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Abstract—1In this paper, the problem of designing a linear
precoder for multiple-input multiple-output (MIMO) systems in
conjunction with quadrature amplitude modulation (QAM) is
addressed. First, a novel and efficient methodology to evaluate
the input—output mutual information for a general MIMO system
as well as its corresponding gradients is presented, based on the
Gauss-Hermite quadrature rule. Then, the method is exploited
in a block coordinate gradient ascent optimization process to
determine the globally optimal linear precoder with respect to
the MIMO input—output mutual information for QAM systems
with relatively moderate MIMO channel sizes. The proposed
methodology is next applied in conjunction with the complexity-
reducing per-group processing technique to both perfect channel
state information (CSI) at the transmitter as well as statistical
CSI (Statistical CSI) scenarios, with large transmitting and
receiving antenna sizes, and for constellation size up to M = 64.
We show by the numerical results that the precoders developed
offer significantly better performance than the configuration with
no precoder as well as the maximum diversity precoder for QAM
with constellation sizes M = 16, 32, and 64 and for MIMO
channel size up to 100 x 100.

Index Terms— Linear precoding, MIMO, mutual information,
quadrature amplitude modulation.

I. INTRODUCTION

HE concept of Multiple-Input Multiple-Output (MIMO)

systems still represents a prevailing research direction
in wireless communications due to its ever-increasing capa-
bility to offer higher rate, more efficient communications, as
measured by spectral utilization, and under low transmitting
or receiving power. Within MIMO research, the problem of
linear precoding design has been widely studied. Early work
on MIMO precoding can be found in [1]-[3]. In addition, a
variety of precoding concepts and under multiple scenarios can
be found in [3]-[10]. Within more recent MIMO precoding
research with realistic, finite alphabet inputs, the problem
of designing an optimal linear precoder toward maximizing
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the mutual information between the input and output was
considered in [11] and [12] where the optimal power allocation
strategies were presented (e.g., Mercury Waterfilling (MWF)),
together with general equations for the optimal precoder
design. Furthermore, in [13] a channel pairing approach to
MIMO precoding was presented. In addition, [14] also con-
sidered precoders for mutual information maximization and
showed that the left singular vectors of the optimal precoder
can be set equal to the right singular vectors of the channel.
Finally, in [15], a mutual information maximizing precoder
for a parallel layer MIMO detection system was set forth
reducing the performance gap between maximum likelihood
and parallel layer detection.

Recently, globally optimal linear precoding techniques were
presented [16], [17] for scenarios employing perfect channel
state information available at the transmitter (CSIT)' with
finite alphabet inputs, capable of achieving mutual information
rates much higher than the previously presented MWF [11]
techniques by introducing input symbol correlation through
a unitary input transformation matrix in conjunction with
channel weight adjustment (power allocation). In addition, [18]
presented an iterative algorithm for precoder optimization for
sum rate maximization of Multiple Access Channels (MAC)
with Kronecker MIMO channels. Furthermore, more recent
work showed that when only Statistical CSI? is available at
the transmitter, in asymptotic conditions when the number of
transmitting and receiving antennas grows large, but with a
constant transmitting to receiving antenna number ratio, one
can design the optimal precoder by looking at an equivalent
constant channel and its corresponding adjustments as per
the pertinent theory [21], and applying a modified expression
for the corresponding ergodic mutual information evaluation
over all channel realizations. This development allows for a
precoder optimization under Statistical CSI in a much easier
way [21]. However, existing research in the area has not
provided any results of optimal linear precoders in the case
of QAM with constellation size M > 16, with the exception
of [22]. In past research work, a major impediment toward
developing optimal precoders for QAM has been a lack

1Under CSIT the transmitter has perfect knowledge of the MIMO channel
realization at each transmission.

ZStatistical CSI pertains to the case in which the transmitter has knowledge
of only the MIMO channel correlation matrices [19], [20] and the thermal
noise variance.
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of an accurate and efficient technique toward input-output
mutual information evaluation, its gradients, and evaluation
of the input-output minimum mean squared error (MMSE)
covariance matrix, as required by the precoder optimization
algorithm and other algorithms involved, e.g., the equivalent
channel determination in the Statistical CSI case [21].

