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Data Transmission When the Sampling
Frequency Exceeds the Nyquist Rate

Ender Ayanoglu,Senior Member, IEEE

Abstract—In this letter we show that if a channel with a total
spectral support of W Hz is sampled at a ratefs > 2W Hz
(exceeding the Nyquist condition), it is possible to find integers
M;N such that only a certain subset, consisting ofM members
of the N integers, carries independent data which obeyM=N �

2W=fs. Not all integersM;N satisfying this inequality will work,
and even for a working set ofM and N , not every subsetM of
N integers will work. We derive the relation betweenM;N; fs,
the spectral support of the channel, and the subsetM of the
N integers.

Index Terms—Non-uniform sampling, PCM modems, 56K
modems.

I. INTRODUCTION

I N THIS LETTER we are interested in data transmission
over a channel band limited to Hz, sampled at a period of
seconds, but where the usual Nyquist condition is violated,

i.e., the sampling frequency . It is known
that it is possible to transmit information within a bandwidth
of Hz while employing , as long as the actual
information rate is limited to symbols per second [1],
[2]. This can be accomplished in principle by permitting only

symbols/s to be independently chosen, with the extra
symbols/s carrying limited or no new information, or

more precisely, information which is in part determined by the
independent symbols/s [2]–[4]. A simple way to construct
such signals is to permit only some subsetout of every
consecutive symbols to be independently chosen, while the
remaining become determined by the independent
samples and the bandwidth restriction.

Our basic premise in this letter is that if a channel has a
total of Hz spectral support, and if it is sampled at a rate

Hz, then it is possible to find integers such
that only a certain subset, consisting of members of the
integers, carries independent data which obey

(1)

The remainder integers carry data dependent on the
independent data as well as the channel spectrum. These
integers are ignored for data transmission purposes. A key
point is that not every pair, satisfying (1), will work.
Furthermore, even if valid and are found, the choice
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of which particular out of to choose as data-bearing
samples is not arbitrary, and again, not every choice will
work. The next section will elaborate the limits of equalizer
theory for this problem and explain how to determine both
permissible and , as well as which particular out of

time instances are appropriate for an arbitrary, nonideal,
generalized bandlimited channel and.

II. EQUALIZER THEORY

For the configuration in Fig. 1 where we have defined
, let

(2)

The th equalizer, is interpreted as the receive filter
(equalizer) for the th data-bearing member of each group
of samples, and for now, we require that the data-
bearing samples be transmitted consecutively
at . For time instances

, nothing is transmitted. With
this notation in place, the zero-forcing requirements for the
system of Fig. 1 can be written compactly as

(3)

for all . From (3),

(4)
The Fourier transform of (4) is just

(5)

where , , .
Noting that for all and , (5) can be written

as

(6)
for .

Equation (6) relates frequency translates of the composite
folded spectra of the pulse system , which are folded
modulo Hz. For any particular frequency

, translates of are formed at ,
, the th of these being
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Fig. 1. Data transmission system over a channelh(t) with equalizersrk(t).

which we define as . (Note the periodic nature of the
folded spectrum.) Together, these must satisfy the
discrete Fourier transform relation (6), which represents (3)
in the frequency domain.

Let us define . For nota-
tional simplicity, we will also define
and as the unit vector in theth direction. Then (6) can
be written as

(7)

The sample-rate-folded composite spectrum

(8)
may be constrained by the support of to have zeros,
resulting in elements of which are zero. Let us define
as the vector obtained from by deleting the zeros, and
as the matrix obtained by deleting the corresponding columns
of . Then (7) becomes

(9)

The matrix is Fourier [5] and therefore,
. If , then (9) becomes an

inconsistent set of linear equations. For (9) to haveat least
one solution, we must have for all . In other
words, the configuration in Fig. 1 can support consecutive
data-bearing sample times, as described above, as long as for
any , at least Nyquist translates lie
in the support of one period of the sample-rate-folded channel
spectrum .

This requirement can be applied to the idealized passband
channel with a one-sided bandwidth of 3 kHz (500–3500 Hz).
Using a sampling rate of 8 kHz and , , for
any choice of , six 1-kHz translates are always available in
the support of one period of the sample-rate folded spectrum
(Fig. 2). For this channel, we assert that , will
not work. This can be demonstrated by examining the 2-kHz
translations of, for example, Hz.

Fig. 2. Description of the spectral condition on the unit circle. For
each f , there should beM nonzero Nyquist translates of the function
�H(f) = 1

l=�1
H(f � l=Ts) spaced2�=N radians apart. Equivalently,

�H(f) should haveM translates at1=T Hz available.

In the development above, we assumed consecutive sam-
pling times . When sampling is not consecutive,
the analysis holds for (3)–(6) with the condition
replaced by the condition that takes on values from the

set . Let us denote this set of ’s
for for . Then, the

matrix on the left-hand side of (6),
is replaced by , and the matrix on
the right-hand side of (6), is replaced
with . Thus in this case, the nonsin-
gularity of submatrices of
becomes a condition for realizability,in addition to the spec-
tral condition mentioned above. For example, for

in the kHz pass-
band problem above, the submatrix corresponding to columns
1–3 and 5–7 of becomes singular at, for example,
Hz. It is known that when is prime, all such submatrices
are nonsingular [6]. Thus, when is prime, any set of
sampling times will do, as long as, for all, at least nonzero
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-spaced translates are available in the sample-rate folded
spectrum.

There is an interesting duality between the consecutivity
of the sample times and the contiguity1 of the sample-rate
folded channel support: 1) any sampling times can be used
provided that the sample-rate folded support is contiguous and
at least translates are available, since in this case is
row-wise Fourier, and hence full rank and 2) any sample-rate
folded support set having translates available can be used
provided that the sampling times are consecutive, since in
this case is column-wise Fourier.

When , the solution to (9) is unique. In
addition, when there is only one nonzero term in each ,
then the equalizer set is also unique. When ,
then the system (9) is underdetermined, and an infinite set
of solutions exists, though among these, there is a unique
minimum-norm solution given by the pseudoinverse [7]. For
the special case , the minimum norm solution to
(7) is given by the right inverse

(10)

1Contiguity here means that the support set is fully connected when depicted
on the unit circle.

but since
.

Finally, we remark that the results in this letter are applica-
ble to the dual of the case in Fig. 1, where the equalizers are
placed at the transmitter side, preceding the channel.

Applications of this result to voiceband data transmission
over a twisted pair will be described elsewhere.
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