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Abstract

Generative Adversarial Networks (GANs) are Machine Learning (ML) algorithms that have the ability

to address competitive resource allocation problems together with detection and mitigation of anomalous

behavior. In this paper, we investigate their use in next-generation (NextG) communications within the

context of cognitive networks to address i) spectrum sharing, ii) detecting anomalies, and iii) mitigating

security attacks. GANs have the following advantages. First, they can learn and synthesize field data, which

can be costly, time consuming, and nonrepeatable. Second, they enable pre-training classifiers by using semi-

supervised data. Third, they facilitate increased resolution. Fourth, they enable the recovery of corrupted bits

in the spectrum. The paper provides the basics of GANs, a comparative discussion on different kinds of GANs,

performance measures for GANs in computer vision and image processing as well as wireless applications,

a number of datasets for wireless applications, performance measures for general classifiers, a survey of

the literature on GANs for i)–iii) above, and future research directions. As a use case of GAN for nextG

communications, we show that a GAN can be effectively applied for anomaly detection in signal classification

(e.g., user authentication) outperforming another state-of-the-art ML technique such as an autoencoder.

Index Terms

Generative adversarial networks (GANs), conditional GANs, generative modeling, spectrum sharing,

anomaly detection, outlier detection, wireless security, unsupervised learning.

I. INTRODUCTION

The number of radios and their use are increasing exponentially. Over the last several years,

wireless data transmission has grown up by approximately 50% per year [1], [2]. This increase in

demand has largely been driven by novel applications such as streaming videos and social media on

smart devices, and has strained the ability of the limited available wireless spectrum to support it.

The coming era of the Internet-of-Things (IoT) and its anticipated goal of connecting tens of billions
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of devices via wireless will make this situation even more challenging for next-generation wireless

communication networks (NextG). Classical methods for medium access control and physical layer

operation, designed to handle a relatively small number of users in a given space-time-frequency

resource, will soon be overwhelmed and alternatives must be sought.

Wireless systems of the future are anticipated to share the available spectrum rather than operating

with exclusive assigned frequencies. It is generally expected that this sharing will be across all

possible dimensions, including space, time, and frequency, and will involve a huge quantity of

interactions among a very large number of radios. Flexible methods will be needed to efficiently use

the limited available resources, quickly adapting themselves to changing environments and Quality-

of-Service (QoS) requirements. This will be true even as wireless systems move to higher frequencies

(such as anticipated for mmWave and THz bands) where available bandwidth is more abundant. Due

to shorter propagation distances and the increased prevalence of blockages, it will require networks

to continually reconfigure themselves via handoffs, cooperative relaying, beamforming, and so on.

Given the exponentially increasing demand for wireless connectivity and the inevitable increase in

the complexity of the networks that will supply it, it is no surprise that research is turning towards

data-driven techniques of Artificial Intelligence (AI) and Machine Learning (ML) techniques for

help in addressing these issues by learning from the spectrum data and solve complex tasks.

The Defense Advanced Research Projects Agency (DARPA) recently built a testbed named Colos-

seum for testing shared-spectrum communication systems [1], [2]. The vision is to emulate more

than 65,000 unique interactions, such as text messages or video streams, among 128 radios at once.

This testbed is built with the full expectation that the type of complicated spectrum sharing scenario

described above is likely and can be efficiently managed by AI [1], [2].

There are two possible ways of sharing spectrum. One is an open access model, that is similar

to an unlicensed band, such as the Industrial, Scientific, and Medical (ISM) band. A more desirable

model from an interference viewpoint is known as the hierarchical access model, or the cognitive

radio network. When the cognitive radio concept was first proposed, learning was already considered

to be essential for its operation [3], [4]. There are three reasons why considering ML for cognitive

radio is important. First, as discussed in [1], [2], due to the expected numbers of wireless devices

and the complexity of the services they provide, the learning process suggested in [3], [4] cannot

be managed by classical model-based techniques, and will need to employ ML algorithms. Second,

for complex radios with many inputs and many outputs, a very large number of actions will be

necessary to account for all possible radio states. In the past, most cognitive radio research focused
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on radios that are hard-coded to manage these states. ML provides an opportunity for a learning

engine to auto-generate these actions, rather than pre-programming them [5]. Third, ML provides

a framework in which to incorporate memory from past actions and results into current operations,

and thus more quickly adapt to changing conditions in the future [5].

As ML techniques rely on the availability of representative data, it has become imperative to

generate and curate data samples for training and testing of spectrum operations. To that end, synthetic

data can be generated to help with ML training and testing processes, when there is a lack of sufficient

number of real data samples. Building upon recent advances in deep neural networks, Generative

Adversarial Networks (GANs) have been originally introduced to generate synthetic data that cannot

be distinguished from real data [6]. One direct use case of GANs is to generate synthetic training data

samples for data augmentation purposes to strengthen the training process of ML algorithms. Later,

the use of GANs has been extended to support domain adaptation, defend against adversarial attacks,

enable unsupervised learning of data, detect anomalies embedded in rich data representations, and

security applications. As far as defending against adversarial attacks, GANs are capable of generating

adversarial samples. These can be used for network attacks that may be missed by the ML detector.

Or, they can be added to the training set to help the ML detector adjust its classification boundary

in order to acquire better detection capabilities.

While these use cases also apply in wireless communication systems, their effective application

hinges upon careful account of wireless communication characteristics:

1) Training data for wireless communications is typically limited. There are sensing limitations

regarding sampling rate (due to hardware effects) and time spent for sensing (balancing

the sensing-communication tradeoff). Therefore, GANs can be used to augment the training

data for wireless applications, such as spectrum sensing and wireless signal detection and

classification (e.g., jammer identification) when the Radio Frequency (RF) data typically

involves uncertainties due to noise, channel, traffic, and interference effects [7].

2) Wireless data is heavily environment dependent. For example, the training data collected in a

laboratory environment (e.g., indoor) does not necessarily match channel characteristics in test

time (e.g., outdoor). Therefore, the adaptation of test or training data to channel conditions

raises the need for domain adaptation with GANs [8].

3) Signal spoofing is a key element of wireless security that poses threats for infiltration through

signal/user authentication systems, and can be alternatively used to set up decoys/honeypots

from the defense point of view [9], [10].



4

4) Wireless communication systems are subject to attacks due to the open nature of wireless

spectrum and anomalies due to hardware impairments and intended/unintended interference.

GANs can be used to protect wireless communications against attacks and detect anomalies.

The unique characteristics of wireless communication systems that need to be considered for the

GAN applications are summarized as follows.

1) The input to the GAN is (real) RF data that is highly complex and dynamic, subject to noise,

channel, traffic, and interference effects. Statistical modeling may not be effective to represent

the spectrum data. Therefore, the complex structures of deep neural networks in the GAN

formulation can be effectively used to represent the spectrum data [11]–[13].

2) The format of the RF data is not universal (like pixels in computer vision) and may vary from

time series of in-phase/quadrature components (I/Qs) or Received Signal Strength Indicators

(RSSIs) to frequency domain representations.

3) The generator and the discriminator of the GAN may need to be distributed at transmitter

and receiver, respectively, as data transmission and the corresponding reception need to be

separated through a wireless channel in online applications. In this context, the message

exchange between the generator and the discriminator may be executed over noisy wireless

channels.

4) While training the GAN, the RF data itself as well as communication channels between the

generator and the discriminator may change due to the limited coherence time of channel

conditions [9], [10].

Contributions of the paper are as follows. Sec. II introduces the basics of GANs and a number

of alternative GAN structures, together with their underlying mathematics. GAN structures were

originally developed for computer vision and image processing. This paper is on adopting them

for applications in NextG wireless communications. To that end, Sec. III first discusses performance

measures used in computer vision and image processing. It introduces performance measures that can

be used in wireless applications since the former measures cannot be used in this field. It introduces

public datasets that can be employed in wireless applications. It also discusses performance measures

for general classifiers, including wireless classifiers. It discusses the use of GANs to extend a given

dataset, called data augmentation. Furthermore, Sec. III introduces a number of GAN techniques that

have been used in spectrum sharing, anomaly detection, and security for NextG wireless. A summary

of these is available in Table 7. Sec. IV presents an anomaly detection problem for the modulation

classification task and presents our results where we solve this problem using two unsupervised deep
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learning methods, a GAN-based and an autoencoder-based algorithm. We also provide interpretations

of the results, tradeoffs between the two approaches, and implementation details. Sec. V provides

a discussion of a number of potential future research directions, including their challenges. Finally,

Sec. VI provides our conclusions.

II. PRELIMINARIES ON GENERATIVE ADVERSARIAL NETWORKS

Generator

Discriminator
Training set

Random
noise

Fake image

Fake

Real

Fig. 1: Generative Adversarial Network (GAN) with image gen-
eration application [14].

GANs were introduced in 2014 [6], [14],

and belong to the class of deep-learning-

based generative models. Generative mod-

eling is an unsupervised ML task that

involves automatically discovering the reg-

ularities or patterns in input data in such a

way that the model can be used to generate

new samples that cannot be discriminated

from the original dataset. Facebook’s Di-

rector of Artificial Intelligence Research Yann Le Cunn is famously known to have said in June

2016 that “GANs and the variations that are now being proposed is the most interesting idea in the

last 10 years in ML, in my opinion.” Given the many subsequent applications of GANs in different

fields, some of which we discuss below, it is difficult to argue with this opinion.

GANs train a generative model by decomposing the problem into two sub-models, as depicted

in Fig. 1. The first is a generator network trained to generate new examples, while the second is

a discriminator network that tries to classify examples as either real (from the domain) or fake

(generated). The two models are jointly trained that continues until the generator network learns to

synthesize plausible samples that cannot be distinguished from real data.

