

−∞
e−

∑N
i=1 x2

i

2σ2 e−j2π
∑

N

i=1 fixidx1...dxN

=

N
∏

i=1

∫ ∞

−∞
e−

x2
i

2σ2 e−j2πfixidxi

which can be seen as the product of the Fourier transform for the one-dimensional Gaussian kernels in every

dimension. Notice that the product implies independence among dimensions.

It is a well-known Fourier transform pair that

e−πx2 F . T .←→ e−πf2

.
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Notice the Fourier transform of g(x), F{g(x)} = G(f) =
∫∞
−∞ g(x)e−j2πfxdx. According to the time scaling

property of Fourier transform, i.e., g(ax)
F . T .←→ 1

|a|G(
f
a ) where g(x)

F . T .←→ G(f), we have

e−
x2

2σ2
F . T .←→

√
2πσe−2π2σ2f2

=
1

( 1
2πσ )
√
2π
e
− f2

2( 1
2πσ

)2 .

That is, f ∼ N (0, ( 1
2πσ )

2). For ξ = 2πf , it is ξ ∼ N (0, σ−2). Because when X is a random variable and

Y = aX+ b where a and b are both constants, the probability density function (PDF) of Y is pY (y) =
1
|a|pX(y−b

a )

where pX(x) denotes the PDF of X .

Similarly, all elements in ξ have Gaussian distribution N (0, σ−2), that is, ξ ∼ N (0, σ−2IN ). �

Proof of Claim 2. The characteristic function [27] of the random variable X is

E[ejυX ] ≡ ψ(jυ) =
∫ ∞

−∞
ejυxp(x)dx = F{p(x)}

where υ is real, j =
√
−1, F denotes Fourier transform, and p(x) = 1

σX

√
2π
e
− x2

2σ2
X . According to Claim 1, it is

clear that

p(x) =
1

σX
√
2π
e
− x2

2σ2
X

F .T .←→ ψ(jυ) = e−
σ2
X

υ2

2 .

Thus,

E[ejX ] = ψ(jυ)|υ=1 = e−
σ2
X
2 .

On the other hand, according to Euler’s Equation, ejX = cos(X) + j sin(X), and

E[ejX ] = E[cos(X) + j sin(X)] = E[cos(X)] + jE[sin(X)].

Since Gaussian PDFs with zero mean is an even function while sin(·) is odd, E[sin(X)] = 0,

E[cos(X)] = E[ejX ] = e−
σ2
X
2 .

Similarly,

E[cos(2X)] = E[ej2X ] = ψ(jυ)|υ=2 = e−2σ2
X .

Then,

V[ejX ] =E
[

cos2(X)
]

− (E [cos(X)])2

=
1

2
E [cos(2X)] +

1

2
− (E [cos(X)])2
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=
1

2

(

e−σ2
X − 1

)2

�

Proof of Claim 3. First we prove for the trainable parameter θ at time t that

θt = 2η

t
∑

i=1

eiz(ai)

where ei is the predicting error at time i, ei = yi− f̂i. Note that the square loss is L(ypred, ytrue) = (ytrue−ypred)2

in our case, the loss at time t is

L(yt,θ⊤
t−1z(at)) = (ft − θ⊤

t−1z(at))
2.

Then the gradient of the loss function with respect to θt−1, i.e., gt, is

gt = ∇θt−1
L(yt,θ⊤

t−1z(at))

= −2(ft − θ⊤
t−1z(at))z(at) = −2etz(at)

which uses

∇x(x
⊤a) = ∇x(a

⊤x) = [
∂(a⊤x)

∂x1
,
∂(a⊤x)

∂x2
, ...,

∂(a⊤x)

∂xN
]⊤

= [a1, a2, ..., aN ]⊤ = a

where a = [a1, a2, ..., aN ]⊤ and x = [x1, x2, ..., xN ]⊤. Denote η as the learning rate, then

θt = θt−1 − ηgt = θt−1 + 2ηetz(at).

Tracing back to θ0, θt can be rewritten in terms of θ0 as

θt = θt−1 + 2ηetz(at)

= θt−2 + 2ηet−1z(at−1) + 2ηetz(at)

= θ0 + 2η

t
∑

i=1

[eiz(ai)].

Together with the initialization θ0 = 0, we get

θt = 2η

t
∑

i=1

[eiz(ai)].
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Then the prediction at time t, f̂t, can be expressed as

f̂t = θ⊤
t−1z(at) = 2η

t−1
∑

i=1

[eiz
⊤(ai)z(at)] =

t−1
∑

i=1

eiBi,t

which uses the definition of Bi,j in (5). Now we are prepared to prove the claimed equality. First, check the claimed

equality for t = 2, 3, 4. It should be

f̂2 =y1B1,2 = y1F1,2

f̂3 =y2B2,3 + y1(B1,3 −B1,2B2,3) = y2F2,3 + y1F1,3

f̂4 =y3B3,4 + y2(B2,4 −B2,3B2,4) + y1[B1,4 −B1,3B3,4 −B1,2(B2,4 −B2,3B3,4)]

=y3F3,4 + y2F2,4 + y1F1,4

from which the equality holds. Suppose there exists t ≥ 4 such that

f̂k =

k−1
∑

i=1

yiFi,k

where

Fi,k =















Bi,k, if i = k − 1,

Bi,k −
∑k−1

j=i+1Bi,jFj,k, if 1 ≤ i < k − 1.

holds for all integers k ∈ {2, 3, ..., t}. Then,

f̂t+1 =

t
∑

i=1

eiBi,t+1 =

t
∑

i=1

(yi − f̂i)Bi,t+1.

