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Abstract— This letter investigates bit-interleaved coded mul-
tiple beamforming (BICMB) with perfect coding in millimeter-
wave (mm-wave) multiple-input multiple-output (MIMO) sys-
tems to achieve the maximum diversity gain. Using perfect
coding with BICMB enables us to do this. We show that by
using BICMB and perfect coding, the diversity gain becomes
independent of the number of transmitted data streams and the
number of antennas in each remote antenna unit (RAU) at the
transmitter and the receiver. The assumption is that the perfect
channel state information (CSI) is known at both the transmitter
and the receiver. With the assumption of the perfect CSI at the
transmitter and the receiver, simulation results show that the
use of BICMB with perfect coding results in the diversity gain
values predicted by the analysis.

I. INTRODUCTION

Diversity gain analysis of a millimeter-wave (mm-wave)
multiple-input multiple-output (MIMO) system with dis-
tributed antenna-subarray (DAS) architecture was first studied
in [1]. The diversity gain calculated in [1] depends on the
number of transmitted data streams in the system. This means
by increasing the number of transmitted data streams, the
diversity gain decreases. Furthermore, the diversity gain in [1]
can be increased simply by increasing the number of antenna
subarrays. Diversity gain analysis for the mm-wave MIMO
systems is studied in [2].

Bit-interleaved coded modulation (BICM) was first intro-
duced to increase the code diversity [3], [4]. Later on, bit-
interleaved coded multiple beamforming (BICMB) was used
to achieve full diversity gain and full multiplexing gain in
MIMO systems [5], [6]. In this method, different codewords
are interleaved among different subchannels with different
diversity orders. To overcome this diversity degradation, in
[7], we proved that by using BICMB in a mm-wave massive
MIMO system with DAS architecture both full diversity gain
and full multiplexing gain can be achieved.

Perfect space-time block codes (PSTBC) were studied in
[8], [9] to achieve full rate and full diversity in any dimension.
However, dimensions 2, 3, 4 and 6 are the only dimensions
that can achieve an increase in the coding gain. In [10],
perfect coding with multiple beamforming is used to achieve
full diversity and full multiplexing in a MIMO system with
less decoding complexity than a system employing PSTBC
and full precoded multiple beamforming (FPMB). In [11],
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channel coding is added to the perfect coding and diversity
gain analysis is carried out to prove that BICMB with perfect
coding (BICMB-PC) achieves the full diversity order.

Space-time block codes (STBC) are studied in massive
MIMO literature. In [12], space-time block codes are used
to achieve full diversity gain in a flat fading non-coherent
wireless communication system. Also, in [13] massive space-
time block code (MaSTBC) is studied. Authors in [13]
proposed a novel space-time modulation scheme with PSK
modulated MaSTBC for multi-user massive MIMO uplink
systems.

In this work, we use BICMB-PC to achieve full diversity
gain in mm-wave MIMO systems. The diversity analysis for
this system is carried out. We show that by using perfect
coding in addition to convolutional coding, the diversity
gain becomes independent of the number of transmitted data
streams.

II. SYSTEM MODEL

One can approximate the average probability of bit error
rate (BER) PE at high SNR regimes for both coded and
uncoded systems as [14], [15]

PE ≈ (Gc γ̄)
−Gd , (1)

where Gc and Gd are defined as coding gain and diversity
gain, respectively. Note that diversity gain is not a property
of high SNR regimes. Average SNR is shown by γ̄. In a
log-log scale, diversity gain Gd determines the slope of the
BER versus the average SNR curve in high SNR regime.
Furthermore, changing Gc leads to shift of the curve in SNR
relative to a benchmark BER curve of (γ̄−Gd ). In this work,
our focus is on calculating the diversity gain and we leave
the coding gain for future work.