GANs and their variations have been used in a variety of applications. A few examples include

creation of synthetic human faces [15]–[17] and transforming images from one domain (e.g., real

scenery) to another domain (paintings by famous painters) [18]. Other examples of image-to-image

translation in [18] include conversion of horse pictures to pictures of zebras and vice versa, pictures

of summer scenery to pictures of the same scenery in winter, etc. Further applications include face

aging [19], creation of super-resolution images from those of low resolution [20], music generation

[21], audio synthesis [22], and video synthesis [23]. More relevant to this paper, GANs have been

applied to problems in spectrum sensing and security in wireless networks, e.g., [8], [9], [11], [24]–

[27], and these will be discussed in more detail below. A list of the many different applications of
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GANs is available in [28].

To describe how GANs are trained, let x belong to the manifold of the real input data with

distribution pdata(x), and let z belong to the latent or noise prior space with distribution pZ(z).

Further, let G be a differentiable function representing the generator with input z, and let D be a

differentiable function representing the discriminator with input x or G(z), where the output of D

is mapped to the interval [0, 1]. Now consider the function

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pZ(z)[log(1−D(G(z)))] . (1)

The first term increases when the real samples are more correctly classified, while the second term

increases as the discriminator more successfully identifies the generated samples as fake. Thus,

the discriminator D acts to maximize (1). On the other hand, G attempts to minimize (1), that is

equivalent to minimizing just the second term, which increases the likelihood that the discriminator

is fooled. This leads to a minimax optimization in which D and G work against each other to achieve

the equivalent of a Nash equilibrium point [6], [29]:

min
G

max
D

V (D,G) . (2)

The two optimizations in (2) are carried out by employing neural networks and backpropagation via

gradient ascent and gradient descent, which is possible since D and G are differentiable.

Given a batch {xi, zi}ni=1 of training data and samples from the latent space, we can convert the

optimization expressed via (1) and (2) into the optimization of two cost functions, for D and G,

respectively, as

JD = − 1

n

( n∑
i=1

logD(xi) +
n∑

i=1

log(1−D(G(zi))

)
, JG = − 1

n

n∑
i=1

log
(
1−D(G(zi))

)
. (3)

Details on implementing (3) with a neural network and gradient ascent and descent to train the

GAN can be found in [6, Algorithm 1]. Note that by substituting the criterion in (1)–(2) with that

in (3), an implicit assumption of ergodicity, or ensemble averages being equal to time averages, is

made. This assumption, common in signal processing and communications, will be made again in

the sequel.

Additional information that is correlated with the input data, such as class labels, can be used

to improve GAN performance, either in the form of more stable or faster training, or generated

images that have better quality. Such conditional GANs (CGANs) are trained in such a way that

both the generator and the discriminator models are conditioned on the class label, so that when

the trained generator is used as a standalone model to generate samples in the domain, samples



7

of a given type can be generated [30]. For example, in the synthesis of faces one could focus on

generating a female face, or one could convert a summer scene into a winter scene, etc. Popular

face aging applications are also based on this principle. To describe this approach, let y represent

extra information on which the generator and discriminator are conditioned. One can perform the

conditioning by feeding y into both the discriminator and generator as additional input layer. As

mentioned above, the information y could be in the form of a class label, leading to a so-called

class-conditional GAN, or some other kind of input such as a single image, in the case the GAN is

performing an image-to-image translation task. Letting y represent a potentially multidimensional

label from a distribution pY(y), the optimization in (1) and (2) becomes

min
G

max
D

Ex,y∼pdata(x,y)[logD(x,y)] + Ey∼pY(y),z∼pZ(z)[log(1−D(G(z,y),y))] (4)

for CGANs, with (3) updated in a straightforward fashion based on (4).

A number of other GAN formulations exist beyond those mentioned above. For example, in the

Least-Squares GAN (LSGAN) [31], the objective functions become

min
D

{Ex∼pdata(x)[(D(x)− a)2] + Ez∼pZ(z)[(D(G(z))− b)2]}, min
G

Ez∼pZ(z)[(D(G(z))− c)2], (5)

where a and b represent labels for real data and fake data, respectively, and c be the value that G

wants D to believe for fake data. Reference [27] employs an LSGAN with a = −b = 1 and c = 0.

Another variation is known as Wasserstein GAN (WGAN) [32], which employs the loss function

min
G

max
D∈D

Ex∼pdata(x)[D(x)]− Ez∼pZ(z)[D(G(z))], (6)

where D is a set referred to as the set of 1-Lipshitz functions. Reference [33] removes the condition

D ∈ D but adds an additional term for stability, repeatability, and predictable behavior during the

training process. Reference [11] employs a WGAN with the additional term proposed in [33]. An

alternative way to enforce the Lipshitz constraint is to add a penalty on the gradient norm for random

samples x̂ ∼ pX̂ , and the updated loss function can be expressed as

min
G

max
D∈D

Ex∼pdata(x)[D(x)]− Ez∼pZ(z)[D(G(z))] + λEx̂∼pX̂(x̂)

[
(∥∇x̂D(x̂)∥2 − 1)2

]
. (7)

This approach is known as WGAN with gradient penalty (WGAN-GP) [33] and it provides stability

and predictable behavior during the GAN training process.

A. Anomaly Detection by Using GANs

One area of particular importance where GANs have been applied is in anomaly detection, which

is the task of discovering anomalies, or patterns in the data that do not conform to “normal behavior.”

While the use of GANs is based on modeling normal behavior using the adversarial training process,
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Fig. 2: The structure of BiGAN [34].

an anomaly score based on this model can be calculated and employed for anomaly detection.

Several GAN-based approaches for anomaly detection have been published, all of which employ the

technique of Adversarial Feature Learning idea [34]. This idea makes use of a novel architecture

referred to as bidirectional GANs, or BiGANs.

BiGANs add an inverse mapping from the data space to the latent distribution, from which regular

GANs generate artificial samples. The overall model is depicted in Fig. 2. A BiGAN includes an

encoder E which maps data x to latent representations z, in addition to the generator G employed by

the standard GAN architecture [34]. The BiGAN discriminator D discriminates not only in data space

(x versus G(z)), but jointly in both the data and latent space (tuples (x;E(x)) versus (G(z); z)),

where the latent component is either an encoder output E(x) or a generator input z.

The two modules E and G do not directly “communicate” with one another: the encoder never

“sees” generator outputs (E(G(z)) is not computed), and vice versa. However, it is shown in [34] that

the encoder and generator must learn to invert one another in order to fool the BiGAN discriminator.

In other words, E learns the inverse of the generator E = G−1. The encoder E is a nonlinear

parametric function in the same way as G and D, and can be trained using a standard learning

algorithm such as gradient descent. A latent representation z may be thought of as a “label” for

x, but one which came for “free,” without the need for supervision. As discussed in [34], BiGANs

make no assumptions about the structure or type of data to which they are applied.

In this paper, we will focus on three GAN architectures that conceptually employ the inverse gen-

erator concept of BiGANs. These are the AnoGAN [35], Efficient GAN-Based Anomaly Detection

(EGBAD) [36], and a GAN + autoencoder approach [37]. AnoGAN is a deep convolutional GAN

that learns a manifold of normal variability, together with a scoring scheme that labels anomalies

based on the mapping from the image to the latent space. For results on medical imaging data,

see [35]. Given a query image x, the algorithm iterates through points in the latent space to find a

representation G(z) that is close to x. The algorithm begins by choosing a random point z1 in the

latent space, and generates a data sample G(z1). The algorithm then proceeds through a number of
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points z1, z2, . . . , zΓ based on the following loss function:

L(zγ) = (1− λ)LR(zγ) + λLD(zγ) , (8)

where

LR(zγ) = ∥x−G(zγ)∥1 (9)

is the residual loss, and

LD(zγ) = ∥f(x)− f(G(zγ))∥1 (10)

is the discriminator loss, where f is the output of one of the layers of the multilayer perceptron and

0 < λ < 1 is an interpolation coefficient. The residual loss enforces similarity between the query

data x and the generated data G(zλ), while the discrimination loss constrains the generated data

to lie near the learned manifold X [38]. For each γ = 2, 3, . . . ,Γ, zγ is calculated by iteratively

minimizing (8) via backpropagation steps. The iteration is on zγ , the coefficients of G and D are

not changed. The approach of using a linear combination of two loss functions (9) and (10) that

employ the L1 norm for training a deep neural network is different than the approaches discussed

earlier for training GANs and CGANs. This approach originated with [39] and was adapted in [35].

Implementing the AnoGAN optimization over Γ steps results in a relatively high computational

load. The EGBAD approach [36] was developed as a more efficient alternative and is based on the

methods in [34], [40], which enable learning an encoder E by mapping input samples to their latent

representation during adversarial training. GANomaly [37] is designed to be an improvement over

[34]–[36] in terms of both performance and speed. The algorithm trains a generator network to learn

the manifold of the input samples while at the same time training an autoencoder to encode the data

in their latent representation. This approach uses a discriminator, a decoder, and two encoders, but

the encoders have the same architecture. We describe this approach in more detail below.

