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Abstract

Generative Adversarial Networks (GANs) are Machine Learning (ML) algorithms that have the ability
to address competitive resource allocation problems together with detection and mitigation of anomalous
behavior. In this paper, we investigate their use in next-generation (NextG) communications within the
context of cognitive networks to address i) spectrum sharing, ii) detecting anomalies, and iii) mitigating
security attacks. GANs have the following advantages. First, they can learn and synthesize field data, which
can be costly, time consuming, and nonrepeatable. Second, they enable pre-training classifiers by using semi-
supervised data. Third, they facilitate increased resolution. Fourth, they enable the recovery of corrupted bits
in the spectrum. The paper provides the basics of GANS, a comparative discussion on different kinds of GAN,
performance measures for GANs in computer vision and image processing as well as wireless applications,
a number of datasets for wireless applications, performance measures for general classifiers, a survey of
the literature on GANs for i)-iii) above, and future research directions. As a use case of GAN for nextG
communications, we show that a GAN can be effectively applied for anomaly detection in signal classification

(e.g., user authentication) outperforming another state-of-the-art ML technique such as an autoencoder.

Index Terms

Generative adversarial networks (GANs), conditional GANSs, generative modeling, spectrum sharing,

anomaly detection, outlier detection, wireless security, unsupervised learning.

[. INTRODUCTION

The number of radios and their use are increasing exponentially. Over the last several years,
wireless data transmission has grown up by approximately 50% per year [1], [2]. This increase in
demand has largely been driven by novel applications such as streaming videos and social media on
smart devices, and has strained the ability of the limited available wireless spectrum to support it.

The coming era of the Internet-of-Things (IoT) and its anticipated goal of connecting tens of billions
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of devices via wireless will make this situation even more challenging for next-generation wireless
communication networks (NextG). Classical methods for medium access control and physical layer
operation, designed to handle a relatively small number of users in a given space-time-frequency
resource, will soon be overwhelmed and alternatives must be sought.

Wireless systems of the future are anticipated to share the available spectrum rather than operating
with exclusive assigned frequencies. It is generally expected that this sharing will be across all
possible dimensions, including space, time, and frequency, and will involve a huge quantity of
interactions among a very large number of radios. Flexible methods will be needed to efficiently use
the limited available resources, quickly adapting themselves to changing environments and Quality-
of-Service (QoS) requirements. This will be true even as wireless systems move to higher frequencies
(such as anticipated for mmWave and THz bands) where available bandwidth is more abundant. Due
to shorter propagation distances and the increased prevalence of blockages, it will require networks
to continually reconfigure themselves via handoffs, cooperative relaying, beamforming, and so on.
Given the exponentially increasing demand for wireless connectivity and the inevitable increase in
the complexity of the networks that will supply it, it is no surprise that research is turning towards
data-driven techniques of Artificial Intelligence (AI) and Machine Learning (ML) techniques for
help in addressing these issues by learning from the spectrum data and solve complex tasks.

The Defense Advanced Research Projects Agency (DARPA) recently built a testbed named Colos-
seum for testing shared-spectrum communication systems [1], [2]. The vision is to emulate more
than 65,000 unique interactions, such as text messages or video streams, among 128 radios at once.
This testbed is built with the full expectation that the type of complicated spectrum sharing scenario
described above is likely and can be efficiently managed by Al [1], [2].

There are two possible ways of sharing spectrum. One is an open access model, that is similar
to an unlicensed band, such as the Industrial, Scientific, and Medical (ISM) band. A more desirable
model from an interference viewpoint is known as the hierarchical access model, or the cognitive
radio network. When the cognitive radio concept was first proposed, learning was already considered
to be essential for its operation [3], [4]. There are three reasons why considering ML for cognitive
radio is important. First, as discussed in [1], [2], due to the expected numbers of wireless devices
and the complexity of the services they provide, the learning process suggested in [3], [4] cannot
be managed by classical model-based techniques, and will need to employ ML algorithms. Second,
for complex radios with many inputs and many outputs, a very large number of actions will be

necessary to account for all possible radio states. In the past, most cognitive radio research focused



on radios that are hard-coded to manage these states. ML provides an opportunity for a learning
engine to auto-generate these actions, rather than pre-programming them [5]. Third, ML provides
a framework in which to incorporate memory from past actions and results into current operations,
and thus more quickly adapt to changing conditions in the future [5].

As ML techniques rely on the availability of representative data, it has become imperative to
generate and curate data samples for training and testing of spectrum operations. To that end, synthetic
data can be generated to help with ML training and testing processes, when there is a lack of sufficient
number of real data samples. Building upon recent advances in deep neural networks, Generative
Adversarial Networks (GANs) have been originally introduced to generate synthetic data that cannot
be distinguished from real data [6]. One direct use case of GANSs is to generate synthetic training data
samples for data augmentation purposes to strengthen the training process of ML algorithms. Later,
the use of GANSs has been extended to support domain adaptation, defend against adversarial attacks,
enable unsupervised learning of data, detect anomalies embedded in rich data representations, and
security applications. As far as defending against adversarial attacks, GANs are capable of generating
adversarial samples. These can be used for network attacks that may be missed by the ML detector.
Or, they can be added to the training set to help the ML detector adjust its classification boundary
in order to acquire better detection capabilities.

While these use cases also apply in wireless communication systems, their effective application

hinges upon careful account of wireless communication characteristics:

1) Training data for wireless communications is typically limited. There are sensing limitations
regarding sampling rate (due to hardware effects) and time spent for sensing (balancing
the sensing-communication tradeoff). Therefore, GANs can be used to augment the training
data for wireless applications, such as spectrum sensing and wireless signal detection and
classification (e.g., jammer identification) when the Radio Frequency (RF) data typically
involves uncertainties due to noise, channel, traffic, and interference effects [7].

2) Wireless data is heavily environment dependent. For example, the training data collected in a
laboratory environment (e.g., indoor) does not necessarily match channel characteristics in test
time (e.g., outdoor). Therefore, the adaptation of test or training data to channel conditions
raises the need for domain adaptation with GANs [8].

3) Signal spoofing is a key element of wireless security that poses threats for infiltration through
signal/user authentication systems, and can be alternatively used to set up decoys/honeypots

from the defense point of view [9], [10].



4) Wireless communication systems are subject to attacks due to the open nature of wireless
spectrum and anomalies due to hardware impairments and intended/unintended interference.

GANSs can be used to protect wireless communications against attacks and detect anomalies.

The unique characteristics of wireless communication systems that need to be considered for the

GAN applications are summarized as follows.

1) The input to the GAN is (real) RF data that is highly complex and dynamic, subject to noise,
channel, traffic, and interference effects. Statistical modeling may not be effective to represent
the spectrum data. Therefore, the complex structures of deep neural networks in the GAN
formulation can be effectively used to represent the spectrum data [11]-[13].

2) The format of the RF data is not universal (like pixels in computer vision) and may vary from
time series of in-phase/quadrature components (I/Qs) or Received Signal Strength Indicators
(RSSIs) to frequency domain representations.

3) The generator and the discriminator of the GAN may need to be distributed at transmitter
and receiver, respectively, as data transmission and the corresponding reception need to be
separated through a wireless channel in online applications. In this context, the message
exchange between the generator and the discriminator may be executed over noisy wireless
channels.

4) While training the GAN, the RF data itself as well as communication channels between the
generator and the discriminator may change due to the limited coherence time of channel
conditions [9], [10].

Contributions of the paper are as follows. Sec. II introduces the basics of GANs and a number
of alternative GAN structures, together with their underlying mathematics. GAN structures were
originally developed for computer vision and image processing. This paper is on adopting them
for applications in NextG wireless communications. To that end, Sec. III first discusses performance
measures used in computer vision and image processing. It introduces performance measures that can
be used in wireless applications since the former measures cannot be used in this field. It introduces
public datasets that can be employed in wireless applications. It also discusses performance measures
for general classifiers, including wireless classifiers. It discusses the use of GANs to extend a given
dataset, called data augmentation. Furthermore, Sec. III introduces a number of GAN techniques that
have been used in spectrum sharing, anomaly detection, and security for NextG wireless. A summary
of these is available in Table 7. Sec. IV presents an anomaly detection problem for the modulation

classification task and presents our results where we solve this problem using two unsupervised deep



learning methods, a GAN-based and an autoencoder-based algorithm. We also provide interpretations
of the results, tradeoffs between the two approaches, and implementation details. Sec. V provides
a discussion of a number of potential future research directions, including their challenges. Finally,

Sec. VI provides our conclusions.
II. PRELIMINARIES ON GENERATIVE ADVERSARIAL NETWORKS

GANSs were introduced in 2014 [6], [14],
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Fig. 1: Generative Adversarial Network (GAN) with image gen-

new samples that cannot be discriminated . application [14].

from the original dataset. Facebook’s Di-

rector of Artificial Intelligence Research Yann Le Cunn is famously known to have said in June
2016 that “GANs and the variations that are now being proposed is the most interesting idea in the
last 10 years in ML, in my opinion.” Given the many subsequent applications of GANs in different
fields, some of which we discuss below, it is difficult to argue with this opinion.

GAN:Ss train a generative model by decomposing the problem into two sub-models, as depicted
in Fig. 1. The first is a generator network trained to generate new examples, while the second is
a discriminator network that tries to classify examples as either real (from the domain) or fake
(generated). The two models are jointly trained that continues until the generator network learns to
synthesize plausible samples that cannot be distinguished from real data.

GANSs and their variations have been used in a variety of applications. A few examples include
creation of synthetic human faces [15]-[17] and transforming images from one domain (e.g., real
scenery) to another domain (paintings by famous painters) [18]. Other examples of image-to-image
translation in [18] include conversion of horse pictures to pictures of zebras and vice versa, pictures
of summer scenery to pictures of the same scenery in winter, etc. Further applications include face
aging [19], creation of super-resolution images from those of low resolution [20], music generation
[21], audio synthesis [22], and video synthesis [23]. More relevant to this paper, GANs have been
applied to problems in spectrum sensing and security in wireless networks, e.g., [8], [9], [11], [24]—

[27], and these will be discussed in more detail below. A list of the many different applications of



GAN:Ss is available in [28].

