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Abstract—  This letter investigates bit-interleaved coded mul-
tiple beamforming (BICMB) with perfect coding in millimeter-
wave (mm-wave) multiple-input multiple-output (MIMO) sys-
tems to achieve the maximum diversity gain. Using perfect
coding with BICMB enables us to do this. We show that by
using BICMB and perfect coding, the diversity gain becomes
independent of the number of transmitted data streams and the
number of antennas in each remote antenna unit (RAU) at the
transmitter and the receiver. The assumption is that the perfect
channel state information (CSI) is known at both the transmitter
and the receiver. With the assumption of the perfect CSI at the
transmitter and the receiver, simulation results show that the
use of BICMB with perfect coding results in the diversity gain
values predicted by the analysis.

I. INTRODUCTION

Diversity gain analysis of a millimeter-wave (mm-wave)
multiple-input multiple-output (MIMO) system with dis-
tributed antenna-subarray (DAS) architecture was first studied
in [1]. The diversity gain calculated in [1] depends on the
number of transmitted data streams in the system. This means
by increasing the number of transmitted data streams, the
diversity gain decreases. Furthermore, the diversity gain in [1]
can be increased simply by increasing the number of antenna
subarrays. Diversity gain analysis for the mm-wave MIMO
systems is studied in [2].

Bit-interleaved coded modulation (BICM) was first intro-
duced to increase the code diversity [3], [4]. Later on, bit-
interleaved coded multiple beamforming (BICMB) was used
to achieve full diversity gain and full multiplexing gain in
MIMO systems [5], [6]. In this method, different codewords
are interleaved among different subchannels with different
diversity orders. To overcome this diversity degradation, in
[7], we proved that by using BICMB in a mm-wave massive
MIMO system with DAS architecture both full diversity gain
and full multiplexing gain can be achieved.

Perfect space-time block codes (PSTBC) were studied in
[8], [9] to achieve full rate and full diversity in any dimension.
However, dimensions 2, 3, 4 and 6 are the only dimensions
that can achieve an increase in the coding gain. In [10],
perfect coding with multiple beamforming is used to achieve
full diversity and full multiplexing in a MIMO system with
less decoding complexity than a system employing PSTBC
and full precoded multiple beamforming (FPMB). In [11],
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channel coding is added to the perfect coding and diversity
gain analysis is carried out to prove that BICMB with perfect
coding (BICMB-PC) achieves the full diversity order.

Space-time block codes (STBC) are studied in massive
MIMO literature. In [12], space-time block codes are used
to achieve full diversity gain in a flat fading non-coherent
wireless communication system. Also, in [13] massive space-
time block code (MaSTBC) is studied. Authors in [13]
proposed a novel space-time modulation scheme with PSK
modulated MaSTBC for multi-user massive MIMO uplink
systems.

In this work, we use BICMB-PC to achieve full diversity
gain in mm-wave MIMO systems. The diversity analysis for
this system is carried out. We show that by using perfect
coding in addition to convolutional coding, the diversity
gain becomes independent of the number of transmitted data
streams.

II. SYSTEM MODEL

One can approximate the average probability of bit error
rate (BER) Pr at high SNR regimes for both coded and
uncoded systems as [14], [15]

Pg = (G.7)9, (1)

where G, and G4 are defined as coding gain and diversity
gain, respectively. Note that diversity gain is not a property
of high SNR regimes. Average SNR is shown by y. In a
log-log scale, diversity gain G4 determines the slope of the
BER versus the average SNR curve in high SNR regime.
Furthermore, changing G, leads to shift of the curve in SNR
relative to a benchmark BER curve of (7~C4). In this work,
our focus is on calculating the diversity gain and we leave
the coding gain for future work.