We consider a single-user mm-wave MIMO scenario shown
in Fig. 1, where the transmitter is equipped with Mt RAUs, Nt

antennas at each RAU, and NRF
t RF chains. The receiver has

Mr RAUs, Nr antennas at each RAU, and NRF
r RF chains. The

transmitter sends Ns = D data streams to the receiver. These
data streams are generated as follows. First the bit codeword
c is generated through a convolutional encoder with code
rate Rc . Then a random bit-interleaver is used to generate an
interleaved sequence. The output of the interleaver is modu-
lated by M-quadrature amplitude modulation (M-QAM). We
define a one-to-one mapping from Xk =

[
x1,k, . . . ,xD,k

]
to

Zk as Zk = M {Xk} where M denotes the PSTBC codeword



Fig. 1. Block diagram of a mm-wave MIMO system with distributed antenna
sub-arrays.

generating function [11]. A PSTBC codeword, i.e., Zk is
generated by using D2 consecutive complex-valued scalar
symbols [11]

Zk = M {Xk} =

D∑
v=1

diag(Gxv,k)Ev−1, (2)

where G is an D×D unitary matrix [8], xv,k is a D×1 vector
whose elements are the vth D input modulated scalar symbols
and D ∈ {2,3,4,6}. Matrix E is defined as

E =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
g 0 0 · · · 0 0


, (3)

where

g =


i, D = 2,4,
e

2π
3 , D = 3,
−e

2π
3 , D = 6.

(4)

As it can be seen from Fig. 1, the complex-valued matrix
FBB ∈ C

NRF
t ×Ns is used for preprocessing at the baseband. A

set of MtNt phase shifters is applied to the output of each RF
chain. As a result of this process, different beams are formed
in order to transmit the RF signals. We can model this process
with a complex-valued matrix FRF ∈ C

MtNt×N
RF
t . Note that

in this work Mt = Mr = Ns = D.
By assuming a narrowband flat fading channel model, we

write the MrNr × MtNt channel matrix H as

H =


√
β11H11 . . .

√
β1Mt H1Mt

...
. . .

...√
βMr 1HMr 1 . . .

√
βMrMt HMrMt

 , (5)

where each Hi j is the MIMO channel between the ith RAU
at the receiver and the jth RAU at the transmitter. Also, βi j
is a real-valued nonnegative number and represents the large-
scale fading effect between the ith RAU at the receiver and
jth RAU at the transmitter. Note that in this work, we use
Saleh-Valenzuela model for each subchannel Hi j [7], [16].
For the sake of simplicity, each scattering cluster is assumed
to contribute a single propagation path. The subchannel matrix
Hi j is given by

Hi j =

√
NtNr

Li j

Li j∑
l=1

αl
i jar (θ

l
i j)a

H
t (φ

l
i j), (6)

where Li j is the number of propagation paths and αl
i j is the

complex-gain of the lth ray which follows CN(0,1), θli j ∈
[0,2π], φli j ∈ [0,2π], for all i, j, l, and the vectors ar (θli j)
and at (φli j) are the normalized array response at the receiver
and transmitter, respectively. In particular, this paper adopts
a uniform linear array (ULA) where both ar (θli j) and at (φli j)
are modeled as

aULA(ϕ) =
1
√

N

[
1, e j 2π

λ d sin(ϕ), . . . , e j(N−1) 2π
λ d sin(ϕ)

]T
, (7)

where λ is the transmission wavelength, and d is the antenna
spacing.

The processed signal at the kth PSTBC codeword is

Yk =WH
BBWH

RFHFRFFBBZk +WH
BBWH

RFnk, (8)

where Yk is an D×D complex-valued matrix, nk is an MrNr×

1 vector consisting of i.i.d. CN(0,N0) noise samples, N0 =
Nt

SNR where SNR is defined as the signal-to-noise ratio (SNR),
WRF is the MrNr × NRF

r RF combining matrix, and WBB is
the N (RF)

r × Ns baseband combining matrix.
A solution based on singular value decomposition (SVD)

of the channel matrix H = UΛVH can be derived for the
beamforming matrices [7]. By utilizing the optimal precoder
and combiner, one can write (8) as

Yk = ΛZk + ñk, (9)

where ñk = UH
(1:D)nk, and U(1:D) is the first D columns of the

unitary matrix U.
We model the PSTBC codeword sequence as k ′ →
(k, (m,n), j), where k ′ represents the original ordering of
the coded bits ck′ , (k, (m,n), j) are the index of the PSTBC
codewords, the symbol position in Xk , and the bit position
on the label of the scalar symbol x(m,n),k , respectively. We
define χ

j
b

as the subset of all signals x ∈ χ. Note that the
label has the value b ∈ {0,1} in position j.

The maximum likelihood (ML) bit metrics for (8) can be
written as

γ(m,n), j(Yk, ck′) = min
X∈η(m,n), jck′

| |Yk − ΛM{X}| |2, (10)

where η(m,n), jck′ is defined as

η
(m,n), j
ck′ = {X : x(u,v)=(m,n) ∈ χ

j
b
, and x(u,v),(m,n) ∈ χ}.