As shown in Fig. 3–4, the generator network has three elements in series: an encoder GE , a

decoder GD, and another encoder E. The combination of GE and GD forms an autoencoder that

functions as the generator G. The encoder E has the same structure as GE . GE takes the data sample

x and generates an encoded version z in the latent space. Then GD employs z to create x̂, which is

a reconstructed form of x. Finally, x̂ is used to generate another point in the latent space, ẑ. Three

loss functions are defined, which are combined to generate the overall generator loss. The first is

the adversarial loss Ladv,

Ladv = Ex∼pX(x)∥f(x)− Ex∼pX(x)f(G(x))∥2 = ∥f(x)− f(x̂)∥2 , (11)
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x̂

z ẑ
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Lenc = ∥z− ẑ∥2
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Ladv = ∥f(x)− f(x̂)∥2

Fig. 3: Simplified single-dimensional architecture representation of GANomaly. Multiple blocks in series represent
two-dimensional convolutional encoders and single blocks are for providing two-dimensional input-output [37].

where f is the output of an intermediate layer in the multi-layer perceptron. The second loss function

is the contextual loss and is given by

Lcon = Ex∼pX∥x−G(x)∥1 = ∥x− x̂∥1 , (12)

and the third is the encoder loss

Lenc = Ex∼pX(x)∥GE(x)− E(G(x))∥2 = ∥z− ẑ∥2. (13)

Finally, the generator loss is given as

L = wadvLadv + wconLcon + wencLenc , (14)

where wadv, wcon, and wenc are coefficients between 0 and 1 that sum to 1. During the test stage,

the model uses Lenc given in (13) for scoring the abnormality A(x̂) of a given image:

A(x̂) = ∥GE(x̂)− E(G(x̂))∥1. (15)

In order to make the anomaly score easier to interpret, [37] proposes to compute it for every

sample x̂ in the test set D̂ to obtain the set S = {si : A(x̂, x̂ ∈ D̂} of individual anomaly scores,

real/fake

A B C

D(x, x̂) D(x, x̂) D(x, x̂)

z

xE(x)

x̂ x̂G(z) E(x̂)x̂G(z) ẑGD(z)GE(x)z

x

xz

ẑ

Fig. 4: Comparison of GANs for anomaly detection for computer vision and image processing applications, A: AnoGAN
[35], B: EGBAD [36], C: GANomaly [37]. Two-dimensional convolutional encoders and input-output devices are depicted
as single-dimensional blocks for simplicity without any loss in functionality.
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Abbreviation Application Comment Reference
GAN General Employs (1)-(3). Structure in Fig. 1. [6], [14]
CGAN Conditional GAN. Employs (4). [30]
LSGAN Least Squares GAN. Employs (5). [31]
WGAN Wasserstein GAN. Employs (6). [32]
WGAN-GP Gradient Penalty WGAN. Employs (7). [33]
BiGAN Anomaly Detection Bidirectional GAN. Structure in Fig. 2. [34]
AnoGAN Anomaly GAN. Employs (8)-(10). [35]
EGBAD Efficient GAN-Based Anomaly Detection. [36]
GANomaly GAN+Autoencoder. Employs (11)-(16). Structure in Fig. 3. [37]

Table 1: Different versions of GANs used in computer vision and image processing applications. Note that Fig. 4
compares the structures of AnoGAN, EGBAD, and GANomaly. Which of GAN, CGAN, LSGAN, WGAN, or WGAN-
GP is preferable depends on the application. For the tradeoffs among the versions used in anomaly detection, see the
text.

and then apply a scaling to force the scores to lie within the range [0, 1]:

s′i =
si −min(S)

max(S)−min(S)
. (16)

Fig. 4 shows a comparison of the architectures of the three GAN-based anomaly detection

algorithms discussed above. Experiments show that EGBAD is faster than AnoGAN, and that

GANomaly achieves better performance and speed than EGBAD [37], [41]. Table 1 provides a

summary of GAN versions used for computer vision and image processing applications.

III. APPLICATION OF GANS TO 5G AND BEYOND

In what follows, we will first discuss, in Sec. III-A, measures of performance and specific

issues that have to do with applying GANs first to computer vision and image processing and

then to wireless applications. We will discuss public datasets available for enabling the training

and benchmarking the performance of GANs in the wireless domain. In the same section, we will

discuss measures for general classifier performance. We will specifically use these measures in

wireless classifier applications. In Sec. III-B, we will discuss the technique of data augmentation by

using GANs, which can be employed in the following three sections. Then, in Sec. III-C–Sec. III-E,

we will discuss fast, accurate, and robust methods for analyzing large quantities of spectrum data

in order to identify opportunities for i) spectrum sharing, ii) detecting anomalies, and iii) mitigating

security attacks, respectively.

A. Performance Measures for GANs and General Classifiers

We will now discuss performance measures for GANs, first for computer vision and image

processing, and then for wireless applications, and finally, general classifiers. There are basically two

measures of the quality of images generated by GANs for computer vision and image processing

applications. These are Inception Score (IS) [38] and Fréchet Inception Distance (FID) [42], [43]. IS
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offers a way to objectively and quantitatively evaluate the quality of generated images by a GAN. It is

generally considered that this score is well-correlated with scores from human observers. Similarly,

FID is used to evaluate the quality of images generated by GANs. FID compares the mean and

standard deviation of one of the deeper layers in a Convolutional Neural Network (CNN) named

Inception-v3. These layers are closer to output nodes and are believed to mimic human perception

of similarity in images. Clearly, these two measures are useless for wireless applications. They need

to be replaced with measures meaningful in the context of wireless communications.

For wireless applications, the goal is to calculate the similarity of two probability densities. A

commonly used measure towards that end is the Jensen-Shannon distance, which is the square root of

the Jensen-Shannon divergence [44]. Jensen-Shannon divergence, on the other hand, is a symmetric

form of the well-known Kullback-Leibler divergence [45].

In passing, we would like to state that to facilitate the training of GANs in the wireless domain

and benchmark the performance of GANs, there are increasingly more public datasets available.

Examples of such sets are RADIOML 2016.04C, RADIOML 2016.10A, RADIOML 2018.01A by

DeepSig [46], RFMLS 2016a by DARPA [47], CBRS by NIST [48], and synthetic data generated

by GNU Radio [49].

To measure the performance of any classifier, Probability of Detection (PD) and Probability

of False Alarm (PFA) are calculated. Then, the Receiver Operating Characteristics (ROC), which

plot PD against PFA are drawn [50]. A commonly used measure is Area Under Curve of the

ROC (AUROC). Accuracy (ACC) is defined as the ratio of the correct classifications to the total

classifications. It can be calculated as Accuracy = (True Positives + True Negatives)/ (True Positives

+ False Positives + True Negatives + False Negatives). Furthermore, the variables Precision, Recall,

and F1 Score determine the success of a binary classification problem. Precision equals the ratio

of the true positives to total (true and false) classified positives. Recall equals the number of true

positives to the sum of true positives and false negatives. Precision is a good measure to employ

when the cost of the false positive is high whereas Recall is a good measure when the cost of the

false negative is high. F1 Score, the harmonic mean [51] of Precision and Recall [52], is employed

when it is desired to have a balance between Precision and Recall. All three measures take values

between 0 and 1. For a given classification system, it is desirable that each be as close to 1 as

possible. Please see Sec. IV for combinations of these quantities and the definitions of Density and

Coverage in [53].

An important lesson learned in this subsection is that while it is desirable to employ GAN struc-
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tures from computer vision and image processing for NextG wireless applications, the performance

measures in the two fields are different.

B. Data Augmentation via GANs for NextG

By recognizing that supervised ML requires significant number of training data samples and it is

expensive and likely even infeasible to collect a sufficiently comprehensive and representative set

of training data, [8] provides training data augmentation by adding synthetic data to an existing

training set. This is achieved by a workflow of three steps. In the first step, a CGAN is trained

using real training samples. In this step, the generator learns to synthesize new data samples. In the

second step, the synthetic data samples are used along with the real samples to train a classifier. In

the third step, as new data comes in, the classifier is used for classification purposes. The authors of

[8] show that this approach significantly improves the adaptation time and accuracy of the resulting

spectrum sensing.

In an attempt to come up with a good modulation recognition technique, [54] employs Auxiliary

Classifier GANs (AC-GANs) [55] after a density transformation of the signal called Contour Stellar

Image to enhance the performance of CNNs. Although employing a training sequence whose length

is 10% of another algorithm, [54] achieves up to 6% gain in the recognition performance of the test

sequence.

Reference [13] investigates training data augmentation for deep learning RF systems by asking

basic questions about the augmentation process. The paper concentrates on the Automatic Mod-

ulation Classification (AMC) problem. These questions are: i) how useful a synthetically trained

system will be when deployed without considering the environment within the synthesis, ii) how

can augmentation be leveraged within the RF ML domain, and iii) what impact knowledge of

degradations to the signal caused by the transmission channel contributes to the performance of a

system. The results show that for data generation to a higher fidelity, the propagation path from the

Digital-to-Analog Converter (DAC) to the Analog-to-Digital Converter (ADC) must be investigated

and modeled. Second, although augmentation provides savings in terms of time and money, the

authors suggest a cost analysis to achieve a balance between the two. Finally, a methodology is

established for the quantity of data needed.

A lesson that should be derived here is that GANs can generate synthetic training data and thus

augment the training set in ML. We will discuss this topic in more detail in Sec. V.
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C. Spectrum Sharing

As NextG networks rely on the co-existence of heterogeneous networks such as cellular and non-

terrestrial networks, and radar systems, spectrum sharing is expected to play a major role in NextG

communications and radar systems, while relying on ML techniques to identify and make use of

spectrum opportunities. One particular example is Citizens Broadband Radio Service (CBRS) band

at 3.5 GHz where the cellular wireless system needs to share the spectrum with the tactical radar

while avoiding mutual interference [56]. As such, the use of ML for spectrum sensing problems is

currently a growing area of interest, as evidenced in the survey [57] which summarizes results from

[58]–[67]. The work reported in [58]–[61] focuses on ML issues including optimization of supervised

classifiers, reduction of the feature space dimension, reduction of interference, and minimization of

the number of sensors, respectively. Attacker detection and minimization of sensing time, delay,

and operations in collaborative spectrum sensing are discussed in [62], [63]. Techniques that target

Spectrum Sensing Data Falsification (SSDF) are developed in [64]–[67]. Furthermore, [68]–[71]

discuss the use of neural networks for spectrum sensing under low Signal-to-Noise Ratio (SNR)

conditions. References [72], [73] discuss employing neural networks for spectrum sensing in the

face of parameter uncertainties in the transmitted signals.