To describe how GANSs are trained, let x belong to the manifold of the real input data with
distribution pgaea(x), and let z belong to the latent or noise prior space with distribution pz(z).
Further, let G be a differentiable function representing the generator with input z, and let D be a
differentiable function representing the discriminator with input x or GG(z), where the output of D

is mapped to the interval [0, 1]. Now consider the function
VD, G) = Expiyia([108 D(X)] + Egropy () [log (1 — D(G(2)))] - (1)

The first term increases when the real samples are more correctly classified, while the second term
increases as the discriminator more successfully identifies the generated samples as fake. Thus,
the discriminator D acts to maximize (1). On the other hand, G attempts to minimize (1), that is
equivalent to minimizing just the second term, which increases the likelihood that the discriminator
is fooled. This leads to a minimax optimization in which D and GG work against each other to achieve

the equivalent of a Nash equilibrium point [6], [29]:
min max V(D,G) . (2)

The two optimizations in (2) are carried out by employing neural networks and backpropagation via
gradient ascent and gradient descent, which is possible since D and G are differentiable.

Given a batch {x;,z,;} , of training data and samples from the latent space, we can convert the
optimization expressed via (1) and (2) into the optimization of two cost functions, for D and G,

respectively, as

Jp = —%(Zlog D(x;) + Zlog(l — D(G(zi))>, Ja = —% Zlog (1-D(G(z:))). 3

Details on implementing (3) with a neural network and gradient ascent and descent to train the
GAN can be found in [6, Algorithm 1]. Note that by substituting the criterion in (1)—(2) with that
in (3), an implicit assumption of ergodicity, or ensemble averages being equal to time averages, is
made. This assumption, common in signal processing and communications, will be made again in
the sequel.

Additional information that is correlated with the input data, such as class labels, can be used
to improve GAN performance, either in the form of more stable or faster training, or generated
images that have better quality. Such conditional GANs (CGANSs) are trained in such a way that
both the generator and the discriminator models are conditioned on the class label, so that when

the trained generator is used as a standalone model to generate samples in the domain, samples



of a given type can be generated [30]. For example, in the synthesis of faces one could focus on
generating a female face, or one could convert a summer scene into a winter scene, etc. Popular
face aging applications are also based on this principle. To describe this approach, let y represent
extra information on which the generator and discriminator are conditioned. One can perform the
conditioning by feeding y into both the discriminator and generator as additional input layer. As
mentioned above, the information y could be in the form of a class label, leading to a so-called
class-conditional GAN, or some other kind of input such as a single image, in the case the GAN is
performing an image-to-image translation task. Letting y represent a potentially multidimensional

label from a distribution py(y), the optimization in (1) and (2) becomes

mGin mgx Ex yrpaataxy) [log D(x,y)] + Eynpy (y),z~pz(2) log(1 — D(G(z,y),y))] 4)

for CGANSs, with (3) updated in a straightforward fashion based on (4).
A number of other GAN formulations exist beyond those mentioned above. For example, in the

Least-Squares GAN (LSGAN) [31], the objective functions become
(B0 [(DX) = 0] + Bapy[(D(G(2)) = D]}, iy (DG () — ], (5)

where a and b represent labels for real data and fake data, respectively, and ¢ be the value that G
wants D to believe for fake data. Reference [27] employs an LSGAN with a = —b =1 and ¢ = 0.
Another variation is known as Wasserstein GAN (WGAN) [32], which employs the loss function

min max Exep,., (9 [D(%)] = Egnp (o[ D(G(2))], (6)

where D is a set referred to as the set of 1-Lipshitz functions. Reference [33] removes the condition
D € D but adds an additional term for stability, repeatability, and predictable behavior during the
training process. Reference [11] employs a WGAN with the additional term proposed in [33]. An
alternative way to enforce the Lipshitz constraint is to add a penalty on the gradient norm for random

samples X ~ py, and the updated loss function can be expressed as

min max B .., (0 [D(X)] = Bavpy (0 [D(G(2))] + ABicop (0 [(IV D)l = 1] (7)

This approach is known as WGAN with gradient penalty (WGAN-GP) [33] and it provides stability
and predictable behavior during the GAN training process.

A. Anomaly Detection by Using GANs

One area of particular importance where GANs have been applied is in anomaly detection, which
is the task of discovering anomalies, or patterns in the data that do not conform to “normal behavior.”

While the use of GANSs is based on modeling normal behavior using the adversarial training process,
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Fig. 2: The structure of BiGAN [34].

an anomaly score based on this model can be calculated and employed for anomaly detection.
Several GAN-based approaches for anomaly detection have been published, all of which employ the
technique of Adversarial Feature Learning idea [34]. This idea makes use of a novel architecture
referred to as bidirectional GANs, or BiGANSs.

BiGANs add an inverse mapping from the data space to the latent distribution, from which regular
GANSs generate artificial samples. The overall model is depicted in Fig. 2. A BiGAN includes an
encoder 2 which maps data x to latent representations z, in addition to the generator G employed by
the standard GAN architecture [34]. The BiGAN discriminator D discriminates not only in data space
(x versus (G(z)), but jointly in both the data and latent space (tuples (x; E(x)) versus (G(z);z)),
where the latent component is either an encoder output £(x) or a generator input z.

The two modules £ and G do not directly “communicate” with one another: the encoder never
“sees” generator outputs (F/(G(z)) is not computed), and vice versa. However, it is shown in [34] that
the encoder and generator must learn to invert one another in order to fool the BIGAN discriminator.
In other words, E learns the inverse of the generator £ = G~'. The encoder F is a nonlinear
parametric function in the same way as G and D, and can be trained using a standard learning
algorithm such as gradient descent. A latent representation z may be thought of as a “label” for
X, but one which came for “free,” without the need for supervision. As discussed in [34], BIGANs
make no assumptions about the structure or type of data to which they are applied.

In this paper, we will focus on three GAN architectures that conceptually employ the inverse gen-
erator concept of BIGANs. These are the AnoGAN [35], Efficient GAN-Based Anomaly Detection
(EGBAD) [36], and a GAN + autoencoder approach [37]. AnoGAN is a deep convolutional GAN
that learns a manifold of normal variability, together with a scoring scheme that labels anomalies
based on the mapping from the image to the latent space. For results on medical imaging data,
see [35]. Given a query image X, the algorithm iterates through points in the latent space to find a
representation (G(z) that is close to x. The algorithm begins by choosing a random point z; in the

latent space, and generates a data sample (G(z;). The algorithm then proceeds through a number of



points zq, Zo, . . ., Zp based on the following loss function:

L(z,) = (1 — N Lr(z,) + A\p(z,) )
where
Lr(zy) = [Ix = G(z,)]1 )
is the residual loss, and
Lp(zy) = ||f(x) = f(G(zy))]l (10)

is the discriminator loss, where f is the output of one of the layers of the multilayer perceptron and
0 < A < 1 is an interpolation coefficient. The residual loss enforces similarity between the query
data x and the generated data GG(z,), while the discrimination loss constrains the generated data
to lie near the learned manifold X [38]. For each v = 2,3,...,I', z, is calculated by iteratively
minimizing (8) via backpropagation steps. The iteration is on z,, the coefficients of G' and D are
not changed. The approach of using a linear combination of two loss functions (9) and (10) that
employ the L; norm for training a deep neural network is different than the approaches discussed
earlier for training GANs and CGANs. This approach originated with [39] and was adapted in [35].

Implementing the AnoGAN optimization over ' steps results in a relatively high computational
load. The EGBAD approach [36] was developed as a more efficient alternative and is based on the
methods in [34], [40], which enable learning an encoder £ by mapping input samples to their latent
representation during adversarial training. GANomaly [37] is designed to be an improvement over
[34]-[36] in terms of both performance and speed. The algorithm trains a generator network to learn
the manifold of the input samples while at the same time training an autoencoder to encode the data
in their latent representation. This approach uses a discriminator, a decoder, and two encoders, but
the encoders have the same architecture. We describe this approach in more detail below.

As shown in Fig. 3-4, the generator network has three elements in series: an encoder G, a
decoder G p, and another encoder E. The combination of Gg and Gp forms an autoencoder that
functions as the generator GG. The encoder E has the same structure as Gg. G takes the data sample
x and generates an encoded version z in the latent space. Then G employs z to create X, which is
a reconstructed form of x. Finally, x is used to generate another point in the latent space, z. Three
loss functions are defined, which are combined to generate the overall generator loss. The first is

the adversarial loss L, g4y,

Ladv = Exopx (0| F(%) = Bxopx 00 f(G(x)) ]2 = 1 (x) = FF)]l2 (1D
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Fig. 3: Simplified single-dimensional architecture representation of GANomaly. Multiple blocks in series represent
two-dimensional convolutional encoders and single blocks are for providing two-dimensional input-output [37].

where f is the output of an intermediate layer in the multi-layer perceptron. The second loss function

is the contextual loss and is given by
Leon = Expy X = GX)[l1 = [Ix = %]|1, (12)
and the third is the encoder loss
Lene = Bxpx (0 |G (%) = E(G(X))]2 = [z — 2|2 (13)
Finally, the generator loss is given as
L = WadyLadv + WeonLeon + WencLenc (14)

where waqy, Weon, and wey,. are coefficients between 0 and 1 that sum to 1. During the test stage,

the model uses L. given in (13) for scoring the abnormality A(x) of a given image:
Ax) = [|Ge(x) = E(GX))|L- (15)

In order to make the anomaly score easier to interpret, [37] proposes to compute it for every
sample X in the test set D to obtain the set S = {s; : A(X,%x € D} of individual anomaly scores,

z G(z) x G(z) x x Gp(xjz Gp(z)x FEX)z

- 1 = |1 k=

D(x,%) RN D(x,x) LI D(x,x%)
E(x)x

J ﬂ.l:‘: L L ]j real/fake

X

A B C

Fig. 4: Comparison of GANs for anomaly detection for computer vision and image processing applications, A: AnoGAN
[35], B: EGBAD [36], C: GANomaly [37]. Two-dimensional convolutional encoders and input-output devices are depicted
as single-dimensional blocks for simplicity without any loss in functionality.