In this paper, we propose optimal linear precoding tech-
niques for MIMO, suitable for QAM with constellation size
M > 16. An additional advantage of these techniques is
their ability to accommodate MIMO configurations with very
large antenna sizes, e.g., 100 x 100. The only related work
in this area is [22] which has antenna sizes up to 32 x 32.
We show in the sequel that the proposed method is faster than
the one in [22]. Carrying out this calculation has been very
difficult to do until now due to the complexity involved in
tackling this problem. Our approach entails a novel application
of the Gauss-Hermite quadrature rule [23] which offers a
very accurate and efficient way to evaluate the capacity of
a MIMO system with QAM. We then apply this technique
within the context of a block gradient ascent method [24]
in order to determine the globally optimal linear precoder
for MIMO systems, in a similar fashion to [16], for sys-
tems with CSIT and small antenna size. We show that for
M = 16, 32, and 64 QAM, the optimal linear precoder
offers 50% better mutual information than the maximal diver-
sity precoder (MDP) of [25] and the no-precoder case, at low
signal-to-noise ratio (SNR) for a standard 2 x 2 MIMO chan-
nel, although the absolute utilization gain achieved is lower
than 1 bps/Hz. We then proceed to show that significantly
higher gains are available for different channels, e.g., a utiliza-
tion gain of 1.30 bps/Hz at SNR = 10 dB, when M = 16.
We then employ larger antenna configurations, e.g., up to
40 x 40 with CSIT and M = 16, 32, and 64 together with the
complexity reducing technique of per-group processing (PGP)
which was originally presented in [26], and show very high
gains available with reduced system complexity. Finally, we
also employ Statistical CSI scenarios in conjunction with PGP
and show very significant gains for large antenna sizes, e.g.,
100 x 100 and M = 16, 32, 64. The main advantages
of our work compared with other interesting proposals for
large MIMO sizes, e.g., [22], lie over four main directions:
a) It offers a precoder solution very close to the globally opti-
mal one for each subgroup, instead of a locally optimal one,
b) It is faster, c) It allows for larger constellation size, e.g.,
M = 32, 64, and d) It allows larger MIMO configurations,
e.g., 100 x 100. The paper is organized as follows: Section II
presents the system model and problem statement. Then, in
Section III, we present a novel Gauss-Hermite approximation
to the evaluation of the input-output mutual information of
a MIMO system that allows for fast, but otherwise very
accurate evaluation of the input-output mutual information
of a MIMO system, and thus represents a major facilita-
tor toward determining an almost globally optimal linear
precoder for MIMO. In Section IV, we present numerical
results for the globally optimal precoder that implements
the Gauss-Hermite approximation in the block coordinate
gradient ascent method. Finally, our conclusions are presented
in Section V.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

The instantaneous NN; transmit antenna, /N, receive antenna
MIMO model is described by the following equation

y = HGx + n, (1)

where y is the N, x 1 received vector, H is the N, x N; MIMO
channel matrix, G is the precoder matrix of size N; x N,
x is the N; x 1 data vector with independent components each
of which is in the QAM constellation of size M, n represents
the circularly symmetric complex Additive White Gaussian
Noise (AWGN) of size N, x 1, with mean zero and covariance
matrix K, = 21y, , where Iy, is the N, x N, identity matrix,
and o2 = ﬁ, SNR being the (coded) symbol signal-to-
noise ratio. In this paper, a number of different channels are
considered, e.g., channels comprising independent complex
Gaussian components or spatially correlated Kronecker-type
channels [19] (including those similar to the 3GPP spatial cor-
relation model (SCM) [27]), or more generally canonical [28]
or Weichselberger channels [20]. The precoding matrix G
needs to satisfy the following power constraint

r(GG") = N, )

where tr(A), A denote the trace and the Hermitian transpose
of matrix A, respectively. An equivalent model called herein
the “virtual” channel is given by [16]

y=ZyEsVix+n, 3)

where Xy and X are diagonal matrices containing the
singular values of H, G, respectively and Vg is the matrix
of the right singular vectors of G. When a capacity approach-
ing code, e.g., the LDPC code is employed in this MIMO
system, the overall utilization in bps/Hz is determined by the
mutual information between the transmitting symbols x and
the receiving ones, y [29], [30]. It is shown [16] that the
mutual information between x and y, for channel realization
H, I(x;y), is only a function of W = VGZ%_IZ%V’(’;. The
optimal CSIT precoder G is found by solving:

maxiGmize I1(x;y)
subject to tr(GGh) =M, 4)
called the “original problem,” and
imize 1(x:
mpigze 106Y)
subject to tr():%;) =N, 5)

called the “equivalent problem,” where the reception model
of (3) is employed. The solution to (4) or (5) results in
exponential complexity at both transmitter and receiver, and it
becomes especially difficult for QAM with constellation size
M > 16 or large MIMO configurations. A major difficulty
in the QAM case stems from the fact that there are multiple
evaluations of 7(x;y) in the block coordinate ascent method
employed for determining the globally optimal precoder. More
specifically, for each block coordinate gradient ascent iteration,
there are two line backtracking searches required [16], which
demand one 7(x;y) plus its gradient evaluations per search
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trial, and one additional evaluation at the end of a successful
search per backtracking line search. Thus, the need of a fast,
but otherwise very accurate method of calculating 7 (x; y) and
its gradients prevails as instrumental toward determining the
globally optimal linear precoder for CSIT. In the Statistical
CSI case, the corresponding optimization problem becomes