We consider a single-user mm-wave MIMO scenario shown
in Fig. 1, where the transmitter is equipped with M; RAUs, N,
antennas at each RAU, and NRF RF chains. The receiver has
M, RAUs, N, antennas at each RAU, and NfF RF chains. The
transmitter sends Ny = D data streams to the receiver. These
data streams are generated as follows. First the bit codeword
¢ is generated through a convolutional encoder with code
rate R.. Then a random bit-interleaver is used to generate an
interleaved sequence. The output of the interleaver is modu-
lated by M-quadrature amplitude modulation (M-QAM). We
define a one-to-one mapping from Xz = [Xl’k,. . .,XD,k] to
Z; as Z, = M {X;.} where M denotes the PSTBC codeword
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Fig. 1. Block diagram of a mm-wave MIMO system with distributed antenna
sub-arrays.
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generating function [11]. A PSTBC codeword, i.e., Z; is
generated by using D? consecutive complex-valued scalar
symbols [11]

D
Zi =M {X¢} = ) diag(Gx, 1B, 2)
v=1
where G is an D X D unitary matrix [8], X, x is a DX 1 vector
whose elements are the vth D input modulated scalar symbols
and D € {2,3,4,6}. Matrix E is defined as

010 00
0 0 1 00
E=|i oo 3)
000 0 1
g 0 0 00
where
i, D =24,
g=1 ¢%, D=3 @)
—ezT”, D =6.

As it can be seen from Fig. 1, the complex-valued matrix
Fgg € CN*"*Ns is used for preprocessing at the baseband. A
set of M; N, phase shifters is applied to the output of each RF
chain. As a result of this process, different beams are formed
in order to transmit the RF signals. We can model this process
with a complex-valued matrix Frp € CM:NXNET Note that
in this work M; = M, = N, = D.

By assuming a narrowband flat fading channel model, we
write the M, N, X M;N; channel matrix H as

VBi11Hi vVBim, Him,
H-= : :

vVBum, 1H, 1 B, m, Huy, m,
where each H;; is the MIMO channel between the ith RAU
at the receiver and the jth RAU at the transmitter. Also, (;;
is a real-valued nonnegative number and represents the large-
scale fading effect between the ith RAU at the receiver and
jth RAU at the transmitter. Note that in this work, we use
Saleh-Valenzuela model for each subchannel H;; [7], [16].
For the sake of simplicity, each scattering cluster is assumed
to contribute a single propagation path. The subchannel matrix
H;; is given by

. O

L[j

NZN” ) ) H/
Hij = L_U ;aijar(eij)at ((f’ij)’ 6)

where L;; is the number of propagation paths and a/fj is the
complex-gain of the /th ray which follows CN(O, 1), Hfj €
[0,27], ¢fj € [0,2x], for all i,j,I, and the vectors a,(@f.j)
and at(¢§j) are the normalized array response at the receiver
and transmitter, respectively. In particular, this paper adopts
a uniform linear array (ULA) where both ar(Hfj) and a,(qﬁﬁj)
are modeled as

1 2% 4 sin(g) (N-1)2Z dsin(g) | T
aULA((p) = — 1,e] 4 Sm‘p,...,e] 4 ¢ s (7)
VN
where A is the transmission wavelength, and d is the antenna
spacing.

The processed signal at the kth PSTBC codeword is
Yy = Wi Wh-HFrpFppZ; + W, W ny, (8)

where Y is an DX D complex-valued matrix, ng is an M, N, X
1 vector consisting of i.i.d. CN(0, Ny) noise samples, Ny =
S]A\]J_tR where SNR is defined as the signal-to-noise ratio (SNR),
Wke is the M,-N, X NfF RF combining matrix, and Wgg is
the Nr(RF) X Ny baseband combining matrix.

A solution based on singular value decomposition (SVD)
of the channel matrix H = UAV¥ can be derived for the
beamforming matrices [7]. By utilizing the optimal precoder
and combiner, one can write (8) as

Yk = AZk + ﬁk, (9)

where fiy = U{II:D)
unitary matrix U.

We model the PSTBC codeword sequence as k/ —
(k,(m,n),j), where k’ represents the original ordering of
the coded bits ¢, (k,(m,n),j) are the index of the PSTBC
codewords, the symbol position in X, and the bit position
on the label of the scalar symbol X(u,n).x, respectively. We
define ,\f{, as the subset of all signals x € y. Note that the
label has the value b € {0,1} in position ;.