Abbreviation | Application Comment Reference
GAN General Employs (1)-(3). Structure in Fig. 1. [6], [14]
CGAN Conditional GAN. Employs (4). [30]
LSGAN Least Squares GAN. Employs (5). [31]
WGAN Wasserstein GAN. Employs (6). [32]
WGAN-GP Gradient Penalty WGAN. Employs (7). [33]
BiGAN Anomaly Detection | Bidirectional GAN. Structure in Fig. 2. [34]
AnoGAN Anomaly GAN. Employs (8)-(10). [35]
EGBAD Efficient GAN-Based Anomaly Detection. [36]
GANomaly GAN+Autoencoder. Employs (11)-(16). Structure in Fig. 3. [37]

Table 1: Different versions of GANs used in computer vision and image processing applications. Note that Fig. 4
compares the structures of AnoGAN, EGBAD, and GANomaly. Which of GAN, CGAN, LSGAN, WGAN, or WGAN-
GP is preferable depends on the application. For the tradeoffs among the versions used in anomaly detection, see the
text.
and then apply a scaling to force the scores to lie within the range [0, 1]:
, 8 —min(S5)
~ max(S) — min(S)’

Fig. 4 shows a comparison of the architectures of the three GAN-based anomaly detection

(16)

algorithms discussed above. Experiments show that EGBAD is faster than AnoGAN, and that
GANomaly achieves better performance and speed than EGBAD [37], [41]. Table 1 provides a

summary of GAN versions used for computer vision and image processing applications.
ITI. APPLICATION OF GANS TO 5G AND BEYOND

In what follows, we will first discuss, in Sec. III-A, measures of performance and specific
issues that have to do with applying GANSs first to computer vision and image processing and
then to wireless applications. We will discuss public datasets available for enabling the training
and benchmarking the performance of GANs in the wireless domain. In the same section, we will
discuss measures for general classifier performance. We will specifically use these measures in
wireless classifier applications. In Sec. III-B, we will discuss the technique of data augmentation by
using GANs, which can be employed in the following three sections. Then, in Sec. III-C-Sec. III-E,
we will discuss fast, accurate, and robust methods for analyzing large quantities of spectrum data
in order to identify opportunities for i) spectrum sharing, ii) detecting anomalies, and iii) mitigating

security attacks, respectively.
A. Performance Measures for GANs and General Classifiers

We will now discuss performance measures for GANSs, first for computer vision and image
processing, and then for wireless applications, and finally, general classifiers. There are basically two
measures of the quality of images generated by GANs for computer vision and image processing

applications. These are Inception Score (IS) [38] and Fréchet Inception Distance (FID) [42], [43]. IS



offers a way to objectively and quantitatively evaluate the quality of generated images by a GAN. It is
generally considered that this score is well-correlated with scores from human observers. Similarly,
FID is used to evaluate the quality of images generated by GANs. FID compares the mean and
standard deviation of one of the deeper layers in a Convolutional Neural Network (CNN) named
Inception-v3. These layers are closer to output nodes and are believed to mimic human perception
of similarity in images. Clearly, these two measures are useless for wireless applications. They need
to be replaced with measures meaningful in the context of wireless communications.

For wireless applications, the goal is to calculate the similarity of two probability densities. A
commonly used measure towards that end is the Jensen-Shannon distance, which is the square root of
the Jensen-Shannon divergence [44]. Jensen-Shannon divergence, on the other hand, is a symmetric
form of the well-known Kullback-Leibler divergence [45].

In passing, we would like to state that to facilitate the training of GANs in the wireless domain
and benchmark the performance of GANs, there are increasingly more public datasets available.
Examples of such sets are RADIOML 2016.04C, RADIOML 2016.10A, RADIOML 2018.01A by
DeepSig [46], RFMLS 2016a by DARPA [47], CBRS by NIST [48], and synthetic data generated
by GNU Radio [49].

To measure the performance of any classifier, Probability of Detection (FPp) and Probability
of False Alarm (Pr,) are calculated. Then, the Receiver Operating Characteristics (ROC), which
plot Pp against Pr4 are drawn [50]. A commonly used measure is Area Under Curve of the
ROC (AUROC). Accuracy (ACC) is defined as the ratio of the correct classifications to the total
classifications. It can be calculated as Accuracy = (True Positives + True Negatives)/ (True Positives
+ False Positives + True Negatives + False Negatives). Furthermore, the variables Precision, Recall,
and F1 Score determine the success of a binary classification problem. Precision equals the ratio
of the true positives to total (true and false) classified positives. Recall equals the number of true
positives to the sum of true positives and false negatives. Precision is a good measure to employ
when the cost of the false positive is high whereas Recall is a good measure when the cost of the
false negative is high. F1 Score, the harmonic mean [51] of Precision and Recall [52], is employed
when it is desired to have a balance between Precision and Recall. All three measures take values
between 0 and 1. For a given classification system, it is desirable that each be as close to 1 as
possible. Please see Sec. IV for combinations of these quantities and the definitions of Density and
Coverage in [53].

An important lesson learned in this subsection is that while it is desirable to employ GAN struc-



tures from computer vision and image processing for NextG wireless applications, the performance

measures in the two fields are different.
B. Data Augmentation via GANs for NextG

By recognizing that supervised ML requires significant number of training data samples and it is
expensive and likely even infeasible to collect a sufficiently comprehensive and representative set
of training data, [8] provides training data augmentation by adding synthetic data to an existing
training set. This is achieved by a workflow of three steps. In the first step, a CGAN is trained
using real training samples. In this step, the generator learns to synthesize new data samples. In the
second step, the synthetic data samples are used along with the real samples to train a classifier. In
the third step, as new data comes in, the classifier is used for classification purposes. The authors of
[8] show that this approach significantly improves the adaptation time and accuracy of the resulting
spectrum sensing.

In an attempt to come up with a good modulation recognition technique, [54] employs Auxiliary
Classifier GANs (AC-GANs) [55] after a density transformation of the signal called Contour Stellar
Image to enhance the performance of CNNs. Although employing a training sequence whose length
is 10% of another algorithm, [54] achieves up to 6% gain in the recognition performance of the test
sequence.

Reference [13] investigates training data augmentation for deep learning RF systems by asking
basic questions about the augmentation process. The paper concentrates on the Automatic Mod-
ulation Classification (AMC) problem. These questions are: i) how useful a synthetically trained
system will be when deployed without considering the environment within the synthesis, ii) how
can augmentation be leveraged within the RF ML domain, and iii) what impact knowledge of
degradations to the signal caused by the transmission channel contributes to the performance of a
system. The results show that for data generation to a higher fidelity, the propagation path from the
Digital-to-Analog Converter (DAC) to the Analog-to-Digital Converter (ADC) must be investigated
and modeled. Second, although augmentation provides savings in terms of time and money, the
authors suggest a cost analysis to achieve a balance between the two. Finally, a methodology is
established for the quantity of data needed.

A lesson that should be derived here is that GANs can generate synthetic training data and thus

augment the training set in ML. We will discuss this topic in more detail in Sec. V.



C. Spectrum Sharing

As NextG networks rely on the co-existence of heterogeneous networks such as cellular and non-
terrestrial networks, and radar systems, spectrum sharing is expected to play a major role in NextG
communications and radar systems, while relying on ML techniques to identify and make use of
spectrum opportunities. One particular example is Citizens Broadband Radio Service (CBRS) band
at 3.5 GHz where the cellular wireless system needs to share the spectrum with the tactical radar
while avoiding mutual interference [56]. As such, the use of ML for spectrum sensing problems is
currently a growing area of interest, as evidenced in the survey [57] which summarizes results from
[58]-[67]. The work reported in [58]-[61] focuses on ML issues including optimization of supervised
classifiers, reduction of the feature space dimension, reduction of interference, and minimization of
the number of sensors, respectively. Attacker detection and minimization of sensing time, delay,
and operations in collaborative spectrum sensing are discussed in [62], [63]. Techniques that target
Spectrum Sensing Data Falsification (SSDF) are developed in [64]-[67]. Furthermore, [68]—[71]
discuss the use of neural networks for spectrum sensing under low Signal-to-Noise Ratio (SNR)
conditions. References [72], [73] discuss employing neural networks for spectrum sensing in the
face of parameter uncertainties in the transmitted signals.

Spectrum sharing techniques can be broadly characterized as belonging to open sharing or hi-
erarchical access models [74]-[76]. In the open sharing model, each network accesses the same
spectrum without any interference constraint from one network to its peers. The unlicensed band is
an example of this model. The hierarchical or cognitive radio model consists of a primary network
and a secondary network that accesses the primary spectrum without interfering with the Primary
Users (PUs). We will focus on the concept of cognitive radio networks in order to achieve efficient
spectrum sharing via ML, using the classification from [77] to organize potential approaches to
spectrum sharing in cognitive radio networks. In this classification, spectrum sharing techniques are
categorized as either underlay, overlay, or interweave.