maxi;mile Eng {/(x;y)}

subject to tr(GG") = N;, (6)

where the expectation is performed over all the channels H.
The ground-breaking work of [21] has shown that the prob-
lem in (6) for large antenna sizes can be solved by an
approximate way of calculating the ergodic mutual informa-
tion Eg {/(x;y)} for a fixed precoding matrix G through
well-determined parameters of a deterministic channel. More
specifically, when N;, N, — oo while the ratio N; /N, is kept
constant, [21] has showed that an asymptotic methodology
to approximate the ergodic mutual information exists, it also
presented a methodology to determine the asymptotically opti-
mal precoder for the Statistical CSI case for Weichselberger
channels. The evaluation of the mutual information and the
optimal asymptotic precoder, under these conditions, entail
evaluations of equivalent deterministic channel mutual infor-
mation multiple times. In [22] the same approach was used for
Kronecker channels requiring the evaluation of an equivalent
deterministic channel. These parameters include the mutual
information of a corresponding deterministic channel defined
in [22, eq. (19)], i.e., similar to CSIT scenario mutual infor-
mation evaluation. Thus, methods that offer simplification of
CSIT mutual information evaluation, /(x;y), are also impor-
tant in the Statistical CSI case toward determining the globally
optimal linear precoder for MIMO.

III. ACCURATE APPROXIMATION TO /(X;y) FOR MIMO
SYSTEMS BASED ON GAUSS-HERMITE QUADRATURE
In Appendix A we prove that by applying the
Gauss-Hermite quadrature theory for approximating the
integral of a Gaussian function multiplied with an arbitrary
real function f(x), i.e.,

+00
Fi/
—00

which is approximated in the Gauss-Hermite approximation
with L weights and nodes as

exp(—x?) f (x)dx, )

L
FrYcl)f)=ct

=1

with ¢ = [e(1) - e(L) o}y, and £ = [f (1) - f0)]',
being the vector of the weights, the nodes, and function
node values, respectively (see Appendix A), a very accurate
approximation is derived for 7(x;y) in a MIMO system, as
presented in the following lemma. Let us first introduce some
notations that make the overall understanding easier. Let n,
denote the equivalent to n, real vector of length 2N, derived
from n by separating its real and imaginary parts as follows

©)

®)

t
n, = [n,1 ni| -+ -nyN, Wi, 1,
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with n,,, n;, being the values of the real, imaginary part of
the oth (1 <o < N,) element of n, respectively. Let us also
define the real vector v({k;,, kiu}f)v;l) of length 2N, defined
as follows

v({krp, kiu}f)v;l) = [0kr1 Vkil, - 5 OkrN, Vkin, ), (10)

with k., ki, (1 < o < N,) being permutations of indexes
in the set {1,2,---,L}. Then the following lemma is true
concerning the Gauss-Hermite approximation for / (x;y).

Lemma 1: For the MIMO channel model presented in (1),
the Gauss-Hermite approximation for 1(X;y) with L nodes
per receiving antenna is given as

MNt
Z Jis
k=1

N, 1
log(2) MM

I1(x;y) = N; logy(M) —

Y

where
Z Z Z Z ckr1)e(kit)

A 1
Je= |\~
kri=1kip=1 krNy*1 klNr_1

: c(krNr)c(klNr)gk(O-nkn s ONfy sty O-nkrNr 5 O-nkiNr )a

(12)
with

gk(o-vkrlﬂo-vkil)... 90-1)](,1\1,;0-0/{,‘1\/,) (13)

being the value of the function
log, (Z exp(——||n — HG(x; — Xp)| )) (14)
m

evaluated at n, = ov({kyy, kip }11)\/;1)_

The proof of this lemma is presented in Appendix A,
together with a derivation methodology available for this
expression in the Ny = N; case. In Appendix A, we also
show that fk is an approximation to the physical quantity
Input-Dependent Output Entropy (IDOE) which relates to the
negative MIMO output entropy when the MIMO input is
X = X;. Let us stress that, the presented novel application of
the Gauss-Hermite quadrature in the MIMO model allows for
efficient evaluation of /(x;y) for any channel matrix H, and
precoder G, as required in the precoder optimization process,
as explained below.