The maximum likelihood (ML) bit metrics for (8) can be
written as

ny, and U(y.p) is the first D columns of the

Y (Yepcp) = min ||V, - AM{X}[%, (10)
XE']C’Z;'I /
where nﬁ’;’”)’f is defined as
UE-T/’")J = {X Y X(u,v)=(m,n) € X;j', and X(u,v)#(m,n) € X}-

Y

The ML decoder at the receiver makes decisions according
to the rule

¢ = argmin Z YT (Y, epor). (12)
C o

III. DIVERSITY GAIN ANALYSIS

In this section, the diversity gain is examined for mm-
wave MIMO systems employing DAS architecture employing
BICMB-PC. We show that the diversity gain becomes inde-
pendent of the number of transmitted streams, whereas in [1]



the diversity gain is dependent on the number of transmitted
data streams. This will be done by computing an upper bound
for the pairwise error probability (PEP).

Theorem 1. Suppose that N, and N, are sufficiently large
[7]. Then by utilizing BICMB-PC, mm-wave MIMO systems
with DAS architecture can achieve a diversity gain of

2
(Zi,j ﬁij)
i ,Bisz,-_jl
,M, and j =1,...,M,.

Proof. Assume that codeword c is transmitted and code-
word ¢ is detected. Then one can write the PEP of ¢ and ¢
as

Ga = 13)

fori=1,...

Plc— &H) = P[> [[Yx ~AZ} > ) |[Yx —AZ}P | H
k’ k’

(14)

where Z = M{X}, Z = M{X}, X = argmin,_ i [1Yx —

AM{X}||?, and X = argmin enln 1Yy - /\M{X}Il2 Since

the bit metrics corresponding to ‘the same coded bits between
the pairwise errors are the same and ||Y; — AZy||*> > ||Yx —
AZ||, (14) is upper-bounded by

ikals

k'.dy

P(c — ¢[H) < P(§ 2 5)

where ;s 4, is the summation of the dy values correspond-
ing to the different coded bits between the bit codewords,

Y =AZ-Z) and £ = =Y o tr (Tan + nfT). Since
& ~ CN(0,2No Xyr .y IIX11%), (15) is replaced by the Q
function as

Zidy 1112

Plc—>¢H) <0 2N

(16)

S}

X

By using an upper bound of the Q function Q(x) < %e T,
the average PEP in is upper bounded as

1 iy 1Y
P ¢) = E[P ¢H)] < -E -—
(¢ — & = E[Plc — ¢H)] < exp( i
a7
By using [10], we can rewrite (17) as
1 b
P ©) = 2E [ex (—Z;Tog l as)

where £, = Zk’,dn Puk and py = 26):1 |g£(xv,k - f(v,k)|2~

By defining L, = }; ; L;; as the rank of the channel matrix
H, i.e., the number of singular values of the channel matrix
H, we can write

(Gn it 2) (G2 2) (22 224)
L < D < D .

19)

One can define

L, M, M,
@ézlﬂ—||H||F—ZIZ@,||HI,||F (20)
u= i J

When N, and N, are sufficiently large, the singular values

of H;; converge to % alij | in descending order [7].
] v py

Therefore, one can rewrite (20) as

M, M, M, M, Lij

0= ﬁl]”Hl]”F _NN’ZZﬂu Z

‘ . @n
i=1 j=1 i=1 j=1 tj 1=

_,_/
Yij

Note that the random variable Z i | has a y-squared
distribution with 2L;; degrees of freedom or equivalently a
Gamma distribution with shape L;; and scale 2, i.e., G(L;;,2).
Then, since S;L;' > 0, Wi ~ G(Li;,2B;;L;;") [171. The
Welch- Satterthwalte equation is used here to approx1mate the
shape and scale of the Gamma distribution. One can see that
O is a linear combination of the independent random variables
W;; [18, p.4.1-1]. The shape and scale of ® can be calculated
as

2 2
(Zij 9ijkij) (Zijﬁij)
K= 5 sz :Z ,B2L_l’ (22)
i.j 7ij i.j Pij=ij
_ Zi,j gijklj _ szﬁ?]l’l_/ . (23)
2ij ijkij 2ij Bij