Table 2 summarizes the basic characteristics of underlay, overlay, and interweave techniques [77].
In the underlay technique, a Secondary User (SU) needs to be aware of the channels for all active PUs
in order to know if the interference it generates will be below an acceptable limit. This consideration
limits its transmit power. For the overlay technique, in addition to the PU channel characteris-

tics, the SU also knows the codebooks and messages of the active PUs. The SU can transmit at
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Underlay Overlay Interweave
SU knows the channel strengths SU knows the channel gains, When PU is not using the spectrum,
of PU codebooks, and messages of PU SU knows the spectral holes in
space, time, or frequency
As long as the interference is below SU can simultaneously transmit SU can simultaneously transmit
an acceptable limit, SU can with PU; interference to PU with PU only in the case of false
simultaneously transmit with PU can be offset by using part of spectral hole detection
SU’s power to relay PU’s message
SU’s transmit power is limited by SU can transmit at any power; SU’s power is limited by the
the interference constraint the interference to PU can be range of its spectral holes

offset by relaying PU’s message

Table 2: Characteristics of underlay, overlay, and interweave techniques for cognitive radio networks [76], [77].

any power, but to offset the interference it
causes to the PUs, it relays their transmitted
messages. In the interweave technique, the goal
is to opportunistically communicate in the spec-
trum holes, or more generally the space-time-
frequency voids that are not in use by either
licensed and unlicensed users. As depicted in
Fig. 5, these voids change with frequency and
time. The interweave technique requires peri-
odic monitoring of the spectrum for detection
of user activity, so that the SU can transmit
opportunistically over the space-time-frequency
voids with minimal interference. All of the
above approaches can benefit from SUs em-
ploying directional antennas or beamforming for
more flexible control of the interference. Fig. 6
depicts spectrum sensing by a Software Defined
Radio (SDR) in an actual setting.

For this research topic, implementing the
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Fig. 5: Holes in frequency and time domains [78].
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Fig. 6: Spectrum usage in a shared band and spectrum holes
in the frequency (vertical) and time (horizontal) domains
enabling dynamic spectrum access. For the figure, spectrum
sensing is done by HackRF Software Defined Radio (SDR),
and QSpectrumAnalyzer library is used for the real-time data
visualization.

spectrum sensing task using a GAN-based technique as in [8] is an interesting and potentially

useful first step. It provides domain adaptation by creating synthetic data that enables the classifier

to quickly adapt to changes in the spectrum environment. The approach in [8] can be extended to

exploit voids in all possible dimensions including space, time, and frequency, which is of particular

importance to interweave cognitive radios. To extend the research in this direction, an approach based



on CGANSs that emphasizes specific subsets of the space, time, and frequency spectrum using specific
domain knowledge can be employed. For example, an approach based on CGANs, conditioned on
specific subsets of the space, time, and frequency using specific domain knowledge can be employed.
Such a CGAN will be able to generate synthetic data that is specific to certain “labels” that correspond
for example to known locations (e.g., hot spots), time periods (e.g., rush hour), or occupancy patterns
of certain frequency bands. A further step in this direction is the investigation of the performance of
the algorithms in the presence of low SNR as in [68]-[71] and parameter uncertainties as in [72],
[73].

The approach in [8] consists of the following three steps: i) training a GAN using real training
samples so that the generator learns to synthesize new samples, ii) training of a classifier with
augmented data so that the original and limited training set is expanded with synthetic data, and,
iii) regular operation by classifying data using the trained model. It is possible to extend this
approach by training a CGAN for more typical scenarios, such as known locations, time periods, and
occupancy patterns of certain bands, as discussed in the previous paragraph. In this context, unlike
[8], it is possible to make a comparison of this ML-based approach with conventional narrowband
spectrum sensing techniques based on energy detection, cyclostationary feature detection, matched
filter detection, and wideband spectrum sensing techniques such as compressed sensing [57], [79]
in terms of performance and complexity, specifically in the three areas discussed in Sec. I.

In addition to [13] discussed in Sec. I1I-B, another work on the AMC problem is provided in [80].
This work uses a modified version of CGAN and AC-GAN, which is operated in a semi-supervised
(not unsupervised) mode. The modifications are needed to solve the following problems: i) the
complexity of the modulation signals cause non-convergence due to the mapping from the high-
dimensional parameter space to the low-dimensional classification space, and ii) lack of diversity of
the generated samples cause mode collapse. Mode collapse is defined as the difficulty in convergence,
especially during the training process, due to conditional constraints. The modifications consist of
an encoder block E, a transform block 7', and the splitting of the classification and discrimination
functions of the conventional discriminator D by adding an explicit classifier C' [80, Fig. 1]. The
encoder £ and the transform 7" are inspired by Conditional Variational Autoencoder (CVAE) [81] and
Spatial Transformer Network (STN) [82], respectively. The definition of the loss functions involving
all the blocks and their optimization expressions are given in [80, Eq. (10)-(20)]. To evaluate the
performance of the system, the synthetic dataset in [49] is used. This dataset contains signals of eleven

modulation modes at SNRs ranging from -20 dB to 20 dB, with channel distortion, frequency offset,



phase offset, and Gaussian noise added. Comparisons with a number of well-known deep learning
methods show gains in classification accuracy of up to 12%.

An important implementation technique for NextG networks is Cooperative Spectrum Sensing
(CSS), where a number of SUs cooperate to improve sensing performance. CSS can be implemented
using either a centralized or a distributed approach. In centralized sensing, the SUs send their sensing
information to a Fusion Center (FC) that makes the sensing decision and broadcasts this information
back to all SUs. In distributed sensing, the SUs share sensing information among each other and
make independent sensing decisions locally. In both approaches, the SUs can either transmit their
individual sensing decisions or soft information in the form of partial statistics. The information
combining schemes used by the FC or SUs can be categorized as either hard or soft combining
schemes. The most common hard combining algorithms are AND combining, OR combining, M -out-
of-N combining, and quantized hard combining, while soft combining algorithms include selection
combining, maximal ratio combining, equal gain combining, and square law combining [83]. The
soft combining approach provides the best detection performance, but at the cost of additional control
channel overhead.

It is desirable to extend the technique described above to include CSS. In one implementation,
GANSs can be placed at the SUs and classifications can be combined at the FC. An alternative is to
have the SUs transmit partial statistics to be used by a single GAN at the FC. In this regard, it is
worthwhile to investigate schemes that will employ combinations of centralized versus distributed
CSS with hard or soft decisions. The number of combinations is high but it should be possible to
reach quick conclusions. The main interest in this activity is to determine the optimal placement for
GAN:Ss in interweave networks, and how much performance improvement they can provide.

There is an important lesson that can be drawn from this subsection. Due to the tremendous
number of users and applications in NextG networks, spectrum sharing will need to be carried out
in a dynamic environment employing principles of cognitive networking. The goal is to determine
the voids based on time, frequency, and space and exploit them to accomodate more users. Two
specific techniques for spectrum sharing based on GANs are discussed in [8], [80] and summarized

in this subsection.
D. Detecting Anomalies

In a GAN, the generator captures the distribution of the training data, and the discriminator
can detect false from real, making a GAN an attractive ML technique for anomaly detection. This

observation has led to a number of anomaly detection techniques employing GANs [84]-[93]. These



Model Precision Recall F1 Score

OC-SVM [105] 0.7457  0.8523  0.7954
DSEBM-r [105] 0.8521 0.6472  0.7328
DSEBM-e [105] 0.8619  0.6446  0.7399
DAGMM-NVI [106] 09290  0.9447  0.9368
BiGAN [36] 0.9363 0.9512  0.9437

PCA+BiGAN [103] 0.9442 09592 09516

Table 3: Performance of the five anomaly detection algorithms on the KDDCUP-99 dataset [103]. OC-SVM: One-Class
Support Vector Machine [105], DSEBM-r: Deep Structured Energy-Based Model - using reconstruction error [105],
DSEBM-¢e: Deep Structured Energy-Based Model - using energy [105], DAGMM-NVI: Deep Autoencoding Gaussian
Mixture Model with Neural Variational Inference [106].

applications are typically for various forms of image processing. There are some recent applications
of using adversarial networks for anomaly detection in cyber-physical systems [94], [95], fraud
detection in banking [96]-[99], driver assistance systems [100], air surveillance [101], prognostics
and health management in the aeronautics industry [102], and network traffic anomaly detection
[103].

We will briefly discuss [103] since it is related to network anomaly detection. This work proposes
BiGAN in conjunction with Principal Component Analysis (PCA) for network anomaly detection
using the KDDCUP-99 dataset [104]. This database includes a wide variety of intrusions simulated
in a military network environment used for a competition during a conference to build a network
intrusion detector, a predictive model capable of distinguishing between “bad” connections, called
intrusions or attacks, and “good” normal connections [104].

A number of works exist that study anomaly detection in cognitive radio networks with con-
ventional methods [107]-[113] and with ML [114]-[120]. We refer the reader to [120] for brief
descriptions of [115]-[119]. These works provide an introduction to this field, with the important
observation that GAN-based methods tend to provide better results in general. However, it is certain
that existing research in this area is still limited, and this provides an opportunity for significant
contributions.

In [114], an adversarial autoencoder was implemented for wireless spectrum anomaly detection
[121], which uses ideas similar to a GAN. We will go beyond this approach and leverage the
advantages provided by AnoGAN, EGBAD, and GANomaly. We provide details here on an approach
using GANomaly, although similar anomaly scores can be defined for other architectures. Consider
a collection of received data vectors X, whose elements are for example the I and Q components
of a digitally modulated signal, or vectors of the sampled power spectral density. We seek a model
that learns the source distribution p(Xy), so that we can detect when the vector’s distribution is

different from p(Xy). This is a hypothesis testing problem, where for each vector x € X7 in the



test dataset Xp, the two hypotheses are

Hy: Sample data comes from p(Xy),
(17)
H 4: Sample data does not come from p(Xy).