IV. GLOBAL OPTIMIZATION OVER G TOWARD
MAXIMUM I (x; y) FOR QAM

A. Description of the Globally Optimal Precoder Method

Similarly to [16], we follow a block coordinate gradi-
ent ascent maximization method to find the solution to the
optimization problem described in (4), employing the virtual
model of (3). It is proven in [16] that I(x;y) is a concave
function over W and 226. It thus becomes efficient to employ
two different gradient ascent methods, one for W, and another
one for Z%;. We employ ® and ¥ to denote V}é and Z%;,
respectively, evaluated during the execution of the optimization
algorithm. The value of the step of each iteration over W
and ):%; is determined through backtracking line searches,
one for each of the variables W and ):26. We describe the
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backtracking line search for W first, then the one over 226.
At each iteration of the globally optimal algorithm over W,
the gradient of 1(x;y) over W, Vw]/, is required. We employ
a novel method in determining Vw/ at each iteration, as
described in detail in the next subsection. We then select two
parameters, oy and f1, both smaller than one and positive,
and perform the backtracking line search as follows: At each
new trial, a parameter #; > 0O that represents the step size is
updated by multiplying it with 1. The initial value for #; is
equal to 1. Then the algorithm checks if

I(W 4 tVwI) > (W) + at||Vwl||3, (15)

where ||[Vw/!||F is the Frobenius norm of Vw/ [31] and we
used the notation 7(W) to mean the value of I(x;y) at a
fixed W. If the condition is satisfied, the algorithm proceeds
with calculating a new Oygw from Wygw = W + 11 Vw1,
as follows:

Wyew = ©4 1y 432 ONEw (16)

by employing the eigenvalue decomposition (EVD) of Wy gw,
it updates V}é = OnEgw, and then it proceeds to the back-
tracking line search over Z%;. If the condition is not satisfied,
the search updates #; to its new and smaller value, ffi,
and repeats the check on the condition, until the condition
is satisfied or a maximum number of attempts in the first
loop, n1, has been reached. Then, the backtracking line search
on Eé takes place in a fashion similar to the search described
for W, but with some ramifications. First, based on the second
backtracking line search loop parameters ap and S, the
backtracking line search is as follows: At each new trial, a
parameter , > O that represents the step size is updated by
multiplying it with f. The initial value for 7, is equal to 1.
Then the algorithm checks if

[(W +1V52 1) > 1(W)+a2z||v2261||%, (17)

where ||Vy2 I||F is the Frobenius norm of szGI [31]. If the
condition is satisfied, the algorithm proceeds with updating
to the new Xygw, but after setting any negative terms
in the main diagonal of X ygw to zero and renormalizing
the remaining main diagonal entries. If the condition is not
satisfied, the search updates #, to its new and smaller value,
P>t and repeats the check on the condition, until the condition
is satisfied or a maximum number of attempts in the second
loop, ny has been reached. We thus see that there will in
general be multiple evaluations of I (x;y), until the searches
satisfy the conditions set or the maximum number of attempts
allowed in a search has been reached. This explains the
importance behind the requirement for an algorithm capable of
efficient calculation of 7(x;y). In addition, as the parameters
a1, az, P1, Pr need to be optimized for faster and more
efficient execution of the globally optimal precoder optimiza-
tion, this requirement becomes even more essential. Finally,
the role of ny, ny is also very important as when the number of
attempts within each loop grows, the corresponding differential
value of the parameter decreases and after a few attempts,
the corresponding value of the step size is almost zero.
By employing the proposed approach the possibility of finding
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Algorithm 1 Global Precoder Optimization Algorithm
With ¢ Iterations

1: procedure PRECODER(X f)

2:  whilei <1t do

3: Determine Wygw = ©"%2@ through backtracking
line search (16)

4 Set V& = ©

: Determine Wygw = chch%_IV}é

6: Determine 212\, gw.c through backtracking line
search (17)

7: Set negative entries on the diagonal of Z%V EW.G
to zero

8: Normalize Z?V Ew.c o a trace equal to N;

9: Set X = ENEW,G

10: Determine Wygw = ngzGZ%IV}é

11: Set W = Wpygew

12: Evaluate (W)

13:  end while
14:  return /(W)
15: end procedure

the globally optimal precoder for large QAM constellations
with M < 16 or large MIMO configurations becomes reality,
as our results demonstrate. The algorithm’s pseudocode for
a number of iterations ¢ is presented under the heading
Algorithm 1.

B. Determination of Vwl, V):él

We first set M = W%. Then, it is easy to see that [ is a
function of M (see, e.g., [21] where the notion of sufficient
statistic is employed to show that I (x; y) depends on W). The
derivation of Vw/ is presented in Appendix B. The proof is
based on the following theorem.?

Theorem 1: Substituting M = VGEHZGVZ = W% for
HG in (11) results in the same value of 1(X;y). In other words,
since M is a function of H, G, My is a sufficient statistic for'y.