(11)

The ML decoder at the receiver makes decisions according
to the rule

ĉ = argmin
c

∑
k′

γ(m,n), j(Yk, ck′). (12)

III. DIVERSITY GAIN ANALYSIS

In this section, the diversity gain is examined for mm-
wave MIMO systems employing DAS architecture employing
BICMB-PC. We show that the diversity gain becomes inde-
pendent of the number of transmitted streams, whereas in [1]



the diversity gain is dependent on the number of transmitted
data streams. This will be done by computing an upper bound
for the pairwise error probability (PEP).
Theorem 1. Suppose that Nr and Nt are sufficiently large
[7]. Then by utilizing BICMB-PC, mm-wave MIMO systems
with DAS architecture can achieve a diversity gain of

Gd =

(∑
i, j βi j

)2∑
i, j β

2
i jL
−1
i j

(13)

for i = 1, . . . ,Mr and j = 1, . . . ,Mt .
Proof. Assume that codeword c is transmitted and code-

word ĉ is detected. Then one can write the PEP of c and ĉ
as

P(c→ ĉ|H) = P

(∑
k′

| |Yk − ΛZ̃}| |2 ≥
∑
k′

| |Yk − ΛẐ}| |2 | H

)
,

(14)

where Z̃ = M{X̃}, Ẑ = M{X̂}, X̃ = argminX∈η(m,n), jck′
| |Yk −

ΛM{X}| |2, and X̂ = argminX∈η(m,n), jc̄k′

| |Yk −ΛM{X}| |2. Since

the bit metrics corresponding to the same coded bits between
the pairwise errors are the same and | |Yk − ΛZk | |

2 ≥ ||Yk −

ΛẐk | |, (14) is upper-bounded by

P(c→ ĉ|H) ≤ P

(
ξ ≥

∑
k′,dH

| |Υ| |2
)

(15)

where
∑

k′,dH
is the summation of the dH values correspond-

ing to the different coded bits between the bit codewords,
Υ = Λ(Z − Ẑk), and ξ = −

∑
k′,dH

tr
(
ΥHnk + nH

k
Υ
)
. Since

ξ ∼ CN
(
0,2N0

∑
k′,dH

| |Υ| |2
)
, (15) is replaced by the Q

function as

P(c→ ĉ|H) ≤ Q ©­«
√∑

k′,dH
| |Υ| |2

2N0

ª®¬ . (16)

By using an upper bound of the Q function Q(x) ≤ 1
2 e−

x2
2 ,

the average PEP in is upper bounded as

P(c→ ĉ) = E[P(c→ ĉ|H)] ≤
1
2

E

[
exp

(
−

∑
k′,dH

| |Υ| |2

4N0

)]
.

(17)

By using [10], we can rewrite (17) as

P(c→ ĉ) =
1
2

E

[
exp

(
−

∑D
u=1 λ

2
uζu

4N0

)]
, (18)

where ζu =
∑

k′,dH
ρu,k and ρu,k =

∑D
v=1 |gTu (xv,k − x̂v,k)|2.

By defining Lt =
∑

i, j Li j as the rank of the channel matrix
H, i.e., the number of singular values of the channel matrix
H, we can write(

ζmin
∑Lt

u=1 λ
2
u

)
Lt

≤

(
ζmin

∑D
u=1 λ

2
u

)
D

≤

(∑D
u=1 λ

2
uζu

)
D

. (19)

One can define

Θ ,
Lt∑
u=1

λ2
u = | |H| |2F =

Mr∑
i=1

Mt∑
j=1

βi j | |Hi j | |
2
F . (20)

When Nt and Nr are sufficiently large, the singular values
of Hi j converge to

√
Nr Nt

Li j

���αi j
l

��� in descending order [7].
Therefore, one can rewrite (20) as

Θ =

Mr∑
i=1

Mt∑
j=1

βi j | |Hi j | |
2
F = NrNt

Mr∑
i=1

Mt∑
j=1

βi j

Li j

Li j∑
l=1

���αl
i j

���2︸          ︷︷          ︸
Ψi j

. (21)