We have three assumptions: First, the probability of anomalous behavior in dataset Xy is very low;
second, no explicit anomaly labeling is done on the test dataset; and third, no feature extraction is
performed before feeding the data to the model. The key insight in employing GAN-based anomaly
detection is to bring the data to the latent space, which captures relevant features that can be used
to reconstruct the actual input data, with a small anomaly score for normal data. A GAN is trained
using (1) and (2), and during the test and operation stage, (11)—(15) are used. Once the training
process is complete, the model weights are frozen and new data are input into the model. Anomalies
are detected based on the anomaly score or the reconstruction loss of the model.

The term anomaly covers a very broad range of possibilities in the transmitted signal. Since
the field of ML progresses based primarily on experimentation, a number of datasets should be
created to study the performance of the algorithms under consideration. These can be in the form
of time series corresponding to I/Q data from a radio receiver after downshifting in frequency
and mixing with the local oscillator. This signal includes the effects of fading and multipath. To
create anomalous test signals, there are a wide variety of possibilities. Reference [114] considered
four types of normal signals and four types of anomalies. The normal signals were generated as
either i) a single continuous signal with random bandwidth, SNR, and center frequency, ii) pulsed
signals with parameters similar to i), iii) multiple continuous signals with possible frequency overlap,
or iv) signals with random bandwidths and SNR with deterministic shifts/hops in frequency. The
anomalous signals were chosen as either i) the same as normal signals in i) above, ii) random pulsed
transmissions in the given band, iii) pulsed wideband signals covering the entire frequency band, or
iv) signals from other classes in the synthetic dataset. Normal and anomalous signals such as these
can be considered, as well as other random signal types with arbitrary power spectral densities.

Anomaly detection within the context of cognitive radio in the mmWave band is studied in [120],
where the authors generate their own datasets with a number of anomalies and evaluate three methods
including two based on GANSs for their detection. As mmWave radios are vulnerable to malicious
users due to the shared access medium and the complex radio environment, this opens up new threat
possibilities. Moreover, since several security critical applications in the NextG networks such as
the Vehicle-to-Everything (V2X) networks are based on mmWave communications, this problem

is particularly important. In addressing this problem, [120] makes use of three ML techniques:
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Variational Autoencoder (VAE) [122], CGAN [30], and AC-GAN [55]. This work created its own
dataset by using mmWave equipment in a laboratory environment with implementation using Field
Programmable Gate Arrays (FPGAs) and building blocks such as local oscillators, intermediate
frequency modules, mmWave radio heads, horn antennas, etc. The operation is at 28 GHz by using
Cyclic-Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) with BPSK, QPSK, 16-
QAM, and 64-QAM. Complex I/Q data is collected at baseband after the downconversion process.
There are eight channels with 100 MHz bandwidth. The normal behavior is a fixed signal which
occupies channel 4 and a sequentially moving signal among channels 8, 6, 3, and 1. This normal
behavior is used in the training phase. For testing, three modalities are introduced. Modality 1 is a
fixed signal in channel 4, and a moving signal that jumps among channels 5, 7, 2, and 5. Modality
2 is a fixed signal in channel 4 and a moving signal that jumps among channels 7, 5, 2, and 1.
Modality 3 is a fixed signal in channel 4 and a moving channel that jumps among channels 5, 7, 6,

and 5. Performance results are provided by AUROC and ACC. These results are given in Table 4.

CGAN provides better performance than VAE Modality | AUROC  ACC
) 1 0.9365  0.9356

and AC-GAN provides better performance than VAE 2 09577  0.9551
CGAN, namely, VAE performs an AUROC 3 0.9232  0.9382
1 0.9566  0.9657

between 0.9365 and 0.9577, CGAN between CGAN 2 0.9737  0.9696
3 0.9545  0.9668

0.9545 and 0.9737, and AC-GAN between 1 09741 0.9804
. AC-GAN 2 0.9751 0.9757

0.9741 and 0.9751. Reference [120] attributes 3 09742  0.9660

the better performance by GANS to the fact that yple 4: AUROC and ACC performance of the three ML

they learn the relation between random noise algorithms.
Training [mm:ss] | Testing [mm:ss]
and generated data such that the generated data VAE | 15:09 | 01:00
: CGAN 15:16 01:36
is close to real data, and as a result, they can AC.GAN 3042 0316

capture the dynamics in the real data. Whereas,  ppe 5. Computational times of the three ML algorithms.
VAEs return the posterior probability that an

observation belongs to a cluster. They do so by learning the latent vector corresponding to an
input, and as a result, all the dynamics in the real data that VAEs have access to are limited to the
latent vectors already modeled. Due to a larger degrees of freedom with the former, it is generally
considered that GANs can have better performance. Computational times for the three algorithms,
performed on an NVIDIA GeForce GTX 1080 Ti GPU, are given in Table 5. Clearly, there is a big
price paid for the better performance of AC-GAN (15 minutes vs. 30 minutes).

In [123], a deep learning based signal or modulation classification solution is described, where i)
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signal types may change over time, ii) some signal types are not known a priori, and therefore there
is no training data available, iii) signals are potentially spoofed such as smart jammers replaying
other signal types, iv) different signals may be superimposed due to interference from concurrent
transmissions. The authors present a CNN that classifies the received I/Q samples as idle, in-network
signal, jammer signal, or out-network signal. Traditional approaches for signal classification require
expert design or knowledge of the signal. Modulations are classified into i) idle, ii) in-network user
signal, iii) jamming signals, and iv) out-network user signals where there are 3, 4, and 3 different
modulation techniques corresponding to ii)—iv). There are in-network users who try to access the
channel opportunistically (SUs), out-network users with priority channel access (PUs), and jammers
that all coexist. The authors use the dataset in [124]. There are ten modulations with SNRs from
-20 dB to 18 dB in 2 dB increments. Radio fingerprinting via radio hardware imperfections such
as I/Q imbalance, time or frequency drift, and power amplifier effects are used to identify the type
of a transmitter. In addition to a CNN structure, Minimum Covariance Determinant (MCD) , k-
means clustering, and Independent Component Analysis (ICA) techniques are employed. Results
demonstrate the feasibility of using deep learning to classify RF signals with high accuracy in
unknown and dynamic spectrum environments. By using the signal classification results a distributed
scheduling protocol is developed where SUs share the spectrum with each other while avoiding
interference imposed to PUs and received from jammers.

The use of GANs that exploit the spatial domain to identify anomalous signal sources can be
considered, using data received from antennas in different locations. In many applications, normal
network operations are consistent with users transmitting from specific locations, such as in a stadium
setting, a large hall, a shopping mall, etc. A GAN trained in this setting with an array of antennas or
widely separated receivers can be used to differentiate between normal network traffic and signals
that arrive from anomalous directions, even if their spectral characteristics are identical to normal
users. A similar approach can be used to detect differences between mobile and stationary sources,
even if no detectable Doppler shift can be measured. Mobile sources typically have lower power,
reduced persistence, a time-varying polarization, as well as time-varying ranges and azimuth/elevation
angles. Further differentiation is possible between ground-based and airborne sources. A particularly
important direction is to investigate whether incorporating the spatial dimension together with the
time and frequency dimensions can significantly improve the ability of GANs to detect anomalous
network behavior.

In passing, we would like to state that more research is needed to understand the performance vs.
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computational complexity of autoencoders for anomaly detection [125]-[129], especially in terms
of their performance for given computational complexity. Tables 4 and 5 provide an interesting
comparison in this regard.

The most important lesson learned from this subsection is that the use of GANs result in powerful
techniques for anomaly detection in wireless networks. In Sec. IV, we will expand this observation
and provide more evidence to this fact by adopting a GAN-based anomaly detection algorithm for

NextG wireless applications.
E. Security Applications of GANs in NextG

Another important application area of GANSs is wireless security. In these applications, ML can
be used to create an attack, defend against an attack, or both. Some specific cases are discussed
below.

In [25], a laboratory study is carried out with eight Universal Software Radio Peripheral (USRP)
radios as trusted transmitters. The goal is to use the imbalance in the detected I/Q components due to
unique hardware differences in each transmitter for fingerprinting, i.e., identifying which transmitter
is which. The authors use the generator G of a conventional GAN to create fake transmitters, and then
the GAN classifier attempts to distinguish between real and fake transmitters, achieving an accuracy
of 99.9%. The authors also develop approaches to distinguish between the legitimate transmitters,
one based on a CNN that obtains an accuracy of 81.6%, and another based on a Deep Neural
Network (DNN) that scores 96.6%. Although this is a simple experiment, it shows the power of ML
in wireless security.

A wireless spoofing algorithm based on a GAN architecture is proposed in [9], split between
an adversary transmitter A; and an an adversary receiver Ar placed close to the actual receiver
R. Feedback from Ap based on its location allows A7 to know the channel between the actual
transmitter 7" and R as well as between Ar and R with sufficiently high accuracy. Then, a GAN is
implemented between Ar and Ag in which the generator GG is trained at Ay and the discriminator
D is implemented at Ar. A in turn adjusts its transmission parameters such that its signal will
appear to R as if they come from 7. In this process, Ap trains the discriminator D such that the

classification error is minimized, i.e., it attempts to achieve

0N B9 108(1 — D(G(2)))] ~ Bxpy l08(D(x))]. (18)

At the same time, Ap trains the generator G such that the classification error is maximized, i.e., it
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attempts to achieve
max B,y ) log(1 = D(G(2)))]. (19)

The process is continued until convergence. Thus, although they are at different locations, Ay and

Apg train G and D while playing the following minimax game
i max By o l0g(1 — D(G(2)))] ~ Expy,og(D(x))] (20)

Simulation results show that, while the probability of successful spoofing is only 7.9% for random
signals and 36.2% in an amplify-and-forward architecture, the GAN is able to achieve a success rate
of 76.2%.

The problem of thwarting an Intrusion Detection System (IDS) is studied in [26]. While this work
is not specifically about wireless networks, the basic results are still applicable to wireless systems.
While many ML approaches have been proposed for IDS, the authors of [26] show that such systems
are vulnerable to an attack employing a GAN. On the other hand, the paper also shows that if the
IDS system based on conventional ML is replaced by one based on GANSs, it can be made more
robust against adversarial perturbations.