Proof: The proof of the theorem is simple. First, recall
that the “virtual” channel model in (3) is equivalent to the
following model, which results by multiplying (3) by the
unitary matrix Vg on the left, resulting in

¥=Vey=VeZuZsVix+ Ven, (18)

where the modified noise term Vgn has the same statistics
with n, because Vg is unitary. By applying the Gauss-Hermite
approximation to (18), we see that we get the desired result,
i.e., the value of I (x;y) remains the same, since both channel
manifestations represent equivalent channels, i.e., the original
one and its equivalent, thus their mutual information is the
same. This completes the proof of the theorem. 0

Note that using this theorem, an alternative proof of part
of [16, Th. 1] can be developed, namely the fact that 7(x;y)
is only a function of W, as My is a sufficient statistic for

3The theorem applies without loss of generality to the Ny = N, case.
If Nt # Ny, then £y needs to be either shrunk, or extended in size, by
elimination or addition of zeros, respectively.
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y and M is a function of W. Assume without loss of generality
that N; = N,. The gradient of I(x;y) with respect to M can
be found (see Appendix B for the derivation) from the Gauss-
Hermite expression presented in (11) as follows

1 1

N L L L L
e (z) XX >
log(2) M d kri=1kijp=1 krny =1 kin, =1
x c(krp) -+ clkin, )R

x (o 0k, , OV

Vm !

90-UkrNr9o-kaNr)5 (19)

e
where R(oog,,, o0k, -
N; x N; matrix
> :
T D neXp —ﬁ”n — M(xk — Xm)|[?)
1

X ; exp(— )

x (0 — M(xx — X)) (g — Xp)"
+ ((n = M — X)) (X% — X))

evaluated at n, = ov({k;», ki }f)v;l .

The required Vw/ for the execution of the optimization
process can be found from Appendix B as per the next
lemma, using an easily proven equation. Using the fact that
for a Hermitian matrix such as M, we need to add the
Hermitian of the differential above in order to evaluate the
actual gradient (see [31]), we get the desired result as follows
(see Appendix B).

Lemma 2: For the MIMO channel model presented in (1),
the Gauss-Hermite approximation allows to approximate Vw I
as follows.

, OVk,y » OVky, ) is the value of the

I — M(xx — %))

(20)

Vw! ~ reshape((vec(VmI)! (M*) @ T+1@M) ),
Nf’ Nf)’ (21)

where reshape(A, k, n) is the standard reshape of a matrix A
(with total number of elements kn) to a matrix with k rows,
n columns, and where ® denotes Kronecker product of
matrices. Standard reshape emanates from the vector vec(A)
of matrix A which encompasses all columns of A starting
from the leftmost one to the rightmost.

Then, as I(x;y) is a concave function of W [21], we can
maximize over W in a straightforward way using closed form
expressions. This is based on the fact that the approximated
I(x;y) through the Gauss-Hermite approximation is very
accurate, as shown in the next section. The utilization of this
lemma goes beyond the exploitation of the gradient of the
mutual information in the precoder optimization algorithm.
As it is well known from [16], VwI = &, where ®
E {E{(x —Ex|y)(x— E(x|y))h|y}}, is the minimum mean
squared error (MMSE) covariance matrix of the channel.
Thus, by using the current lemma, an accurate estimate of
the MMSE covariance matrix of the MIMO channel can be
achieved. This is very useful especially when dealing with,
e.g., Statistical CSI cases where, the MMSE covariance matrix
becomes instrumental in deriving the asymptotically optimal
precoder [21]. Thus, based on the proposed Gauss-Hermite
approximation, accurate, but otherwise simplified derivation

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 10, OCTOBER 2016

TABLE I

COMPUTATIONAL COMPLEXITY PARAMETERS OF GAUSS-HERMIT
QUADRATURE / (X, y) EVALUATION

I(x;y)
Single Run wn
CPU sec CPU sec
25 54
54 12.6
11060

Vw
Complezity Run

162Nt (2L — DILIN,(2Ny + Ny — 1)
322Nt (2L — VILIN, (2N, + Ny — 1)
642Nt 2L — )ILIN,. (2N, + Nyp — 1)

M = 16
M =32
M =64

of the MMSE covariance matrix of the channel becomes
possible. Finally, since from [32] we have that V):%; 1

diag(V}éVwI Vg ):%1), we can easily evaluate it through the
procedure presented above.