By using (19) and the definition of the moment generating
function (MGF) [19], we can upper-bound the PEP in (17)

by
A 1 _é,minD
P <-E —0|]. 24
(c—>0) < 5 [exp( INoL, )} (24)
By using MGF of ©, (24) can be written as
meDNt “
P <=|1+6>—F——SNR 25
o0 sz (1+0m2hong) s
1 gminDNt -
~— |0———SNR 26
3 o s @)
for high SNR.
Hence, BICMB-PC achieves full diversity order of
2
G (Zi jﬁij) o7
d=K= S5 7
S BLy

which is independent of the number of transmitted data
streams.

Remark 1. By assuming that L;; = L and B;; = B for any
i €{l,....M,} and j € {1,...,M,}, it can be seen easily
that the mm-wave MIMO system with DAS architecture can
achieve a diversity gain

Gy =M, M,L =D*L. (28)



One can compare this result with the diversity gain calculated
for the single-user scenario in [1]. As it can be seen, similar
to [7], the full diversity gain is achieved in this paper.

1V. DECODING

By replacing (2) in (9), we can rewrite (9) and show that
each element of AZy is related to only one of the x, x [10],
[11]. For the case D = 3, we can write

tgTxie  tigiTxor  igiTxsx
Y, = g/lzngXQ,,k /IZgZTXl,k /lzngXZ,k + 0. (29)
ggs’x3 glagaxik g xix

The processed signal in (29) can be divided into D parts.
Then one can write

Yok = QVAGXv,k + flk,v (30)
where v = 1,...,D and Q, = diag(wy.1,...,wy p). The
elements of the matrix Q, are defined as

1, 1<su<D-v+1
wv’”_{g, D-v+2<uc<D. @D

One can simplify (30) by using the QR decomposition of
AG = QR as done in [11] to simplify the ML bit metrics
defined in (10) as follows:

Y (Y ) = min ||§ x - Rx]|%, (32)

Xepc,;/

where §,,x = QFQHy,, ;, and p?l’f is a subset of y?. This
subset is defined as

oy’ ={x =[xt xp]" : xa=n € xpoand xazn € x}. (33)

As mentioned in [11], the complexity order of the simplified
ML bit metrics (32) is proportional to M?, i.e., O(MP). By
using sphere decoding (SD), the average complexity reduces,
but the worst-case scenario is still in the order of MP,
i.e., O(MP) [20]. Furthermore, for dimensions 2 and 4, the
complexity can be reduced by separating the real part and
imaginary part of §,, x. Note that in these cases, the matrix
R is real. By doing this separation, the complexity order for
the worst-case scenario reduces to O(M 7 0.5) [11].

V. SIMULATION RESULTS

In the simulations, the industry standard 64-state 1/2-rate
(133,171) dgee = 10 convolutional code is used. For BICMB,
we separate the coded bits into different substreams of data
and a random interleaver is used to interleave the bits in
each substream. We assume that the number of RF chains
in the receiver and transmitter are twice the number of data
streams [7] (i.e., NRF = NRF = 2N;). Also, each scale
fading coefficient §;; equals 8 = —20 dB for all simulations,
except for Fig. 5. At RAUs in both the transmitter and the
receiver, ULA array configuration with d = 0.5 is considered.
Information bits are mapped onto 16-QAM symbols in each
subchannel.

Fig. 2 illustrates the results for BICMB-PC for different
values of D and L;; in a mm-wave MIMO system. Further-
more, we can see the comparison of the BICMB-PC with

BER
3

107 £ [—-—- BICMB with D=2, L=2
— O~ BICMB-PC with D=2, L=[6 21 3]
— /- - BICMB-PC with D=2, L=2

2
h D=3, L-[6 231 63,22 1]
—~A— BICMB-PC with D=3, L2

Fig. 2. BER with respect to SNR for setups. N; = 128 and N, = 64.