Spectrum sharing techniques can be broadly characterized as belonging to open sharing or hi-

erarchical access models [74]–[76]. In the open sharing model, each network accesses the same

spectrum without any interference constraint from one network to its peers. The unlicensed band is

an example of this model. The hierarchical or cognitive radio model consists of a primary network

and a secondary network that accesses the primary spectrum without interfering with the Primary

Users (PUs). We will focus on the concept of cognitive radio networks in order to achieve efficient

spectrum sharing via ML, using the classification from [77] to organize potential approaches to

spectrum sharing in cognitive radio networks. In this classification, spectrum sharing techniques are

categorized as either underlay, overlay, or interweave.

Table 2 summarizes the basic characteristics of underlay, overlay, and interweave techniques [77].

In the underlay technique, a Secondary User (SU) needs to be aware of the channels for all active PUs

in order to know if the interference it generates will be below an acceptable limit. This consideration

limits its transmit power. For the overlay technique, in addition to the PU channel characteris-

tics, the SU also knows the codebooks and messages of the active PUs. The SU can transmit at
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Underlay Overlay Interweave
SU knows the channel strengths SU knows the channel gains, When PU is not using the spectrum,
of PU codebooks, and messages of PU SU knows the spectral holes in

space, time, or frequency
As long as the interference is below SU can simultaneously transmit SU can simultaneously transmit
an acceptable limit, SU can with PU; interference to PU with PU only in the case of false
simultaneously transmit with PU can be offset by using part of spectral hole detection

SU’s power to relay PU’s message
SU’s transmit power is limited by SU can transmit at any power; SU’s power is limited by the
the interference constraint the interference to PU can be range of its spectral holes

offset by relaying PU’s message

Table 2: Characteristics of underlay, overlay, and interweave techniques for cognitive radio networks [76], [77].

Time

Power Frequency
Spectra
in Use

Dynamic
Spectrum
Access

Spectrum Holes

Spectra
in Use

Fig. 5: Holes in frequency and time domains [78].

Persistent signals

Spectrum in use

Dynamic 

spectrum access

Fig. 6: Spectrum usage in a shared band and spectrum holes
in the frequency (vertical) and time (horizontal) domains
enabling dynamic spectrum access. For the figure, spectrum
sensing is done by HackRF Software Defined Radio (SDR),
and QSpectrumAnalyzer library is used for the real-time data
visualization.

any power, but to offset the interference it

causes to the PUs, it relays their transmitted

messages. In the interweave technique, the goal

is to opportunistically communicate in the spec-

trum holes, or more generally the space-time-

frequency voids that are not in use by either

licensed and unlicensed users. As depicted in

Fig. 5, these voids change with frequency and

time. The interweave technique requires peri-

odic monitoring of the spectrum for detection

of user activity, so that the SU can transmit

opportunistically over the space-time-frequency

voids with minimal interference. All of the

above approaches can benefit from SUs em-

ploying directional antennas or beamforming for

more flexible control of the interference. Fig. 6

depicts spectrum sensing by a Software Defined

Radio (SDR) in an actual setting.

For this research topic, implementing the

spectrum sensing task using a GAN-based technique as in [8] is an interesting and potentially

useful first step. It provides domain adaptation by creating synthetic data that enables the classifier

to quickly adapt to changes in the spectrum environment. The approach in [8] can be extended to

exploit voids in all possible dimensions including space, time, and frequency, which is of particular

importance to interweave cognitive radios. To extend the research in this direction, an approach based
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on CGANs that emphasizes specific subsets of the space, time, and frequency spectrum using specific

domain knowledge can be employed. For example, an approach based on CGANs, conditioned on

specific subsets of the space, time, and frequency using specific domain knowledge can be employed.

Such a CGAN will be able to generate synthetic data that is specific to certain “labels” that correspond

for example to known locations (e.g., hot spots), time periods (e.g., rush hour), or occupancy patterns

of certain frequency bands. A further step in this direction is the investigation of the performance of

the algorithms in the presence of low SNR as in [68]–[71] and parameter uncertainties as in [72],

[73].

The approach in [8] consists of the following three steps: i) training a GAN using real training

samples so that the generator learns to synthesize new samples, ii) training of a classifier with

augmented data so that the original and limited training set is expanded with synthetic data, and,

iii) regular operation by classifying data using the trained model. It is possible to extend this

approach by training a CGAN for more typical scenarios, such as known locations, time periods, and

occupancy patterns of certain bands, as discussed in the previous paragraph. In this context, unlike

[8], it is possible to make a comparison of this ML-based approach with conventional narrowband

spectrum sensing techniques based on energy detection, cyclostationary feature detection, matched

filter detection, and wideband spectrum sensing techniques such as compressed sensing [57], [79]

in terms of performance and complexity, specifically in the three areas discussed in Sec. I.

In addition to [13] discussed in Sec. III-B, another work on the AMC problem is provided in [80].

This work uses a modified version of CGAN and AC-GAN, which is operated in a semi-supervised

(not unsupervised) mode. The modifications are needed to solve the following problems: i) the

complexity of the modulation signals cause non-convergence due to the mapping from the high-

dimensional parameter space to the low-dimensional classification space, and ii) lack of diversity of

the generated samples cause mode collapse. Mode collapse is defined as the difficulty in convergence,

especially during the training process, due to conditional constraints. The modifications consist of

an encoder block E, a transform block T , and the splitting of the classification and discrimination

functions of the conventional discriminator D by adding an explicit classifier C [80, Fig. 1]. The

encoder E and the transform T are inspired by Conditional Variational Autoencoder (CVAE) [81] and

Spatial Transformer Network (STN) [82], respectively. The definition of the loss functions involving

all the blocks and their optimization expressions are given in [80, Eq. (10)-(20)]. To evaluate the

performance of the system, the synthetic dataset in [49] is used. This dataset contains signals of eleven

modulation modes at SNRs ranging from -20 dB to 20 dB, with channel distortion, frequency offset,
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phase offset, and Gaussian noise added. Comparisons with a number of well-known deep learning

methods show gains in classification accuracy of up to 12%.

An important implementation technique for NextG networks is Cooperative Spectrum Sensing

(CSS), where a number of SUs cooperate to improve sensing performance. CSS can be implemented

using either a centralized or a distributed approach. In centralized sensing, the SUs send their sensing

information to a Fusion Center (FC) that makes the sensing decision and broadcasts this information

back to all SUs. In distributed sensing, the SUs share sensing information among each other and

make independent sensing decisions locally. In both approaches, the SUs can either transmit their

individual sensing decisions or soft information in the form of partial statistics. The information

combining schemes used by the FC or SUs can be categorized as either hard or soft combining

schemes. The most common hard combining algorithms are AND combining, OR combining, M -out-

of-N combining, and quantized hard combining, while soft combining algorithms include selection

combining, maximal ratio combining, equal gain combining, and square law combining [83]. The

soft combining approach provides the best detection performance, but at the cost of additional control

channel overhead.

It is desirable to extend the technique described above to include CSS. In one implementation,

GANs can be placed at the SUs and classifications can be combined at the FC. An alternative is to

have the SUs transmit partial statistics to be used by a single GAN at the FC. In this regard, it is

worthwhile to investigate schemes that will employ combinations of centralized versus distributed

CSS with hard or soft decisions. The number of combinations is high but it should be possible to

reach quick conclusions. The main interest in this activity is to determine the optimal placement for

GANs in interweave networks, and how much performance improvement they can provide.

There is an important lesson that can be drawn from this subsection. Due to the tremendous

number of users and applications in NextG networks, spectrum sharing will need to be carried out

in a dynamic environment employing principles of cognitive networking. The goal is to determine

the voids based on time, frequency, and space and exploit them to accomodate more users. Two

specific techniques for spectrum sharing based on GANs are discussed in [8], [80] and summarized

in this subsection.

D. Detecting Anomalies

In a GAN, the generator captures the distribution of the training data, and the discriminator

can detect false from real, making a GAN an attractive ML technique for anomaly detection. This

observation has led to a number of anomaly detection techniques employing GANs [84]–[93]. These
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Model Precision Recall F1 Score
OC-SVM [105] 0.7457 0.8523 0.7954
DSEBM-r [105] 0.8521 0.6472 0.7328
DSEBM-e [105] 0.8619 0.6446 0.7399
DAGMM-NVI [106] 0.9290 0.9447 0.9368
BiGAN [36] 0.9363 0.9512 0.9437
PCA+BiGAN [103] 0.9442 0.9592 0.9516

Table 3: Performance of the five anomaly detection algorithms on the KDDCUP-99 dataset [103]. OC-SVM: One-Class
Support Vector Machine [105], DSEBM-r: Deep Structured Energy-Based Model - using reconstruction error [105],
DSEBM-e: Deep Structured Energy-Based Model - using energy [105], DAGMM-NVI: Deep Autoencoding Gaussian
Mixture Model with Neural Variational Inference [106].

applications are typically for various forms of image processing. There are some recent applications

of using adversarial networks for anomaly detection in cyber-physical systems [94], [95], fraud

detection in banking [96]–[99], driver assistance systems [100], air surveillance [101], prognostics

and health management in the aeronautics industry [102], and network traffic anomaly detection

[103].

We will briefly discuss [103] since it is related to network anomaly detection. This work proposes

BiGAN in conjunction with Principal Component Analysis (PCA) for network anomaly detection

using the KDDCUP-99 dataset [104]. This database includes a wide variety of intrusions simulated

in a military network environment used for a competition during a conference to build a network

intrusion detector, a predictive model capable of distinguishing between “bad” connections, called

intrusions or attacks, and “good” normal connections [104].

A number of works exist that study anomaly detection in cognitive radio networks with con-

ventional methods [107]–[113] and with ML [114]–[120]. We refer the reader to [120] for brief

descriptions of [115]–[119]. These works provide an introduction to this field, with the important

observation that GAN-based methods tend to provide better results in general. However, it is certain

that existing research in this area is still limited, and this provides an opportunity for significant

contributions.