C. Complexity of the Globally Optimal
Precoder Determination Method

The complexity of the globally optimal precoder
determination method depends mainly on the evaluations of
I(x;y) as required by the optimization algorithm described
above. By employing the Gauss-Hermite approximation
described herein it becomes possible to significantly
accelerate the evaluations of I(x;y) at each iteration of
the optimization algorithm. However, the complexity is
still high: Each evaluation of /(x;y) through the Gauss-
Hermite approximation requires, as per the development
in Appendix C, employing L weights and L nodes per
each real and imaginary component of the noise vector n,
resulting in 2N, L total weight and node dimensions. Then,
evaluation of f; in (30) requires 2N, nested “DO” loops,
each of length L, resulting in L* memory parameter
values overall. For a good approximation in Gauss-Hermite
quadrature, a value of L > 3 is required (please see the next
section for relevant results) and thus the overall memory
requirement becomes 32", As far as the computational
complexity in the number of operations (including both
(complex) summations and multiplications) involved in
calculating 7 (x;y) through the Gauss-Hermite approximation,
the corresponding complexity is shown in Appendix B to be
M2Ni2L — 1)@NILAN,. (2N, + N, — 1). Thus, for example,
going from M = 16 to M = 32 QAM will result in about
4 times higher complexity with N, and N, held constant.
On the other hand, increasing N, has an even more profound
effect on the complexity, due to its more complicated presence
in this complexity equation. For example, increasing N, from
2 to 3 while keeping all other parameters constant, will
increase the complexity by a factor of (2L — 1)% or for L =3
by 25 times. Our systematic numerical evaluations corroborate
these numbers very closely. As we observe by comparing the
figures in Table 1 to the numbers presented in [22], we see
that the Gauss-Hermite approach is about 7 times faster per
iteration of the precoder for M = 16 and PGP with groups of
size 2 x 2, i.e., the presented approach is faster. This is one of
the major improvements due to the proposed methodology.

V. NUMERICAL RESULTS

The results presented in this subsection employ QAM with
16, 32, or 64 constellation sizes. We employ MIMO systems
with Ny = N, = 2 when global precoding optimization is
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—&— Simulation & GH
~#— Lower bound [32]

| bps/Hz

SNHD, dB

Fig. 1. Results for /(x;y) without precoding for the Hj channel and QAM
M = 16 modulation.

performed. We have used an L = 3 Gauss-Hermite approxi-
mation which results in 3%V total nodes due to MIMO. The
implementation of the globally optimizing methodology is
performed by employing two backtracking line searches, one
for W and another one for ):%; at each iteration, in a fashion
similar to [21]. For the results presented, it is worth mentioning
that only a few iterations (e.g., typically < 8) are required to
converge to the optimal solution results as presented in this
paper. We apply the complexity reducing method of PGP [26]
which offers semi-optimal results under exponentially lower
transmitter and receiver complexity [26]. PGP divides the
transmitting and receiving antennas into independent groups,
thus achieving a much simpler detector structure while the
precoder search is also dramatically reduced as well. Finally,
we address both the CSIT and Statistical CSI cases. We
divide this section into five subsections. In the first subsection,
we examine the accuracy of the proposed Gauss-Hermite
approximation and provide a comparison with the lower bound
technique presented in [32]. In the second subsection we show
results for the globally optimal precoder for M = 16, 32
based on the approximation in conjunction with independent
Gaussian channels and CSIT. In the third subsection we
present results for Statistical CSI channels similar to the ones
in 3GPP SCM [27], with antenna size up to 100 x 100
with PGP and modulation size M = 16, 32. In the fourth
subsection, we present results for CSIT jointly with PGP and
higher size of antennas and modulation. Finally, in the last
subsection, we present results for a MIMO system with 100
base station antennas and 4 user antennas with M = 16, 64.

A. Accuracy of the Gauss-Hermite Approximation Technique

In Fig. 1 we present results for / through simulation, the
Gauss-Hermite approximation (GH) with L = 3, and the lower
bound developed in [32] versus the signal-to-noise ratio per
bit (SNRy) in dB, for QAM with M = 16, and for the
commonly used channel [16], [25],

2 1
w-[? 1]

In the same figure, we also show a lower bound for I (x;y)
which appeared in [32]. We see excellent accuracy for the
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Fig. 3. Results for the average percent absolute normalized error in the
Gauss Hermite /(x;y) for the H; channel and QAM M = 16 modulation.
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Fig. 4. Results for /(x; y) without precoding for the H, channel and QAM
M = 32 modulation.

approximation, i.e., no observable difference between the
Gauss-Hermite approximation and the simulations, over all
SNR;, values. In Fig. 2 we show results on the Gauss-Hermite
approximation percent average absolute error normalized by
the actual I(x;y) for L = 2, 3, 4, for 1000 randomly
generated H N; = N, = 2 channels, and M = 16, with
respect to symbol SNR in dB. We see that L = 2 has a
maximum normalized error of 6.25%. The average normalized
error drops to less than 1% with L = 3 for SNR > —5 dB.
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Fig. 5. Results for achievable /(x;y) with channel estimation errors and

M = 16 modulation.