In [27], an interesting problem involving two Unmanned Aerial Vehicles (UAVs) trying to commu-
nicate in the presence of an active jammer that eavesdrops their transmissions and jams only when the
two are at communicating in the same frequency band is described. A three-way GAN is developed
with the generator GG present at the jammer and two classifiers D, and D, present, one at each
UAV. The generator G operates without access to the classifiers. For reasons of stability, [27] does
not employ the conventional log-based formulation for driving the backpropagation algorithm, but
instead, another version based on a least squares formulation called LSGAN [31]. The performance
of the algorithm is compared against two GAN-based algorithms with three players and one non-
GAN-based game theoretic approach. The algorithm in [27] is shown to outperform the other three
in terms of average connection latency, attack probability, and packet delivery ratio in the presence
of channel switching and jamming. This paper shows the sophistication of GAN-based approaches
in wireless applications.

In addition to the GAN-based wireless security work described above, there are many other papers
in the literature that cover various aspects of wireless security by employing other ML techniques, in
terms of both designing attacks and ways to mitigate them. A sample listing is [7], [10], [130]-[151].

For spectrum sharing applications, not only traditional security threats such as receiver jamming,

but also newly emerged cognitive-radio-specific security threats such as PU Emulation Attacks
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(PUEA), SSDF, common control channel jamming, selfish users, and intruding nodes should be
considered. A detailed description of these threats can be found in [152]-[156].

Cognitive radio networks rely on a trustworthy spectrum sensing process, the key to which is the
ability to distinguish PU signals from SU signals in a robust way. The use of licensed spectrum bands
by PUs may be sporadic, so an SU must constantly monitor for the presence of PUs in candidate
bands. If an SU detects the presence of a PU in the band under observation, it cannot use the current
band. If there is no PU currently active in the band, then SUs employ a medium access control
mechanism to share the band. In general, it is expected that no change will be required on the part
of the PU transmission system or air interface in order to accommodate the SUs, e.g., [157], and
thus it is the responsibility of the SUs to correctly identify PUs with their existing air interface.
As a result, an SU’s ability to correctly identify PUs becomes very important not only for avoiding
interference to the PUs, but also to be able to increase their own throughput. Distinguishing whether
or not a user is a PU is nontrivial, especially when rogue users modify their air interface in order
to mimic a PU’s signal characteristics. This is known as a PUEA [158].

In order to mitigate the PUEA problem, it is possible to draw parallels with a phenomenon known
for adversarial attacks against classifiers that employ neural networks. This phenomenon became
apparent in classification problems in conventional fields such as image processing, where it was
observed that certain minor variations in the input, undetectable by humans, can make a classifier
fail, see e.g., [159], [160]. An example that appeared in [160] is very well-known. Using a 22-layer
deep CNN that is able to correctly identify a panda with 57.7% accuracy, adding a slight amount
of noise results in it being characterized as a gibbon with 99.3% confidence. This vulnerability of
deep neural networks to adversarial attacks has been well-documented, see e.g., [161]-[165].

A number of approaches exist to deal with the problem of adversarial attacks in the context of
image processing; a good review is available in [166]. There is a recent study which finds that
generative classifiers, such as GANs, are actually more robust to adversarial attacks [167]. Given
the success of ML techniques developed for image processing and successfully adapted to problems
in wireless networking, it is possible to leverage some of this prior work in the context of designing
GAN-based ML systems to counteract adversarial attacks. The first such technique is described
in [168], and is referred to as Defense-GAN. In this technique, the GAN is trained to model the
distribution of unperturbed data. At inference time, it finds an output that does not contain any
adversarial changes that is “close” in some sense to the given input data. This output is then fed to

the classifier, which can employ any model, and the result is used as the classification of the data.



25

@
Random %o * *
Seed . Minimize z x=G(z") ) .
—» number : I1G(z) — x|2 »  Generator > Classifier — ¢
generator (R) 2
Zo
Input image x ﬁ

Fig. 7: Defense-GAN algorithm [168].
This technique does not assume knowledge of the process for generating the adversarial examples.
Reference [168] empirically shows that Defense-GAN is consistently effective against different attack
methods and improves on existing defense strategies.

Fig. 7 illustrates the basic idea in [168]. For a given input observation X, the system finds the
closest element (in the L, norm) of the data space that can be produced by the generator operating
on an element of the latent space. The resulting element of the data space, presumably free from
the affects of the adversarial perturbation, is then classified in the regular way. Intuitively, if x is
not perturbed, then the GAN can generate a sufficiently close local copy of it to be classified as
“real.” On the other hand, a perturbed x will not be among the possible outputs of the generator G
trained by using unperturbed data, and the classifier will declare it as “fake.” There is a mathematical
development that justifies this intuition in [168]. The paper shows that the Defense-GAN technique
is very effective against both black-box and white-box attacks, i.e., attacks that do not have any
knowledge of GG and the classifier C, as well as those that do have full knowledge of G and C,
respectively. Other works that use a similar concept based on GANs are available in [169], [170].

In [10], the effects of a GAN-based spoofing attack to generate synthetic wireless signals that
cannot be statistically distinguished from intended transmissions is studied. The spoofing attack
can be used for various adversarial purposes such as emulating PUs in cognitive radio networks
and fooling signal authentication systems to intrude protected wireless networks. The adversary is
modeled as a pair of transmitter and a receiver that build the generator and discriminator of a GAN,
respectively. The adversary transmitter trains a deep neural network to generate the best spoofing
signals and fool the best defense trained as another deep neural network at the adversary receiver.
Thus, the generator and the discriminator of the GAN are at different locations, collaborating over
the air such that the GAN-generated signals cannot be reliably discriminated from intended signals.
The adversary and the defender may have multiple transmitter or receiver antennas. Spoofing is
accomplished by jointly capturing waveform, channel, and radio hardware effects inherent to wireless
signals under attack. It is demonstrated in [8] that a GAN-based spoofing attack can be successfully
performed and its performance is compared with random signal attack and replay attack. An important

observation is that as the attacker’s transmitter gets close to the transmitter, the likelihood of the
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# of defense operations | Attacker error probabilities Transmitter performance
/ # of all samples Misdetection \ False alarm | Throughput \ Success ratio
0% (no defense) 3.95% 18.10% 0.012 2.91%
10% 20.79% 25.16% 0.074 17.13%
20% 33.88% 40.69% 0.124 28.84%
30% 40.09% 44.79% 0.170 35.42%
40% 45.18% 43.75% 0.206 41.53%
50% 41.63% 45.10% 0.204 39.23%

Table 6: Results for defensive strategies against jamming attacks based on adversarial learning [134].

attacker to generate high-fidelity synthetic signals for the spoofing attack increases. In summary, the
sussess probability of the GAN-based spoofing attack is very high. This holds for different network
topologies and when node locations change from training to test time. This probability improves
further when multiple antennas are used at the transmitter.

It is possible to devise defensive strategies against such attacks. A simple strategy is to change
the idle and busy labels, so that the legitimate transmitter may not transmit if it senses the channel
as idle, or it may transmit even if the channel is sensed as busy [7], [134], assuming that the
unobserved transmitter is not a PU. This can be done over a subset of the transmit opportunities.
For example, by introducing 10% of false labels, the legitimate transmitter, as the defender, can
increase the misdetection performance of the attacker from 3.95% to 20.79% and the false alarm
rate from 18.10% to 25.16%. The results for a single-input single-output (SISO) scenario from [134]
are shown in Table 6. Clearly, this simple algorithm can result in a significant improvement.

It is possible to extend this work to the case where NACKs, in addition to ACKs, are employed.
ACKs are only positive acknowledgements, they do not reveal if there was a transmission. NACKs
state there was a transmission but it was not received correctly, possibly due to a collision, but
also potentially due to other effects such as fading. This increases the state space of the learning
algorithm and may improve the performance of the attacker. A potential direction is to investigate
if there is a simple algorithm similar to the one above that provides a defense against such attacks.

For the case of cooperative spectrum sensing, a recent study makes adversarial use of ML to
construct a surrogate of the fusion center’s decision model [171]. The authors then propose an
algorithm to create malicious sensing data, and show that this type of attack is very effective.
Reference [171] shows, via experiments, that with existing defenses it can achieve up to an 82%
success ratio while only manipulating a small number of malicious nodes. Then, a mechanism
referred to as an influence-limiting policy is introduced which achieves a disruption ratio reduction of
up to 80% of the attacks introduced in [171]. An important observation that can be made based on this

work is that, as in many security problems, specific types of attacks require specific types of solutions.
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Reference | Application Comment
[8] Spectrum Sharing Spectrum sensing with domain adaptation and data augmentation.
[80] AMC solution via modified CGAN and semi-supervised AC-GAN.
[103] Anomaly Detection | Use of BIGAN and PCA for anomaly detection. Comparisons in Table 3.
[114] Unsupervised spectrum anomaly detection via adversarial autoencoder.
[120] For mmWave. Comparison of VAE, CGAN, AC-GAN in Tables 4-5.
[123] Modulation classification via CNN: Idle, in- or out-network, jammer.
[25] Security Create and then classify fake transmitters via GAN. 99.9% accurate.
[9] Spoofing with a GAN where its G and D are not colocated. High success rate.
[26] Intrusion detection with improved attack or defense by GANS.
[27] Three-way GAN among a jammer and two UAVs trying to communicate.
[168] Defense-GAN (Fig. 7). Effective against both black- and white-box attacks.
[10] Effects of GAN-based spoofing to generate synthetic signals like real ones.
[7] Strategy based on changing labels against GAN-based spoofing attacks. Table 6.