—O- N,=128,N,=64
— O N,=128,N =128
—©—N=128,N,=32

Fig. 3. BER with respect to SNR for different number of antennas at each
RAU at the transmitter and receiver. D =2 and L = 2.

the BICMB results in [7]. Please note that for the sake of
comparison, M, = M; = D in simulations related to [7],
where M, is the number of RAUs at the receiver side and M,
is the number of RAUs at the transmitter side. The number
of propagation paths are defined as L = [Ly; Lio; Ly Las]
and L = [Lyy Lo Lioslor Loy Lo3;Lar Lz Lzz]. When
L = L, all elements in L are constant and equal to L. It
can be seen that the diversity gain remains the same for
different values for the number of propagation paths, as
long as (27) returns the same value of G,. For example for
the dashed-dot line curves with triangle markers and circle
markers, since §;; = 3, the diversity gains can be calculated
using (27). These calculated values are Gy = 2 X2 X 2 and
Gg = (2x2%/6" +271 + 371 + 171, respectively. It can
be seen that the BICMB curves in [7] which are shown in
Fig. 2 with blue curves with no markers, have the same slope
in high SNR, i.e., same diversity gain as the BICMB-PC for
different setups.

It can be seen from Fig. 3 that changing the number of
antennas at the RAUs does not affect the diversity gain.
This confirms (27) where the diversity gain is independent
of the number of antennas at each RAU. Furthermore, one
can see that by doubling the number of resources here, i.e.,
the number of antennas at the transmitter or the receiver, the
performance of the system gets better by a factor of 3 dB.

In Fig. 4 we compare the results of this paper with a con-



—6— Rayleigh Fading channel with D=
—A— Rayleigh Fading channel with D=
—A— mm-wave channel

—6— mm-wave channel with D=2, L=

Fig. 4. BER with respect to SNR, comparing Rayleigh fading channel in
[11] and Saleh-Valenzuela model for mm-wave channel in (5)

10 £ [—A— Case I: BICMB-PC with 3 = -23 dB

~—— Case II: BICMB-PC with 3 = -30 dB \
~—©— Case III: BICMB-PC with 3 = [-20,-40,-40,-20] dB.
—0- Case IV: BICMB with M,=M =1, L=4 (ref. [12]) N
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Fig. 5. BER with respect to SNR for different values of large scale fading
coefficients. The black dashed curve is from [7] for the sake of comparison.

ventional MIMO system utilizing BICMB-PC with Rayleigh
fading channel studied in [11]. In order to make these two
comparable, we need to make the number of propagation
paths in the channel to one, i.e., L = 1. Fig. 4 illustrates
that for both cases when D = 2 and D = 3, the slope of
the BER in high SNR for conventional MIMO system is the
same as the the mm-wave model in (5).

Fig. 5 illustrates the effect of large scale fading coefficients
on the diversity gain. We consider three different cases for
BICMB-PC with M, = M; = 2, L = 2, and Ny = 1.
Furthermore, in Case IV, we use BICMB in [7] where the
diversity gain is Gg ~ 4 with M, = M; = 1, and L = 4.
Let B = [B;;] where B;; expressed in dB, as the large scale
fading coefficient matrix. We use the following matrices for
the large scale fading coefficients for different cases:

23 -23 30 =30
Bi = [—23 —23]’ B, = [—30 —30]’
40 20
B; = [_20 _40] . B, =20 dB.

By using equation (27), one can see that the diversity gain for

Case I and Case Il is G4 = 2x2x2 = 8, whereas the diversity

. . (1074+102+1072+1074)
gain for Case Il is G4 = 08 21002710 241052 4. It can

be seen from Fig. 5 that Case III has the same slope as Case
IV, where both of them has a diversity gain of G4 = 4. One

can see that in Case II, where the channel is inhomogeneous,
the diversity gain decreases.

VI. CONCLUSION

In this work we showed that by utilizing BICMB-PC in
a mm-wave MIMO system with DAS architecture, one can
achieve full diversity gain. This means, the diversity gain is
independent of the number of transmitted data streams and
can be increased by increasing the number of RAUs at the
transmitter or the receiver. We also show that the diversity
gain is independent of the number of antennas at the RAUs
in both the transmitter and the receiver. We leave the extension
of the work to other STBC codes for future research.
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