Note that the random variable
∑Li j

l=1

���αl
i j

��� has a χ-squared
distribution with 2Li j degrees of freedom, or equivalently a
Gamma distribution with shape Li j and scale 2, i.e., G(Li j,2).
Then, since βi jL−1

i j > 0, Ψi j ∼ G(Li j,2βi jL−1
i j ) [17]. The

Welch-Satterthwaite equation is used here to approximate the
shape and scale of the Gamma distribution. One can see that
Θ is a linear combination of the independent random variables
Ψi j [18, p.4.1-1]. The shape and scale of Θ can be calculated
as

κ =

(∑
i, j θi j ki j

)2∑
i, j θ

2
i j ki j

=

(∑
i, j βi j

)2∑
i, j β

2
i jL
−1
i j

, (22)

θ =

∑
i, j θ

2
i j ki j∑

i, j θi j ki j
=

∑
i, j β

2
i jL
−1
i j∑

i, j βi j
. (23)

By using (19) and the definition of the moment generating
function (MGF) [19], we can upper-bound the PEP in (17)
by

P(c→ ĉ) ≤
1
2

E
[
exp

(
−ζminD
4N0Lt

Θ

)]
. (24)

By using MGF of Θ, (24) can be written as

P(c→ ĉ) ≤
1
2

(
1 + θ

ζminDNt

4Lt
SNR

)−κ
(25)

≈
1
2

(
θ
ζminDNt

4Lt
SNR

)−κ
(26)

for high SNR.
Hence, BICMB-PC achieves full diversity order of

Gd = κ =

(∑
i, j βi j

)2∑
i, j β

2
i jL
−1
i j

(27)

which is independent of the number of transmitted data
streams.
Remark 1. By assuming that Li j = L and βi j = β for any
i ∈ {1, . . . ,Mr } and j ∈ {1, . . . ,Mt }, it can be seen easily
that the mm-wave MIMO system with DAS architecture can
achieve a diversity gain

Gd = Mr MtL = D2L. (28)



One can compare this result with the diversity gain calculated
for the single-user scenario in [1]. As it can be seen, similar
to [7], the full diversity gain is achieved in this paper.

IV. DECODING

By replacing (2) in (9), we can rewrite (9) and show that
each element of ΛZk is related to only one of the xv,k [10],
[11]. For the case D = 3, we can write

Yk =


λ1g1

Tx1,k λ1g1
Tx2,k λ1g1

Tx3,k
gλ2g2

Tx3,k λ2g2
Tx1,k λ2g2

Tx2,k
gλ3g3

Tx3,k gλ3g3
Tx1,k λ3g3

Tx1,k

 + ñk . (29)

The processed signal in (29) can be divided into D parts.
Then one can write

yv,k = ΩvΛGxv,k + ñk ,v (30)

where v = 1, . . . ,D and Ωv = diag(ωv,1, . . . ,ωv,D). The
elements of the matrix Ωv are defined as

ωv,u =

{
1, 1 ≤ u ≤ D − v + 1
g, D − v + 2 ≤ u ≤ D. (31)

One can simplify (30) by using the QR decomposition of
ΛG = QR as done in [11] to simplify the ML bit metrics
defined in (10) as follows:

γ(m,n), j(Yk, ck′) = min
x∈ρn , jck′

| |ỹm,k − Rx| |2, (32)

where ỹm,k = QHΩH
mym,k , and ρ

n, j
ck′ is a subset of χD . This

subset is defined as

ρ
n, j
b
= {x = [x1, . . . , xD]T : xd=n ∈ χib,and xd,n ∈ χ}. (33)

As mentioned in [11], the complexity order of the simplified
ML bit metrics (32) is proportional to MD , i.e., O(MD). By
using sphere decoding (SD), the average complexity reduces,
but the worst-case scenario is still in the order of MD ,
i.e., O(MD) [20]. Furthermore, for dimensions 2 and 4, the
complexity can be reduced by separating the real part and
imaginary part of ỹm,k . Note that in these cases, the matrix
R is real. By doing this separation, the complexity order for
the worst-case scenario reduces to O(M

D
2 − 0.5) [11].