Table 7: Different implementations of techniques using GANs for spectrum sharing, anomaly detection, and security
applications in NextG. The main characteristic of each application is specified as a comment. For a detailed discussion
of each of the techniques, see the text. PCA: Principal Component Analysis, CNN: Convolutional Neural Network, UAV:
Unmanned Aerial Vehicle.

It is possible to pursue attacks similar to those in [171] and attempt to develop relevant solutions.
However, it should be emphasized that a key aspect of any defense against a particular attack is
first detecting that an attack has occurred, which is exactly the anomaly detection problem discussed
above. Strong anomaly detection is the first step in mitigating attacks in spectrum sensing problems,
both cooperative and noncooperative. To that end, it is worthwhile to investigate the effectiveness of
the GAN-based anomaly detection techniques discussed in Sec. II-A against a number of different
attacks such as those described above.

While many conventional countermeasures against security attacks in cognitive radio networks
exist [172], there is very limited published work on ML techniques for this purpose [173]. Thus,
this is a potentially very fruitful research area.

The most important lesson learned from this subsection is that GANs can be used for security
attacks or as a mechanism for defense against any security attacks. We have discussed seven works
from the literature towards both ends.

Table 7 summarizes all of the works from the literature discussed in Sec. III.
IV. SIMULATION RESULTS

The problem of outlier detection in signal classification is a critically challenging one for NextG
networks. Signal classification is needed for various NextG applications, including user equipment
(UE) identification, spectrum sharing and coexistence (as in the CBRS band), and jammer (inter-
ference) detection. Specifically, for the case where there is no data about unknown waveforms (that
can be considered as outliers), the signal classification problem becomes even more challenging. In

this case, in general, the outlier detection algorithms are trained using only inlier waveforms and
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tested with inliers and outliers. Recent studies have shown that GANs can help solve the outlier
detection problem. AnoGAN has been proposed as an unsupervised anomaly detection algorithm to
calculate an anomaly score [35]. Despite its good performance and relaxed assumption that does
not require labeled data, it suffers from instabilities in GAN training. In addition, AnoGAN is
an iterative algorithm which hinders its real-time application. Fast AnoGAN (f-AnoGAN) extends
AnoGAN by using a more stable GAN architecture, WGAN, and it does not require iterations (only
one forward pass) [174]. F-AnoGAN uses an encoder to obtain the latent features of a generator. The
latent features are input to the generator. The anomaly score is calculated as the mean squared error
(MSE) of the input sample and its reconstruction ||x — G(F(z))||3 plus the MSE of the discriminator
features of the original and those of the reconstructed signal, ||D;(x) — D;(G(E(x)))||3, weighted
by a scaling factor k.

This approach can be applied to anomaly detection in RF spectrum data. As an initial result, we
used the RFMLS 2016a dataset [124] that includes eleven different modulations collected over a wide
SNR range between -20 dB and 18 dB. The f-AnoGAN algorithm is trained on only one (known)
modulation and evaluated using all eleven modulations. We expect the model to label samples from
the known (trained) modulation as inlier and samples from all others as outliers. In contrast to [33]
that uses WGAN, we used the WGAN-GP which is known to be more stable. The f-AnoGAN model
outputs an anomaly score per sample and the AUROC figures are calculated.

In our evaluations, the f~AnoGAN model is trained in three steps:

1) First, we trained the generator and discriminator of the WGAN-GP model, both networks are

summarized in Table 9 and Table 10 in the Appendix, respectively.

2) Second, we trained the encoder (architecture presented in Table 11 in the Appendix).

3) Finally, we evaluated the performance of the anomaly detection using the anomaly score.

This three-step procedure closely follows the f~AnoGAN implementation of [174].!

In evaluating the fidelity and diversity of the generative models, we compared the use of five
different measures [53]: i) sum of recall and precison (S-RP), ii) harmonic mean of recall and
precision (H-RP), iii) sum of density and coverage (S-DC), iv) harmonic mean of density and
coverage (H-DC), and v) Jensen-Shannon distance (JSD) [175]. In the GAN training, these measures
are evaluated every 10 epochs and if the fidelity/diversity measure has improved, the model is saved.

For the JSD metric, a lower value indicates a better model, whereas for the remaining four measures,

"https://github.com/tSchlegl/f-AnoGAN



29

a higher value means a better model. We used 500 epochs for each of the GAN and encoder training
steps. For all three networks, we used the Adam optimizer with a learning rate of 0.0002 [176].

As a comparison, we evaluated the performance of a convolutional autoencoder (CAE) system
which is again trained on the only inlier modulation. The CAE architecture is presented in Table 12
in the Appendix. We measured the mean and standard deviation of the reconstruction loss in the
training dataset. For any test data that has a reconstruction loss larger than a fixed threshold (i.e.,
the mean reconstruction loss plus one standard deviation), the sample is labeled as an outlier and for
those samples with a reconstruction loss smaller or equal to threshold, the sample is labeled as an
inlier. Note that to have a fair assessment between performance measures and minimize the effects
of network architecture, we have used a CAE model that is very similar to the AE model of the
f-AnoGAN.

Table 8 presents the AUROC values for the anomaly detection problem employing different
modulations. We observe that the performance of the anomaly detection model depends significantly
on the trained (inlier) modulation in both GAN-based and CAE-based approaches. There are several
reasons for this. First, unlike image datasets, this dataset (and many other RF datasets) include
the effects of channel, noise, and hardware impairments, which make the classification problem
fundamentally challenging. Second, some modulations in this dataset are subsets of each other in
the constellation plot. For example, AM-SSB modulation is a subset of the AM-DSB modulation.
In comparing the results in Table 8, we see that the H-RP, JSD, and S-RP measures perform well
across different modulations, whereas the S-DC and H-DC metrics did not provide good performance.
We observe that anomalies can be precisely detected (achieving more than a 0.90 AUROC score)
when f-AnoGAN models are trained on modulations such as the AM-DSB, CPFSK, GFSK, and
WBFM using any of the S-RP, H-RP, and JSD measures. In these modulations, the f~AnoGAN
method outperforms the CAE method. However, modulations such as AM-SSB and QAM16 present
challenging problems as they are very similar to other classes (AM-DSB and QAMG64, respectively).
For these modulations, the f~-AnoGAN method fails to reliably distinguish the anomalies from inliers,
whereas the CAE model performs only as good as a random classifier.

Next, we discuss some implementation details. For the WGAN-GP training, there are two important
parameters that we have tuned. The first parameter is the number of discriminator (critic) iterations
per generator iteration. We have tested 1, 3, and 5 iterations and found that updating the generator
every 3 discriminator updates provided the best results. The second parameter is the gradient penalty

coefficient A. This parameter had a profound effect on the performance. We tested different A values



30

Modulation | S-RP  H-RP S-DC H-DC JSD | CAE
AM-DSB | 0963 0.964 0962 0965 0.968 | 0.899
AM-SSB | 0.088 0.088 0.088 0.088 0.273 | 0.502

BPSK 0.797 0.777 0349 0.716 0.439 | 0.529
8PSK 0.558 0.597 0.540 0.540 0.636 | 0.528
CPFSK 0968 0970 0.853 0.732 0.939 | 0.533
GFSK 0983 0980 0.821 0.816 0917 | 0.561
PAM4 0.692 0.728 0.041 0.707 0.731 | 0.587
QAMI16 0.419 0.424 0300 0.300 0.447 | 0.600
QAMo4 0.549 0.624 0.285 0.285 0.545 | 0.597
QPSK 0.664 0.678 0.547 0.547 0.559 | 0.530
WBFM 0937 0938 0934 0933 0.939 | 0.824
Average 0.693 0.706 0.520 0.603 0.672 | 0.608

Table 8: AUROC scores of the anomaly scores obtained using five different fidelity measures for different modulations.
S-RP stands for sum of precision and recall, H-RP is the harmonic mean of precision and recall, S-DC stands for sum
of density and coverage, H-DC is the harmonic mean of density and coverage, and JSD stands for Jensen-Shannon
distance.

(A = 1,5,10) and A = 10 provided the best results, which emphasizes the importance of the
gradient penalty. For the f~AnoGAN model, the scaling factor  is a parameter that can be tuned.
We have tested x = 1,5, 10 values and found that x = 1 provided the best results. Finally, as the
f-AnoGAN approach requires only one forward pass and does not need any iteration to infer a
sample, we can obtain the average inference time on hardware, which is an important measure for
the embedded implementation. Note that this is in contrast to iterative algorithms such as AnoGAN
that require setting parameters such as the maximum number of iterations to obtain precise timing
measures. Towards this goal, we measured the average end-to-end inference time on hardware, which
includes the forward pass of the input sample to the encoder, generator, and discriminator networks,
and calculating the respective losses to obtain the anomaly score. The results are evaluated on an
NVIDIA GeForce RTX 3060 GPU system. The average inference time is measured as 0.005784
seconds which enables us to process 172.9 samples per second without any parallel processing.

In concluding this section, we would like to emphasize that our simulations can only be considered
as very initial results. To be able to come to more in-depth conclusions, substantially more work by

the research community should be carried out.
V. FUTURE RESEARCH DIRECTIONS FOR GANS IN NEXTG COMMUNICATION SYSTEMS

This section is on the use of GANs for wireless applications in general terms. This is important
because the original development of GANs was in the area of images while their straightforward
application to wireless can bring up questions. On the other hand, this feature actually makes the
proposed research nontrivial and interesting. It should be understood that what we are proposing

is not a simple translation or porting of what exists in another field to wireless communications
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but rather a very careful study of how to be inspired from a development in one field and do a
careful analysis to adapt it to a completely different area. For example, performance measures used
to compare two images do not directly translate into wireless applications. In particular, performance
measures used in image processing try to imitate human perception. Clearly, it is questionable that
they would be useful in the kind of tasks discussed above in sections Sec III-C—Sec III-E. If this
is the case, then what kind of performance measures should be employed? Since ML is not a
model-based approach, finding the answer to this question will require experimentation and thus is
not a straightforward task. Another consideration comes from the fact that GANs are known to be
difficult to train, especially for datasets other than images. Then, is there a way this difficulty can
be circumvented? In terms of datasets, there is a perception that datasets that can be employed for
wireless applications are limited in quantity. Furthermore, in general, training of neural networks
require very long training sequences. On the other hand, the datasets available are limited in size.
Some researchers employ GANs to increase the size of the their training sequences in a synthetic
manner. But then there is a question as to whether the generated or augmented synthetic signals
contain any more information than the training set since the GAN is able to learn the statistics of the
training sequence but it is not clear if this augmentation process can add any new statistics. These
are some of the questions that employing algorithms from the basic exploration of GANSs to their
use in wireless applications will face.