In [114], an adversarial autoencoder was implemented for wireless spectrum anomaly detection

[121], which uses ideas similar to a GAN. We will go beyond this approach and leverage the

advantages provided by AnoGAN, EGBAD, and GANomaly. We provide details here on an approach

using GANomaly, although similar anomaly scores can be defined for other architectures. Consider

a collection of received data vectors XN , whose elements are for example the I and Q components

of a digitally modulated signal, or vectors of the sampled power spectral density. We seek a model

that learns the source distribution p(XN), so that we can detect when the vector’s distribution is

different from p(XN). This is a hypothesis testing problem, where for each vector x ∈ XT in the
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test dataset XT , the two hypotheses are

HN: Sample data comes from p(XN),

HA: Sample data does not come from p(XN).
(17)

We have three assumptions: First, the probability of anomalous behavior in dataset XN is very low;

second, no explicit anomaly labeling is done on the test dataset; and third, no feature extraction is

performed before feeding the data to the model. The key insight in employing GAN-based anomaly

detection is to bring the data to the latent space, which captures relevant features that can be used

to reconstruct the actual input data, with a small anomaly score for normal data. A GAN is trained

using (1) and (2), and during the test and operation stage, (11)–(15) are used. Once the training

process is complete, the model weights are frozen and new data are input into the model. Anomalies

are detected based on the anomaly score or the reconstruction loss of the model.

The term anomaly covers a very broad range of possibilities in the transmitted signal. Since

the field of ML progresses based primarily on experimentation, a number of datasets should be

created to study the performance of the algorithms under consideration. These can be in the form

of time series corresponding to I/Q data from a radio receiver after downshifting in frequency

and mixing with the local oscillator. This signal includes the effects of fading and multipath. To

create anomalous test signals, there are a wide variety of possibilities. Reference [114] considered

four types of normal signals and four types of anomalies. The normal signals were generated as

either i) a single continuous signal with random bandwidth, SNR, and center frequency, ii) pulsed

signals with parameters similar to i), iii) multiple continuous signals with possible frequency overlap,

or iv) signals with random bandwidths and SNR with deterministic shifts/hops in frequency. The

anomalous signals were chosen as either i) the same as normal signals in i) above, ii) random pulsed

transmissions in the given band, iii) pulsed wideband signals covering the entire frequency band, or

iv) signals from other classes in the synthetic dataset. Normal and anomalous signals such as these

can be considered, as well as other random signal types with arbitrary power spectral densities.

Anomaly detection within the context of cognitive radio in the mmWave band is studied in [120],

where the authors generate their own datasets with a number of anomalies and evaluate three methods

including two based on GANs for their detection. As mmWave radios are vulnerable to malicious

users due to the shared access medium and the complex radio environment, this opens up new threat

possibilities. Moreover, since several security critical applications in the NextG networks such as

the Vehicle-to-Everything (V2X) networks are based on mmWave communications, this problem

is particularly important. In addressing this problem, [120] makes use of three ML techniques:
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Variational Autoencoder (VAE) [122], CGAN [30], and AC-GAN [55]. This work created its own

dataset by using mmWave equipment in a laboratory environment with implementation using Field

Programmable Gate Arrays (FPGAs) and building blocks such as local oscillators, intermediate

frequency modules, mmWave radio heads, horn antennas, etc. The operation is at 28 GHz by using

Cyclic-Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) with BPSK, QPSK, 16-

QAM, and 64-QAM. Complex I/Q data is collected at baseband after the downconversion process.

There are eight channels with 100 MHz bandwidth. The normal behavior is a fixed signal which

occupies channel 4 and a sequentially moving signal among channels 8, 6, 3, and 1. This normal

behavior is used in the training phase. For testing, three modalities are introduced. Modality 1 is a

fixed signal in channel 4, and a moving signal that jumps among channels 5, 7, 2, and 5. Modality

2 is a fixed signal in channel 4 and a moving signal that jumps among channels 7, 5, 2, and 1.

Modality 3 is a fixed signal in channel 4 and a moving channel that jumps among channels 5, 7, 6,

and 5. Performance results are provided by AUROC and ACC. These results are given in Table 4.

Modality AUROC ACC
1 0.9365 0.9356

VAE 2 0.9577 0.9551
3 0.9232 0.9382
1 0.9566 0.9657

CGAN 2 0.9737 0.9696
3 0.9545 0.9668
1 0.9741 0.9804

AC-GAN 2 0.9751 0.9757
3 0.9742 0.9660

Table 4: AUROC and ACC performance of the three ML
algorithms.

Training [mm:ss] Testing [mm:ss]
VAE 15:09 01:00
CGAN 15:16 01:36
AC-GAN 30:42 03:16

Table 5: Computational times of the three ML algorithms.

CGAN provides better performance than VAE

and AC-GAN provides better performance than

CGAN, namely, VAE performs an AUROC

between 0.9365 and 0.9577, CGAN between

0.9545 and 0.9737, and AC-GAN between

0.9741 and 0.9751. Reference [120] attributes

the better performance by GANs to the fact that

they learn the relation between random noise

and generated data such that the generated data

is close to real data, and as a result, they can

capture the dynamics in the real data. Whereas,

VAEs return the posterior probability that an

observation belongs to a cluster. They do so by learning the latent vector corresponding to an

input, and as a result, all the dynamics in the real data that VAEs have access to are limited to the

latent vectors already modeled. Due to a larger degrees of freedom with the former, it is generally

considered that GANs can have better performance. Computational times for the three algorithms,

performed on an NVIDIA GeForce GTX 1080 Ti GPU, are given in Table 5. Clearly, there is a big

price paid for the better performance of AC-GAN (15 minutes vs. 30 minutes).

In [123], a deep learning based signal or modulation classification solution is described, where i)
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signal types may change over time, ii) some signal types are not known a priori, and therefore there

is no training data available, iii) signals are potentially spoofed such as smart jammers replaying

other signal types, iv) different signals may be superimposed due to interference from concurrent

transmissions. The authors present a CNN that classifies the received I/Q samples as idle, in-network

signal, jammer signal, or out-network signal. Traditional approaches for signal classification require

expert design or knowledge of the signal. Modulations are classified into i) idle, ii) in-network user

signal, iii) jamming signals, and iv) out-network user signals where there are 3, 4, and 3 different

modulation techniques corresponding to ii)–iv). There are in-network users who try to access the

channel opportunistically (SUs), out-network users with priority channel access (PUs), and jammers

that all coexist. The authors use the dataset in [124]. There are ten modulations with SNRs from

-20 dB to 18 dB in 2 dB increments. Radio fingerprinting via radio hardware imperfections such

as I/Q imbalance, time or frequency drift, and power amplifier effects are used to identify the type

of a transmitter. In addition to a CNN structure, Minimum Covariance Determinant (MCD) , k-

means clustering, and Independent Component Analysis (ICA) techniques are employed. Results

demonstrate the feasibility of using deep learning to classify RF signals with high accuracy in

unknown and dynamic spectrum environments. By using the signal classification results a distributed

scheduling protocol is developed where SUs share the spectrum with each other while avoiding

interference imposed to PUs and received from jammers.

The use of GANs that exploit the spatial domain to identify anomalous signal sources can be

considered, using data received from antennas in different locations. In many applications, normal

network operations are consistent with users transmitting from specific locations, such as in a stadium

setting, a large hall, a shopping mall, etc. A GAN trained in this setting with an array of antennas or

widely separated receivers can be used to differentiate between normal network traffic and signals

that arrive from anomalous directions, even if their spectral characteristics are identical to normal

users. A similar approach can be used to detect differences between mobile and stationary sources,

even if no detectable Doppler shift can be measured. Mobile sources typically have lower power,

reduced persistence, a time-varying polarization, as well as time-varying ranges and azimuth/elevation

angles. Further differentiation is possible between ground-based and airborne sources. A particularly

important direction is to investigate whether incorporating the spatial dimension together with the

time and frequency dimensions can significantly improve the ability of GANs to detect anomalous

network behavior.

In passing, we would like to state that more research is needed to understand the performance vs.
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computational complexity of autoencoders for anomaly detection [125]–[129], especially in terms

of their performance for given computational complexity. Tables 4 and 5 provide an interesting

comparison in this regard.

The most important lesson learned from this subsection is that the use of GANs result in powerful

techniques for anomaly detection in wireless networks. In Sec. IV, we will expand this observation

and provide more evidence to this fact by adopting a GAN-based anomaly detection algorithm for

NextG wireless applications.

E. Security Applications of GANs in NextG

Another important application area of GANs is wireless security. In these applications, ML can

be used to create an attack, defend against an attack, or both. Some specific cases are discussed

below.

In [25], a laboratory study is carried out with eight Universal Software Radio Peripheral (USRP)

radios as trusted transmitters. The goal is to use the imbalance in the detected I/Q components due to

unique hardware differences in each transmitter for fingerprinting, i.e., identifying which transmitter

is which. The authors use the generator G of a conventional GAN to create fake transmitters, and then

the GAN classifier attempts to distinguish between real and fake transmitters, achieving an accuracy

of 99.9%. The authors also develop approaches to distinguish between the legitimate transmitters,

one based on a CNN that obtains an accuracy of 81.6%, and another based on a Deep Neural

Network (DNN) that scores 96.6%. Although this is a simple experiment, it shows the power of ML

in wireless security.