Furthermore, the results for L = 4 give little improvement over
the ones with L = 3. Notice that the same type of behavior
was found for M = 32, 64 over a wide variety of channels.
We thus selected L = 3 in our work as the best tradeoff value
between low approximation error and low system complexity.
Furtermore, it is important to stress that the variance of the
approximation error was found to be less than 4 - 10~3 for
L > 2 and SNR > —15 dB. We thus see the Gauss-Hermite
approximation offers excellent accuracy when L = 3 and for
a wide SNR range. In Fig. 3 we present percent normalized
absolute error results for Hy and L = 1,2, ---,5 in order to
assess the impact of the value of L to the results, especially
for higher L. We clearly see that by going from L = 2
to L = 3, a significant reduction on the error is achieved.
Further increase of L offers an additional reduction to the
error, however it requires significant additional complexity and
processing delay. We thus see that L = 3 comes as the natural
candidate due to its capability to attain percent error lower
than 2% for a wide range of SNR. In Fig. 4 we present
the corresponding results to Fig. 1 for M 32 QAM in
conjunction with the randomly generated channel

_ 1.98 + j0.12  0.0124 — j0.0016
27| —0.2487 — j0.0314 0.0992 — jO.1 |*

with the same type of behavior as before, i.e., the Gauss-
Hermite approximation offers excellent accuracy and that the
lower bound is lagging behind in performance, albeit by less
than N,(1/log(2) — 1) &~ 0.88, which is the shift introduced
in [32] in order to approximate I very closely for QPSK
modulation. In Fig. 5 we present results with non-perfect
channel estimation, i.e., channel estimation with errors for
N; = N, = 2 [33]. To that end, we employ two channel
estimators and use their imperfect estimation to model errors.
We use two possible Least Squares Estimation (LSE) methods
in conjunction with 2 orthogonal pilots, each of length 2. In the
first method, a simple LSE with pilot power equal to the 7 dB
independently of the message signal power, called Constant
Pilot Power (CPP), while in the second one we use pilots
with two times the message signal power, called Variable Pilot
Power (VPP). We generate 50 random channels, employ LSE
with both CPP and VCC, and then average the corresponding
I(x;y) on these channels. We observe that both proposed
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Fig. 6. I(x;y) results for optimal precoding, MDP, and no-precoding cases
for a 2 x 2 MIMO system and QAM M = 16 modulation.
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Fig. 7. I(x;y) results for optimal precoding, MDP, and no-precoding cases
for a 2 x 2 Hy MIMO system and QAM M = 32 modulation.

LSE methods attain similar results which show little impact of
channel estimation errors to the overall system performance,
e.g., at SNR = 4 dB there is degradation of 3.8% in the
precoder performance. In addition, since the two methods pro-
posed are simple, in reality, with more sophisticated channel
estimation, we expect a smaller impact of channel estimation
errors to the precoder design and performance.

B. Results for Globally Optimal Precoding for
Gaussian Channels and CSIT

In Fig. 6 we show results for the globally optimal precoder
based on the Gauss-Hermite approximation with L = 3, and
the Maximum Diversity Precoder (MDP) presented in [25],
for M = 16, for H;. We observe that the optimal precoder
offers significant utilization gains in the low SNR region,
while its gain diminishes in the higher SNR region. For
example, at SNR;, = —4 dB, there is about 0.6 bps/Hz gain
attainable with the globally optimal precoder over its MDP
and no-precoding counterparts, which represents a 30% gain.
Also, contrary to the BPSK/QPSK modulation case presented
in [16] and [32], the MDP precoder offers no significant gain
over the no-precoding case, a very important difference.

In Fig. 7 we present results for 7 (x; y), for the same channel,
MDP, and no precoding, Ny = N, = 2, and M 32.
There is no noticeable improvement offered by MDP over the
no-precoding case, similarly to the M 16 QAM case
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Fig. 8. I(x;y) results for optimal precoding, MDP, and no-precoding cases
for a 2 x 2 Hy MIMO system and QAM M = 32 modulation.
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Fig. 9. I(x;y) results for PGP and no-precoding cases for a 20 x 20 H

Statistical CSI MIMO system and QAM M = 32 modulation.

presented above. Clearly, the same fundamental conclusions
as in the M = 16 case hold true. The offered gain of the
globally optimal precoder in low SNR is still around 50%
over its no- precoding and MDP counterparts. We next present
same type of results for H. In Fig. 8 we observe that for this
type of channel, the gains achieved by the globally optimal
precoder are significantly higher and that in the high SNR
regime the no-precoding case cannot achieve the maximum
mutual information given by N; log, (M) = 10, i.e., it becomes
saturated. We will see that for certain channels, which we
call saturated channels, this type of behavior is also observed
for the large MIMO channel configurations in both CSIT and
Statistical CSI channel cases.