A number of open problems remain in this domain. While a large number of problems in spectrum
sharing, anomaly detection, and security exist, studies using GANs to address them have so far
targeted a relatively small number of specific problems. Scaling these solutions to a larger number of
problems will require significant effort. First, specific problems need to be identified, for example, in
anomaly detection and security, to be addressed by ML algorithms. Second, these specific problems
need to be simulated and ML algorithms need to be trained on them. Third, the computational
complexity of this effort should be taken under consideration. There are many successful uses of
GANS, especially in image processing. While a number of these algorithms have been successfully
used in wireless applications, a number of them are still candidates for use in that setting. For
example, we have discussed the use of BIGANs and f~-AnoGANs for anomaly detection, however, a
number of other anomaly detection techniques such as EGBAD and GANomaly have not yet been
studied in the context of wireless anomaly detection. Fourth, reliable diversity and fidelity measures
for GAN s to quantify the quality of the synthetic data for RF applications need to be further explored.

As it is difficult to conduct statistical analyses over complex and high-dimensional data, these metrics
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would provide the necessary reliable methods to perform hyper-parameter optimization in training
GANSs and fairly compare different GAN architectures. Towards this goal, we have investigated five
of such metrics in this paper and showed that HR-P provided the best results for the outlier detection
problem.

Yet on another subject we touched upon previously, the topic of augmentation is controversial.
Some researchers strongly hold the belief that GAN-generated signals cannot be gainfully employed
to augment the training dataset. However, an interesting piece of news from NVIDIA, discussed
in [177], together with a short video worthwhile seeing, states that it is possible to reduce the
training sequence length 10x-20x by using data augmentation and GANSs. The particular application
is the creation of synthetic images from real ones and therefore the visual effect is strong. This was
achieved by employing a special technique with GANSs, explained in [178]. Additional works show
that, by using special techniques, it is possible to achieve data augmentation outside the statistics of
the short training sequence, see, e.g., [179]-[181]. There exist publications that make this statement
specifically for wireless applications, see, e.g., [13], [54], [80].

An inevitable question arises when GANSs are considered as a member of a large class of ML
algorithms. As shown in this paper, they have advantages in terms performance although it is not
clear that they are always the best. Considerations such as complexity, accuracy, robustness, etc.
should be taken into account in comparing them with other ML algorithms for use in the wireless
applications considered in this paper. To the best of our knowledge, such a study does not exist.
Any step taken towards this understanding will be very valuable.

GANSs can be applied to a number of emerging areas in communications. An example of this is
communications in the mmWave and THz bands. As long as the computational complexity of the
solution can be managed, what was discussed in this paper is applicable to communication networks
in those bands. We will discuss a number of works from the literature related to this fact. Reference
[182] discusses channel estimation for very large bandwidths operating in mmWave and THz bands
at low SNR. It proposes a GAN-based estimator that first learns to produce channel samples from the
unknown channel distribution via training the generative network, and then uses this trained network
as a prior to estimate the current channel. This estimator has been shown to work at an SNR of -5 dB
better than Least Squares (LS) and Linear Minimum Mean Square Estimate (LMMSE) estimators
at SNR values of 20 dB and 2.5 dB, respectively. Furthermore, this estimator reduces the required
number of pilots and does not require retraining even if the number of clusters and rays change

considerably. Channel estimation in the mmWave band is further discussed for the unmanned aerial
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vehicle (UAV) applications in [183], [184] and for vehicular systems in [185].

Another emerging area in communications is mobile edge computing. This is an area GANs have
applications in security. As discussed in [186], GANs can be used to design a security attack for
mobile edge computing. In this attack, a malicious participant can infer sensitive information from
a victim participant even with just a part of shared parameters from the victim [187], [186, Fig. 13].
For other applications of GANs in mobile edge computing, in security and privacy, see, e.g., [187],

[188].
VI. CONCLUSION

The proliferation of wireless services, in the forms of wireless local area networks, cellular
wireless, applications of the 10T, the tactile internet, autonomous cars, drones, factory automation,
and the general expectations under the umbrella of the Fourth Industrial Revolution place enormous
demands on wireless spectrum. Although new spectrum in the mmWave band is already being
regulated around the world, the expectations are such that spectrum scarcity will be with us beginning
in the very near future. Many experts in the field expect that forms of spectrum sharing will be
needed towards that purpose. It is well known that a common technique under consideration for
dynamic spectrum sharing is cognitive radio which can be used to address the problem of spectrum
sharing. However, conventional forms of cognitive radio will likely not be sufficient because of the
enormous dynamics of the problem. It is expected that the complexity of the problem will prohibit
conventional cognitive radio and forms of ML will have to be employed towards solving this very
difficult problem.

This paper addressed a particular ML solution, GANSs, towards that end. GANs are capable of
generating “fake” data that cannot be differentiated from “real” data, and thus to some extent they
capture the distribution of real signals. They are known to address competitive resource allocation
problems. Furthermore, they are known to be effective in detecting and mitigating anomalous
behavior. A survey of the use of GANs in spectrum sharing, anomaly detection, and addressing
security concerns is provided in this paper. In several cases discussed, it is demonstrated that GANs
have better performance in addressing the concerns stated above than the other ML algorithms.

It is generally accepted that wireless applications are increasing in quantity while wireless spectrum
is scarce and that ML solutions to address this problem are needed. GANs provide a framework for
such a set of solutions with proven success. Nevertheless, more work is needed to identify specific

problems and develop successful ML solutions, including those that involve GANS.
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In this section, we provide the parameters of the f~-AnoGAN and CAE used in the simulations in

Sec. IV.

Layer Name

| Details

Reshape layer

2D transposed convolution layer
Batch normalization
Leaky-ReLU

2D transposed convolution layer
Batch normalization
Leaky-ReLU

2D transposed convolution layer
Batch normalization
Leaky-ReLU

2D transposed convolution layer
Batch normalization
Leaky-ReLU

2D transposed convolution layer
Batch normalization
Leaky-ReLU

2D transposed convolution layer

(N,100) to (N,100,1,1)
1024 filters, kernel size of (2,4), stride of (1,1), no padding

a=0.2
512 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
256 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
128 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
64 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
1 filter; kernel size of (2,4), stride of (2,2), padding

Table 9: Generator architecture.
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Layer Name

Details

2D convolution layer
Leaky-ReLU

2D convolution layer
Batch normalization
Leaky-ReLU

2D convolution layer
Batch normalization
Leaky-ReLU

2D convolution layer
Batch normalization
Leaky-ReLU

2D convolution layer
Reshape layer
Linear layer

64 filters, kernel size of (2,4), stride of (2,2), padding
a=0.2
128 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
256 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
512 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2

1024 filters, kernel size of (2,4), stride of (2,2), padding
(N, 1024,2,4) to (N, 8192)

8192 neurons to 1 neuron

Table 10: Discriminator architecture.

Layer Name

Details

2D convolution layer
Leaky-ReLU

2D convolution layer

Batch normalization
Leaky-ReLU

2D convolution layer

Batch normalization
Leaky-ReLU

2D convolution layer

Batch normalization
Leaky-ReLU

2D convolution layer

Batch normalization
Leaky-ReLU

2D convolution layer
Reshape layer
Linear layer

Tanh

64 filters, kernel size of (2,4), stride of (2,2), padding
a=0.2
64 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
128 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
256 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
512 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
1024 filters, kernel size of (2,4), stride of (2,2), padding
(N,1024,2,2) to (N, 100)
4096 neurons to 1 neuron

Table 11: Encoder architecture of the f-AnoGAN system.
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Layer Name Details
2D convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Leaky-ReLLU a=0.2

2D convolution layer

Batch normalization
Leaky-ReLLU

2D convolution layer

Batch normalization
Leaky-ReLLU

2D convolution layer

Batch normalization
Leaky-ReLLU

2D convolution layer

Batch normalization
Leaky-ReLLU

2D convolution layer
Reshape layer

64 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
128 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
256 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
512 filters, kernel size of (2,4), stride of (2,2), padding

a=0.2
1024 filters, kernel size of (2,4), stride of (2,2), padding
(N, 1024,2,2) to (N,100)

Reshape layer

2D transposed convolution
Leaky-ReLLU

Batch normalization

2D transposed convolution
Leaky-ReLLU

Batch normalization

2D transposed convolution
Leaky-ReLLU

Batch normalization

2D transposed convolution
Leaky-ReLLU

Batch normalization

2D transposed convolution
Leaky-ReLLU

2D transposed convolution

layer

layer

layer

layer

layer

layer

(N,100) to (N,1024,2,2)
512 filters, kernel size of (1,2), stride of (1,2), padding
a=0.2

256 filters, kernel size of (1,2), stride of (1,2), no padding
a=0.2

128 filters, kernel size of (1,2), stride of (1,2), no padding
a=0.2

64 filters, kernel size of (1,2), stride of (1,2), no padding
a=0.2

64 filters, kernel size of (1,2), stride of (1,2), no padding
a=0.2
1 filter, kernel size of (1,2), stride of (1,2), no padding

Table 12: Convolutional Autoencoder (CAE) architecture.
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