A wireless spoofing algorithm based on a GAN architecture is proposed in [9], split between

an adversary transmitter AT and an an adversary receiver AR placed close to the actual receiver

R. Feedback from AR based on its location allows AT to know the channel between the actual

transmitter T and R as well as between AT and R with sufficiently high accuracy. Then, a GAN is

implemented between AT and AR in which the generator G is trained at AT and the discriminator

D is implemented at AR. AT in turn adjusts its transmission parameters such that its signal will

appear to R as if they come from T . In this process, AR trains the discriminator D such that the

classification error is minimized, i.e., it attempts to achieve

min
D

Ez∼pZ(z)[log(1−D(G(z)))]− Ex∼pdata [log(D(x))]. (18)

At the same time, AT trains the generator G such that the classification error is maximized, i.e., it
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attempts to achieve

max
G

Ez∼pZ(z)[log(1−D(G(z)))]. (19)

The process is continued until convergence. Thus, although they are at different locations, AT and

AR train G and D while playing the following minimax game

min
D

max
G

Ez∼pZ(z)[log(1−D(G(z)))]− Ex∼pdata [log(D(x))]. (20)

Simulation results show that, while the probability of successful spoofing is only 7.9% for random

signals and 36.2% in an amplify-and-forward architecture, the GAN is able to achieve a success rate

of 76.2%.

The problem of thwarting an Intrusion Detection System (IDS) is studied in [26]. While this work

is not specifically about wireless networks, the basic results are still applicable to wireless systems.

While many ML approaches have been proposed for IDS, the authors of [26] show that such systems

are vulnerable to an attack employing a GAN. On the other hand, the paper also shows that if the

IDS system based on conventional ML is replaced by one based on GANs, it can be made more

robust against adversarial perturbations.

In [27], an interesting problem involving two Unmanned Aerial Vehicles (UAVs) trying to commu-

nicate in the presence of an active jammer that eavesdrops their transmissions and jams only when the

two are at communicating in the same frequency band is described. A three-way GAN is developed

with the generator G present at the jammer and two classifiers Ds and Dr present, one at each

UAV. The generator G operates without access to the classifiers. For reasons of stability, [27] does

not employ the conventional log-based formulation for driving the backpropagation algorithm, but

instead, another version based on a least squares formulation called LSGAN [31]. The performance

of the algorithm is compared against two GAN-based algorithms with three players and one non-

GAN-based game theoretic approach. The algorithm in [27] is shown to outperform the other three

in terms of average connection latency, attack probability, and packet delivery ratio in the presence

of channel switching and jamming. This paper shows the sophistication of GAN-based approaches

in wireless applications.

In addition to the GAN-based wireless security work described above, there are many other papers

in the literature that cover various aspects of wireless security by employing other ML techniques, in

terms of both designing attacks and ways to mitigate them. A sample listing is [7], [10], [130]–[151].

For spectrum sharing applications, not only traditional security threats such as receiver jamming,

but also newly emerged cognitive-radio-specific security threats such as PU Emulation Attacks
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(PUEA), SSDF, common control channel jamming, selfish users, and intruding nodes should be

considered. A detailed description of these threats can be found in [152]–[156].

Cognitive radio networks rely on a trustworthy spectrum sensing process, the key to which is the

ability to distinguish PU signals from SU signals in a robust way. The use of licensed spectrum bands

by PUs may be sporadic, so an SU must constantly monitor for the presence of PUs in candidate

bands. If an SU detects the presence of a PU in the band under observation, it cannot use the current

band. If there is no PU currently active in the band, then SUs employ a medium access control

mechanism to share the band. In general, it is expected that no change will be required on the part

of the PU transmission system or air interface in order to accommodate the SUs, e.g., [157], and

thus it is the responsibility of the SUs to correctly identify PUs with their existing air interface.

As a result, an SU’s ability to correctly identify PUs becomes very important not only for avoiding

interference to the PUs, but also to be able to increase their own throughput. Distinguishing whether

or not a user is a PU is nontrivial, especially when rogue users modify their air interface in order

to mimic a PU’s signal characteristics. This is known as a PUEA [158].

In order to mitigate the PUEA problem, it is possible to draw parallels with a phenomenon known

for adversarial attacks against classifiers that employ neural networks. This phenomenon became

apparent in classification problems in conventional fields such as image processing, where it was

observed that certain minor variations in the input, undetectable by humans, can make a classifier

fail, see e.g., [159], [160]. An example that appeared in [160] is very well-known. Using a 22-layer

deep CNN that is able to correctly identify a panda with 57.7% accuracy, adding a slight amount

of noise results in it being characterized as a gibbon with 99.3% confidence. This vulnerability of

deep neural networks to adversarial attacks has been well-documented, see e.g., [161]–[165].

A number of approaches exist to deal with the problem of adversarial attacks in the context of

image processing; a good review is available in [166]. There is a recent study which finds that

generative classifiers, such as GANs, are actually more robust to adversarial attacks [167]. Given

the success of ML techniques developed for image processing and successfully adapted to problems

in wireless networking, it is possible to leverage some of this prior work in the context of designing

GAN-based ML systems to counteract adversarial attacks. The first such technique is described

in [168], and is referred to as Defense-GAN. In this technique, the GAN is trained to model the

distribution of unperturbed data. At inference time, it finds an output that does not contain any

adversarial changes that is “close” in some sense to the given input data. This output is then fed to

the classifier, which can employ any model, and the result is used as the classification of the data.



25

generator

Random
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Input image x
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z
(1)
0

z
(2)
0

z
(R)
0

x̂ = G(z∗)

∥G(z)− x∥22

Fig. 7: Defense-GAN algorithm [168].

This technique does not assume knowledge of the process for generating the adversarial examples.

Reference [168] empirically shows that Defense-GAN is consistently effective against different attack

methods and improves on existing defense strategies.

Fig. 7 illustrates the basic idea in [168]. For a given input observation x, the system finds the

closest element (in the L2 norm) of the data space that can be produced by the generator operating

on an element of the latent space. The resulting element of the data space, presumably free from

the affects of the adversarial perturbation, is then classified in the regular way. Intuitively, if x is

not perturbed, then the GAN can generate a sufficiently close local copy of it to be classified as

“real.” On the other hand, a perturbed x will not be among the possible outputs of the generator G

trained by using unperturbed data, and the classifier will declare it as “fake.” There is a mathematical

development that justifies this intuition in [168]. The paper shows that the Defense-GAN technique

is very effective against both black-box and white-box attacks, i.e., attacks that do not have any

knowledge of G and the classifier C, as well as those that do have full knowledge of G and C,

respectively. Other works that use a similar concept based on GANs are available in [169], [170].

In [10], the effects of a GAN-based spoofing attack to generate synthetic wireless signals that

cannot be statistically distinguished from intended transmissions is studied. The spoofing attack

can be used for various adversarial purposes such as emulating PUs in cognitive radio networks

and fooling signal authentication systems to intrude protected wireless networks. The adversary is

modeled as a pair of transmitter and a receiver that build the generator and discriminator of a GAN,

respectively. The adversary transmitter trains a deep neural network to generate the best spoofing

signals and fool the best defense trained as another deep neural network at the adversary receiver.

Thus, the generator and the discriminator of the GAN are at different locations, collaborating over

the air such that the GAN-generated signals cannot be reliably discriminated from intended signals.

The adversary and the defender may have multiple transmitter or receiver antennas. Spoofing is

accomplished by jointly capturing waveform, channel, and radio hardware effects inherent to wireless

signals under attack. It is demonstrated in [8] that a GAN-based spoofing attack can be successfully

performed and its performance is compared with random signal attack and replay attack. An important

observation is that as the attacker’s transmitter gets close to the transmitter, the likelihood of the
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# of defense operations Attacker error probabilities Transmitter performance
/ # of all samples Misdetection False alarm Throughput Success ratio
0% (no defense) 3.95% 18.10% 0.012 2.91%

10% 20.79% 25.16% 0.074 17.13%
20% 33.88% 40.69% 0.124 28.84%
30% 40.09% 44.79% 0.170 35.42%
40% 45.18% 43.75% 0.206 41.53%
50% 41.63% 45.10% 0.204 39.23%

Table 6: Results for defensive strategies against jamming attacks based on adversarial learning [134].

attacker to generate high-fidelity synthetic signals for the spoofing attack increases. In summary, the

sussess probability of the GAN-based spoofing attack is very high. This holds for different network

topologies and when node locations change from training to test time. This probability improves

further when multiple antennas are used at the transmitter.

It is possible to devise defensive strategies against such attacks. A simple strategy is to change

the idle and busy labels, so that the legitimate transmitter may not transmit if it senses the channel

as idle, or it may transmit even if the channel is sensed as busy [7], [134], assuming that the

unobserved transmitter is not a PU. This can be done over a subset of the transmit opportunities.

For example, by introducing 10% of false labels, the legitimate transmitter, as the defender, can

increase the misdetection performance of the attacker from 3.95% to 20.79% and the false alarm

rate from 18.10% to 25.16%. The results for a single-input single-output (SISO) scenario from [134]

are shown in Table 6. Clearly, this simple algorithm can result in a significant improvement.

It is possible to extend this work to the case where NACKs, in addition to ACKs, are employed.

ACKs are only positive acknowledgements, they do not reveal if there was a transmission. NACKs

state there was a transmission but it was not received correctly, possibly due to a collision, but

also potentially due to other effects such as fading. This increases the state space of the learning

algorithm and may improve the performance of the attacker. A potential direction is to investigate

if there is a simple algorithm similar to the one above that provides a defense against such attacks.

For the case of cooperative spectrum sensing, a recent study makes adversarial use of ML to

construct a surrogate of the fusion center’s decision model [171]. The authors then propose an

algorithm to create malicious sensing data, and show that this type of attack is very effective.

Reference [171] shows, via experiments, that with existing defenses it can achieve up to an 82%

success ratio while only manipulating a small number of malicious nodes. Then, a mechanism

referred to as an influence-limiting policy is introduced which achieves a disruption ratio reduction of

up to 80% of the attacks introduced in [171]. An important observation that can be made based on this

work is that, as in many security problems, specific types of attacks require specific types of solutions.
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Reference Application Comment
[8] Spectrum Sharing Spectrum sensing with domain adaptation and data augmentation.