For f̂1 = 0, we have

f̂t+1 =

t
∑

i=1

yiBi,t+1 −
t
∑

i=2

f̂iBi,t+1

=

t
∑

i=1

yiBi,t+1 −
t
∑

i=2

i−1
∑

j=1

yjFj,iBi,t+1 =

t
∑

i=1

yiBi,t+1 −
t−1
∑

j=1

t
∑

i=j+1

yjFj,iBi,t+1

= ytBt,t+1 +

t−1
∑

i=1

yi(Bi,t+1 −
t
∑

j=i+1

Fi,jBj,t+1)

= ytBt,t+1 +

t−1
∑

i=1

yiF̃i,t+1

which shows the coefficient of yt here is Bt,t+1. Since the coefficient of yt in calculating f̂t+1 is Ft,t+1 according
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Fig. 9. Index variables used for the double-summation term in the Proof of Claim 3 .

to definition of Fi,j in (12), the last equality justifies Ft,t+1 = Bt,t+1. Besides, the coefficient for yt−1 is

F̃t−1,t+1 = Bt−1,t+1 − Ft−1,tBt,t+1 = Bt−1,t+1 −Bt−1,tFt,t+1 = Ft−1,t+1.

Coefficients for yi, i = 1, ..., t− 2 are

F̃i,t+1 =Bi,t+1 −
t
∑

j=i+1

Fi,jBj,t+1

=Bi,t+1 − [Bi,i+1Bi+1,t+1 +

t
∑

j=i+2

(Bi,j −
j−1
∑

l=i+1

Bi,lFl,j)Bj,t+1]

=Bi,t+1 − (Bi,i+1Bi+1,t+1 +

t
∑

j=i+2

Bi,jBj,t+1 −
t
∑

j=i+2

j−1
∑

l=i+1

Bi,lFl,jBj,t+1).

With the order change of indices for the double summation term in the last equation, (see Fig. 9 for reference) we

will get

F̃i,t+1 =Bi,t+1 − (

t−1
∑

j=i+1

Bi,jBj,t+1 +Bi,tBt,t+1 −
t−1
∑

l=i+1

t
∑

j=l+1

Bi,lFl,jBj,t+1)

=Bi,t+1 − [Bi,tBt,t+1 +

t−1
∑

j=i+1

Bi,j(Bj,t+1 −
t
∑

l=j+1

Fj,lBl,t+1)]

=Bi,t+1 − (Bi,tFt,t+1 +

t−1
∑

j=i+1

Bi,jFj,t+1) = Fi,t+1
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where

Fi,t+1 =















Bi,t+1, for i = t,

Bi,t+1 −
∑t

j=i+1Bi,jFj,t+1, for 1 ≤ i < t.

Note that we are considering the training phase, t is upper-bounded by T where T denotes the training duration. �

Proof of Claim 4. Using Fi,j’s definition, its expectation is

E[Fi,j ] = E[Bi,j −
j−i−1
∑

k=1

Bi,j−kFj−k,j ]

= E[Bi,j ]−
j−i−1
∑

k=1

E[Bi,j−kFj−k,j ]

when 1 ≤ i < j ≤ T + 1 where T is the training duration. Note that Bi,j−k and Fj−k,j are uncorrelated when

1 ≤ k ≤ j − i− 1 and the distribution of Bi,j , 1 ≤ i < j ≤ T + 1 is independent of its indices i and j when an is

considered following the same distribution for 1 ≤ n ≤ T + 1. Denote E[Bi,j ] = b, we get

E[Fi,j ] = b

(

1−
j−i−1
∑

k=1

E[Fj−k,j ]

)

.

It can be verified that

E[Fj−1,j ] = E[Bj−1,j ] = b (28)

which justifies the claimed equality for i = j − 1, 1 < j ≤ T + 1. Suppose there exists 1 ≤ t ≤ T − 1 such that

the claimed equality holds for i = j− l, l < j ≤ T +1 when 1 ≤ l ≤ t, then for i = j− (t+1), t+1 < j ≤ T +1

we have

E[Fj−t−1,j ] = b

(

1−
t
∑

k=1

E[Fj−k,j ]

)

= b

(

1− b[1− (1− b)t]
1− (1− b)

)

= b(1− b)t

Then, substituting t = T , we get the expectation of the sum of Fi,T+1 with all qualified i, i.e., 1 ≤ i ≤ T , as

E

[

T
∑

i=1

Fi,T+1

]

=

T
∑

i=1

E[Fi,T+1] =

T
∑

i=1

b(1− b)T−i

=1− (1− b)T .

�
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