V. SIMULATION RESULTS

In the simulations, the industry standard 64-state 1/2-rate
(133,171) dfree = 10 convolutional code is used. For BICMB,
we separate the coded bits into different substreams of data
and a random interleaver is used to interleave the bits in
each substream. We assume that the number of RF chains
in the receiver and transmitter are twice the number of data
streams [7] (i.e., NRF

t = NRF
r = 2Ns). Also, each scale

fading coefficient βi j equals β = −20 dB for all simulations,
except for Fig. 5. At RAUs in both the transmitter and the
receiver, ULA array configuration with d = 0.5 is considered.
Information bits are mapped onto 16-QAM symbols in each
subchannel.

Fig. 2 illustrates the results for BICMB-PC for different
values of D and Li j in a mm-wave MIMO system. Further-
more, we can see the comparison of the BICMB-PC with
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Fig. 2. BER with respect to SNR for setups. Nt = 128 and Nr = 64.
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Fig. 3. BER with respect to SNR for different number of antennas at each
RAU at the transmitter and receiver. D = 2 and L = 2.

the BICMB results in [7]. Please note that for the sake of
comparison, Mr = Mt = D in simulations related to [7],
where Mr is the number of RAUs at the receiver side and Mt

is the number of RAUs at the transmitter side. The number
of propagation paths are defined as L = [L11 L12; L21 L22]
and L = [L11 L12 L12; L21 L22 L23; L31 L32 L33]. When
L = L, all elements in L are constant and equal to L. It
can be seen that the diversity gain remains the same for
different values for the number of propagation paths, as
long as (27) returns the same value of Gd . For example for
the dashed-dot line curves with triangle markers and circle
markers, since βi j = β, the diversity gains can be calculated
using (27). These calculated values are Gd = 2 × 2 × 2 and
Gd = (2 × 2)2/(6−1 + 2−1 + 3−1 + 1−1), respectively. It can
be seen that the BICMB curves in [7] which are shown in
Fig. 2 with blue curves with no markers, have the same slope
in high SNR, i.e., same diversity gain as the BICMB-PC for
different setups.

It can be seen from Fig. 3 that changing the number of
antennas at the RAUs does not affect the diversity gain.
This confirms (27) where the diversity gain is independent
of the number of antennas at each RAU. Furthermore, one
can see that by doubling the number of resources here, i.e.,
the number of antennas at the transmitter or the receiver, the
performance of the system gets better by a factor of 3 dB.

In Fig. 4 we compare the results of this paper with a con-
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Fig. 5. BER with respect to SNR for different values of large scale fading
coefficients. The black dashed curve is from [7] for the sake of comparison.

ventional MIMO system utilizing BICMB-PC with Rayleigh
fading channel studied in [11]. In order to make these two
comparable, we need to make the number of propagation
paths in the channel to one, i.e., L = 1. Fig. 4 illustrates
that for both cases when D = 2 and D = 3, the slope of
the BER in high SNR for conventional MIMO system is the
same as the the mm-wave model in (5).

Fig. 5 illustrates the effect of large scale fading coefficients
on the diversity gain. We consider three different cases for
BICMB-PC with Mr = Mt = 2, L = 2, and Ns = 1.
Furthermore, in Case IV, we use BICMB in [7] where the
diversity gain is Gd ≈ 4 with Mr = Mt = 1, and L = 4.
Let B =

[
βi j

]
where βi j expressed in dB, as the large scale

fading coefficient matrix. We use the following matrices for
the large scale fading coefficients for different cases:

B1 =

[
−23 −23
−23 −23

]
, B2 =

[
−30 −30
−30 −30

]
,

B3 =

[
−40 −20
−20 −40

]
, B4 = −20 dB.

By using equation (27), one can see that the diversity gain for
Case I and Case II is Gd = 2×2×2 = 8, whereas the diversity

gain for Case III is Gd =
(10−4+10−2+10−2+10−4)

2

10−8/2+10−4/2+10−4/2+10−8/2 ≈ 4. It can
be seen from Fig. 5 that Case III has the same slope as Case
IV, where both of them has a diversity gain of Gd ≈ 4. One

can see that in Case II, where the channel is inhomogeneous,
the diversity gain decreases.

VI. CONCLUSION

In this work we showed that by utilizing BICMB-PC in
a mm-wave MIMO system with DAS architecture, one can
achieve full diversity gain. This means, the diversity gain is
independent of the number of transmitted data streams and
can be increased by increasing the number of RAUs at the
transmitter or the receiver. We also show that the diversity
gain is independent of the number of antennas at the RAUs
in both the transmitter and the receiver. We leave the extension
of the work to other STBC codes for future research.
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