[80] AMC solution via modified CGAN and semi-supervised AC-GAN.
[103] Anomaly Detection Use of BiGAN and PCA for anomaly detection. Comparisons in Table 3.
[114] Unsupervised spectrum anomaly detection via adversarial autoencoder.
[120] For mmWave. Comparison of VAE, CGAN, AC-GAN in Tables 4-5.
[123] Modulation classification via CNN: Idle, in- or out-network, jammer.
[25] Security Create and then classify fake transmitters via GAN. 99.9% accurate.
[9] Spoofing with a GAN where its G and D are not colocated. High success rate.

[26] Intrusion detection with improved attack or defense by GANs.
[27] Three-way GAN among a jammer and two UAVs trying to communicate.
[168] Defense-GAN (Fig. 7). Effective against both black- and white-box attacks.
[10] Effects of GAN-based spoofing to generate synthetic signals like real ones.
[7] Strategy based on changing labels against GAN-based spoofing attacks. Table 6.

Table 7: Different implementations of techniques using GANs for spectrum sharing, anomaly detection, and security
applications in NextG. The main characteristic of each application is specified as a comment. For a detailed discussion
of each of the techniques, see the text. PCA: Principal Component Analysis, CNN: Convolutional Neural Network, UAV:
Unmanned Aerial Vehicle.

It is possible to pursue attacks similar to those in [171] and attempt to develop relevant solutions.

However, it should be emphasized that a key aspect of any defense against a particular attack is

first detecting that an attack has occurred, which is exactly the anomaly detection problem discussed

above. Strong anomaly detection is the first step in mitigating attacks in spectrum sensing problems,

both cooperative and noncooperative. To that end, it is worthwhile to investigate the effectiveness of

the GAN-based anomaly detection techniques discussed in Sec. II-A against a number of different

attacks such as those described above.

While many conventional countermeasures against security attacks in cognitive radio networks

exist [172], there is very limited published work on ML techniques for this purpose [173]. Thus,

this is a potentially very fruitful research area.

The most important lesson learned from this subsection is that GANs can be used for security

attacks or as a mechanism for defense against any security attacks. We have discussed seven works

from the literature towards both ends.

Table 7 summarizes all of the works from the literature discussed in Sec. III.

IV. SIMULATION RESULTS

The problem of outlier detection in signal classification is a critically challenging one for NextG

networks. Signal classification is needed for various NextG applications, including user equipment

(UE) identification, spectrum sharing and coexistence (as in the CBRS band), and jammer (inter-

ference) detection. Specifically, for the case where there is no data about unknown waveforms (that

can be considered as outliers), the signal classification problem becomes even more challenging. In

this case, in general, the outlier detection algorithms are trained using only inlier waveforms and
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tested with inliers and outliers. Recent studies have shown that GANs can help solve the outlier

detection problem. AnoGAN has been proposed as an unsupervised anomaly detection algorithm to

calculate an anomaly score [35]. Despite its good performance and relaxed assumption that does

not require labeled data, it suffers from instabilities in GAN training. In addition, AnoGAN is

an iterative algorithm which hinders its real-time application. Fast AnoGAN (f-AnoGAN) extends

AnoGAN by using a more stable GAN architecture, WGAN, and it does not require iterations (only

one forward pass) [174]. F-AnoGAN uses an encoder to obtain the latent features of a generator. The

latent features are input to the generator. The anomaly score is calculated as the mean squared error

(MSE) of the input sample and its reconstruction ∥x−G(E(z))∥22 plus the MSE of the discriminator

features of the original and those of the reconstructed signal, ∥Df (x)−Df (G(E(x)))∥22, weighted

by a scaling factor κ.

This approach can be applied to anomaly detection in RF spectrum data. As an initial result, we

used the RFMLS 2016a dataset [124] that includes eleven different modulations collected over a wide

SNR range between -20 dB and 18 dB. The f-AnoGAN algorithm is trained on only one (known)

modulation and evaluated using all eleven modulations. We expect the model to label samples from

the known (trained) modulation as inlier and samples from all others as outliers. In contrast to [33]

that uses WGAN, we used the WGAN-GP which is known to be more stable. The f-AnoGAN model

outputs an anomaly score per sample and the AUROC figures are calculated.

In our evaluations, the f-AnoGAN model is trained in three steps:

1) First, we trained the generator and discriminator of the WGAN-GP model, both networks are

summarized in Table 9 and Table 10 in the Appendix, respectively.

2) Second, we trained the encoder (architecture presented in Table 11 in the Appendix).

3) Finally, we evaluated the performance of the anomaly detection using the anomaly score.

This three-step procedure closely follows the f-AnoGAN implementation of [174].1

In evaluating the fidelity and diversity of the generative models, we compared the use of five

different measures [53]: i) sum of recall and precison (S-RP), ii) harmonic mean of recall and

precision (H-RP), iii) sum of density and coverage (S-DC), iv) harmonic mean of density and

coverage (H-DC), and v) Jensen-Shannon distance (JSD) [175]. In the GAN training, these measures

are evaluated every 10 epochs and if the fidelity/diversity measure has improved, the model is saved.

For the JSD metric, a lower value indicates a better model, whereas for the remaining four measures,

1https://github.com/tSchlegl/f-AnoGAN
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a higher value means a better model. We used 500 epochs for each of the GAN and encoder training

steps. For all three networks, we used the Adam optimizer with a learning rate of 0.0002 [176].

As a comparison, we evaluated the performance of a convolutional autoencoder (CAE) system

which is again trained on the only inlier modulation. The CAE architecture is presented in Table 12

in the Appendix. We measured the mean and standard deviation of the reconstruction loss in the

training dataset. For any test data that has a reconstruction loss larger than a fixed threshold (i.e.,

the mean reconstruction loss plus one standard deviation), the sample is labeled as an outlier and for

those samples with a reconstruction loss smaller or equal to threshold, the sample is labeled as an

inlier. Note that to have a fair assessment between performance measures and minimize the effects

of network architecture, we have used a CAE model that is very similar to the AE model of the

f-AnoGAN.

Table 8 presents the AUROC values for the anomaly detection problem employing different

modulations. We observe that the performance of the anomaly detection model depends significantly

on the trained (inlier) modulation in both GAN-based and CAE-based approaches. There are several

reasons for this. First, unlike image datasets, this dataset (and many other RF datasets) include

the effects of channel, noise, and hardware impairments, which make the classification problem

fundamentally challenging. Second, some modulations in this dataset are subsets of each other in

the constellation plot. For example, AM-SSB modulation is a subset of the AM-DSB modulation.

In comparing the results in Table 8, we see that the H-RP, JSD, and S-RP measures perform well

across different modulations, whereas the S-DC and H-DC metrics did not provide good performance.

We observe that anomalies can be precisely detected (achieving more than a 0.90 AUROC score)

when f-AnoGAN models are trained on modulations such as the AM-DSB, CPFSK, GFSK, and

WBFM using any of the S-RP, H-RP, and JSD measures. In these modulations, the f-AnoGAN

method outperforms the CAE method. However, modulations such as AM-SSB and QAM16 present

challenging problems as they are very similar to other classes (AM-DSB and QAM64, respectively).

For these modulations, the f-AnoGAN method fails to reliably distinguish the anomalies from inliers,

whereas the CAE model performs only as good as a random classifier.

Next, we discuss some implementation details. For the WGAN-GP training, there are two important

parameters that we have tuned. The first parameter is the number of discriminator (critic) iterations

per generator iteration. We have tested 1, 3, and 5 iterations and found that updating the generator

every 3 discriminator updates provided the best results. The second parameter is the gradient penalty

coefficient λ. This parameter had a profound effect on the performance. We tested different λ values
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Modulation S-RP H-RP S-DC H-DC JSD CAE
AM-DSB 0.963 0.964 0.962 0.965 0.968 0.899
AM-SSB 0.088 0.088 0.088 0.088 0.273 0.502

BPSK 0.797 0.777 0.349 0.716 0.439 0.529
8PSK 0.558 0.597 0.540 0.540 0.636 0.528

CPFSK 0.968 0.970 0.853 0.732 0.939 0.533
GFSK 0.983 0.980 0.821 0.816 0.917 0.561
PAM4 0.692 0.728 0.041 0.707 0.731 0.587

QAM16 0.419 0.424 0.300 0.300 0.447 0.600
QAM64 0.549 0.624 0.285 0.285 0.545 0.597
QPSK 0.664 0.678 0.547 0.547 0.559 0.530

WBFM 0.937 0.938 0.934 0.933 0.939 0.824
Average 0.693 0.706 0.520 0.603 0.672 0.608

Table 8: AUROC scores of the anomaly scores obtained using five different fidelity measures for different modulations.
S-RP stands for sum of precision and recall, H-RP is the harmonic mean of precision and recall, S-DC stands for sum
of density and coverage, H-DC is the harmonic mean of density and coverage, and JSD stands for Jensen-Shannon
distance.

(λ = 1, 5, 10) and λ = 10 provided the best results, which emphasizes the importance of the

gradient penalty. For the f-AnoGAN model, the scaling factor κ is a parameter that can be tuned.

We have tested κ = 1, 5, 10 values and found that κ = 1 provided the best results. Finally, as the

f-AnoGAN approach requires only one forward pass and does not need any iteration to infer a

sample, we can obtain the average inference time on hardware, which is an important measure for

the embedded implementation. Note that this is in contrast to iterative algorithms such as AnoGAN

that require setting parameters such as the maximum number of iterations to obtain precise timing

measures. Towards this goal, we measured the average end-to-end inference time on hardware, which

includes the forward pass of the input sample to the encoder, generator, and discriminator networks,

and calculating the respective losses to obtain the anomaly score. The results are evaluated on an

NVIDIA GeForce RTX 3060 GPU system. The average inference time is measured as 0.005784

seconds which enables us to process 172.9 samples per second without any parallel processing.

In concluding this section, we would like to emphasize that our simulations can only be considered

as very initial results. To be able to come to more in-depth conclusions, substantially more work by

the research community should be carried out.

V. FUTURE RESEARCH DIRECTIONS FOR GANS IN NEXTG COMMUNICATION SYSTEMS

This section is on the use of GANs for wireless applications in general terms. This is important

because the original development of GANs was in the area of images while their straightforward

application to wireless can bring up questions. On the other hand, this feature actually makes the

proposed research nontrivial and interesting. It should be understood that what we are proposing

is not a simple translation or porting of what exists in another field to wireless communications
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but rather a very careful study of how to be inspired from a development in one field and do a

careful analysis to adapt it to a completely different area. For example, performance measures used

to compare two images do not directly translate into wireless applications. In particular, performance

measures used in image processing try to imitate human perception. Clearly, it is questionable that

they would be useful in the kind of tasks discussed above in sections Sec III-C–Sec III-E. If this

is the case, then what kind of performance measures should be employed? Since ML is not a

model-based approach, finding the answer to this question will require experimentation and thus is

not a straightforward task. Another consideration comes from the fact that GANs are known to be

difficult to train, especially for datasets other than images. Then, is there a way this difficulty can

be circumvented? In terms of datasets, there is a perception that datasets that can be employed for

wireless applications are limited in quantity. Furthermore, in general, training of neural networks

require very long training sequences. On the other hand, the datasets available are limited in size.

Some researchers employ GANs to increase the size of the their training sequences in a synthetic

manner. But then there is a question as to whether the generated or augmented synthetic signals

contain any more information than the training set since the GAN is able to learn the statistics of the

training sequence but it is not clear if this augmentation process can add any new statistics. These

are some of the questions that employing algorithms from the basic exploration of GANs to their

use in wireless applications will face.

A number of open problems remain in this domain. While a large number of problems in spectrum

sharing, anomaly detection, and security exist, studies using GANs to address them have so far

targeted a relatively small number of specific problems. Scaling these solutions to a larger number of

problems will require significant effort. First, specific problems need to be identified, for example, in

anomaly detection and security, to be addressed by ML algorithms. Second, these specific problems

need to be simulated and ML algorithms need to be trained on them. Third, the computational

complexity of this effort should be taken under consideration. There are many successful uses of

GANs, especially in image processing. While a number of these algorithms have been successfully

used in wireless applications, a number of them are still candidates for use in that setting. For

example, we have discussed the use of BiGANs and f-AnoGANs for anomaly detection, however, a

number of other anomaly detection techniques such as EGBAD and GANomaly have not yet been

studied in the context of wireless anomaly detection. Fourth, reliable diversity and fidelity measures

for GANs to quantify the quality of the synthetic data for RF applications need to be further explored.

As it is difficult to conduct statistical analyses over complex and high-dimensional data, these metrics
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would provide the necessary reliable methods to perform hyper-parameter optimization in training

GANs and fairly compare different GAN architectures. Towards this goal, we have investigated five

of such metrics in this paper and showed that HR-P provided the best results for the outlier detection

problem.

Yet on another subject we touched upon previously, the topic of augmentation is controversial.

Some researchers strongly hold the belief that GAN-generated signals cannot be gainfully employed

to augment the training dataset. However, an interesting piece of news from NVIDIA, discussed

in [177], together with a short video worthwhile seeing, states that it is possible to reduce the

training sequence length 10x-20x by using data augmentation and GANs. The particular application

is the creation of synthetic images from real ones and therefore the visual effect is strong. This was

achieved by employing a special technique with GANs, explained in [178]. Additional works show

that, by using special techniques, it is possible to achieve data augmentation outside the statistics of

the short training sequence, see, e.g., [179]–[181]. There exist publications that make this statement

specifically for wireless applications, see, e.g., [13], [54], [80].

An inevitable question arises when GANs are considered as a member of a large class of ML

algorithms. As shown in this paper, they have advantages in terms performance although it is not

clear that they are always the best. Considerations such as complexity, accuracy, robustness, etc.

should be taken into account in comparing them with other ML algorithms for use in the wireless

applications considered in this paper. To the best of our knowledge, such a study does not exist.

Any step taken towards this understanding will be very valuable.

GANs can be applied to a number of emerging areas in communications. An example of this is

communications in the mmWave and THz bands. As long as the computational complexity of the

solution can be managed, what was discussed in this paper is applicable to communication networks

in those bands. We will discuss a number of works from the literature related to this fact. Reference

[182] discusses channel estimation for very large bandwidths operating in mmWave and THz bands

at low SNR. It proposes a GAN-based estimator that first learns to produce channel samples from the

unknown channel distribution via training the generative network, and then uses this trained network

as a prior to estimate the current channel. This estimator has been shown to work at an SNR of -5 dB

better than Least Squares (LS) and Linear Minimum Mean Square Estimate (LMMSE) estimators

at SNR values of 20 dB and 2.5 dB, respectively. Furthermore, this estimator reduces the required

number of pilots and does not require retraining even if the number of clusters and rays change

considerably. Channel estimation in the mmWave band is further discussed for the unmanned aerial
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vehicle (UAV) applications in [183], [184] and for vehicular systems in [185].

Another emerging area in communications is mobile edge computing. This is an area GANs have

applications in security. As discussed in [186], GANs can be used to design a security attack for

mobile edge computing. In this attack, a malicious participant can infer sensitive information from

a victim participant even with just a part of shared parameters from the victim [187], [186, Fig. 13].

For other applications of GANs in mobile edge computing, in security and privacy, see, e.g., [187],

[188].

VI. CONCLUSION

The proliferation of wireless services, in the forms of wireless local area networks, cellular

wireless, applications of the IoT, the tactile internet, autonomous cars, drones, factory automation,

and the general expectations under the umbrella of the Fourth Industrial Revolution place enormous

demands on wireless spectrum. Although new spectrum in the mmWave band is already being

regulated around the world, the expectations are such that spectrum scarcity will be with us beginning

in the very near future. Many experts in the field expect that forms of spectrum sharing will be

needed towards that purpose. It is well known that a common technique under consideration for

dynamic spectrum sharing is cognitive radio which can be used to address the problem of spectrum

sharing. However, conventional forms of cognitive radio will likely not be sufficient because of the

enormous dynamics of the problem. It is expected that the complexity of the problem will prohibit

conventional cognitive radio and forms of ML will have to be employed towards solving this very

difficult problem.

This paper addressed a particular ML solution, GANs, towards that end. GANs are capable of

generating “fake” data that cannot be differentiated from “real” data, and thus to some extent they

capture the distribution of real signals. They are known to address competitive resource allocation

problems. Furthermore, they are known to be effective in detecting and mitigating anomalous

behavior. A survey of the use of GANs in spectrum sharing, anomaly detection, and addressing

security concerns is provided in this paper. In several cases discussed, it is demonstrated that GANs

have better performance in addressing the concerns stated above than the other ML algorithms.

It is generally accepted that wireless applications are increasing in quantity while wireless spectrum

is scarce and that ML solutions to address this problem are needed. GANs provide a framework for

such a set of solutions with proven success. Nevertheless, more work is needed to identify specific

problems and develop successful ML solutions, including those that involve GANs.
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APPENDIX

In this section, we provide the parameters of the f-AnoGAN and CAE used in the simulations in

Sec. IV.

Layer Name Details

Reshape layer (N, 100) to (N, 100, 1, 1)
2D transposed convolution layer 1024 filters, kernel size of (2,4), stride of (1,1), no padding
Batch normalization
Leaky-ReLU α = 0.2
2D transposed convolution layer 512 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D transposed convolution layer 256 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D transposed convolution layer 128 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D transposed convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D transposed convolution layer 1 filter; kernel size of (2,4), stride of (2,2), padding

Table 9: Generator architecture.
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Layer Name Details

2D convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Leaky-ReLU α = 0.2
2D convolution layer 128 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D convolution layer 256 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D convolution layer 512 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization
Leaky-ReLU α = 0.2
2D convolution layer 1024 filters, kernel size of (2,4), stride of (2,2), padding
Reshape layer (N, 1024, 2, 4) to (N, 8192)
Linear layer 8192 neurons to 1 neuron

Table 10: Discriminator architecture.

Layer Name Details

2D convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Leaky-ReLU α = 0.2

2D convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 128 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 256 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 512 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 1024 filters, kernel size of (2,4), stride of (2,2), padding

Reshape layer (N, 1024, 2, 2) to (N, 100)
Linear layer 4096 neurons to 1 neuron

Tanh

Table 11: Encoder architecture of the f-AnoGAN system.
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Layer Name Details

2D convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Leaky-ReLU α = 0.2

2D convolution layer 64 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 128 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 256 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 512 filters, kernel size of (2,4), stride of (2,2), padding
Batch normalization

Leaky-ReLU α = 0.2
2D convolution layer 1024 filters, kernel size of (2,4), stride of (2,2), padding

Reshape layer (N, 1024, 2, 2) to (N, 100)
Reshape layer (N, 100) to (N, 1024, 2, 2)

2D transposed convolution layer 512 filters, kernel size of (1,2), stride of (1,2), padding
Leaky-ReLU α = 0.2

Batch normalization
2D transposed convolution layer 256 filters, kernel size of (1,2), stride of (1,2), no padding

Leaky-ReLU α = 0.2
Batch normalization

2D transposed convolution layer 128 filters, kernel size of (1,2), stride of (1,2), no padding
Leaky-ReLU α = 0.2

Batch normalization
2D transposed convolution layer 64 filters, kernel size of (1,2), stride of (1,2), no padding

Leaky-ReLU α = 0.2
Batch normalization

2D transposed convolution layer 64 filters, kernel size of (1,2), stride of (1,2), no padding
Leaky-ReLU α = 0.2

2D transposed convolution layer 1 filter, kernel size of (1,2), stride of (1,2), no padding

Table 12: Convolutional Autoencoder (CAE) architecture.
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