C. Results for Statistical CSI in Conjunction With PGP

We apply the asymptotic approximation to ergodic mutual
information precoder optimization, e.g., by determining the
parameters Zeq, Qeg, Veq> Weq> Reg in [22] for Kronecker
channels. We first consider an N; = N, = 20 SCM urban
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Fig. 10. I(x;y) results for PGP and no-precoding cases for a 100 x 100 H
Statistical CSI MIMO system and QAM M = 16 modulation.
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Fig. 11. I(x;y) results for PGP and no-precoding cases for the 32 x 32 H
Statistical CSI MIMO channel employed in [22] in conjunction with QAM
M = 16 modulation.

channel with M = 32. We create the large size asymp-
totic approximation no-precoding results for a Statistical CSI
channel based on [21]. For precoding to be efficient, but
otherwise realistic, we employ PGP [26] with 10 groups of
size 2 x 2 each. Due to the nature of this channel, we observe
in Fig. 9 that the no-precoding case saturates at I(X;y) =
70 bps/Hz. We see very significant gains offered by PGP in the
high SNR, regime. The PGP system attains the full capacity
available in high SNR. In Fig. 10 we present results for PGP
versus a no-precoding SCM channel with Ny = N, = 100
and M = 16. To the best of our knowledge, results for
such large MIMO configurations are not available in the
literature. Similar to the previous results, we observe high
information rate gains in the high SNR; regime as the PGP
system achieves the full capacity of 400 bps/Hz while the no-
precoding scheme saturates at 320 bps/Hz. The PGP system
employed uses 50 groups of size 2 x 2 each. In Fig. 11 we
present results for PGP versus a no-precoding SCM channel
with Ny = N, = 32 and M = 16, using the same SCM

1.5362 4 0.3151i
1.5571 4+ 1.0171i
0.4550 — 0.2484i
0.2278 + 3.1243i

0.5714 4+ 0.9123i
—0.3071 + 0.3765i
0.7266 — 1.2195i
—0.6890 — 0.3397i

0.1394 — 0.3407i
—0.3073 + 0.5680i
0.0780 + 0.1645i
0.0175 — 0.2322i

—0.0085 + 0.0081:
—0.0035 + 0.0041:
—0.0131 +0.0008i |’
—0.0045 — 0.0064i
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Fig. 13.  I(x;y) results for PGP and no-precoding cases for a randomly
generated 10 x 4 H CSIT MIMO system and QAM M = 16 modulation.

channel as in [22]. We observe that our proposed approach
offers slightly better performance than the one employed
in [22], although it is faster, as it is explained in Table 1.

D. Results for CSIT in Conjunction With PGP

For a 4 x 4 channel H, as shown at the bottom of the
previous page, used with M = 64 we get the no-precoding
and the PGP results using 2 groups of size 2 x 2 each depicted
in Fig. 12. This example represents the corresponding CSIT
case example that is similar to the SCM channels used in
the previous subsection. We observe very high gains of
PGP over the no-precoding case in the high SNR; regime.
To the best of our knowledge, these type of results for optimal
precoding in conjunction with M 64 are not available
in the literature. Finally, in Fig. 13 we present results for
an asymmetric randomly generated MIMO channel with
N: =4, N, = 10, and M = 16. PGP employs two groups
of size N, = 5, N; = 2 each. In the current scenario, we
observe that significant gains are shown in the low SNR,
regime, e.g., around 3 dB in SNR; lower than —7 dB.

E. Results for Massive MIMO

Massive MIMO [34]-[36] has attracted much interest
recently, due to its potential to offer high data rates. We
present results for the uplink and downlink of a Massive
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Fig. 14.  I(x;y) results for PGP and no-precoding cases for a randomly
generated 100 x 4 uplink H CSIT MIMO system and QAM M 16
modulation.

MIMO system based on 100 base station, 4 user antennas,
respectively, with M = 16, 64, and for a Kronecker-based
3GPP SCM urban channel in a CSIT scenario in a single
user configuration. Fig. 14 shows results for the 100 x 4
uplink of the system. We employ PGP to dramatically reduce
the system complexity at the transmitter and receiver sites.
Under no precoding, the channel saturates and fails to meet
the maximum possible mutual information of 16 bps/Hz,
while with PGP the system clearly achieves the maximum
mutual information rate, thus achieving high gains on the
uplink in the high SNR regime. We stress the much higher
throughput possible with M = 64 over the M = 16 case.
For example, the no-precoding M = 16 uplink significantly
outperforms the PGP M = 16 uplink. Second, the PGP
M = 64 uplink offers further gains by, e.g., achieving the
maximum possible rate of 24 bps/Hz. For the downlink, in
Fig. 15 we show results where the no-precoding case operates
under 100 antenna inputs all correlated through the right
singular vectors of the channel, thus creating a very demanding
environment at the user, due to the exponentially increasing
maximum a posteriori (MAP) detector complexity [26]. On the
other hand, employing PGP with only two input symbols per
receiving antenna, i.e., with dramatically reduced decoding
complexity, the PGP system achieves much higher throughput
in the lower SNR regime, with SNR gain on the order of
10 dB, albeit achieving a maximum of 32, 48 bps/Hz as there
are a total of 8 M = 16, 64 QAM data symbols employed,
respectively. We observe the superior performance of M = 64
over its M = 16 counterpart due to its increased constellation
size. For example, at medium SNRy, e.g., SNR, = 4, the
M = 64 PGP scheme achieves 45% higher throughput that
the M 16 one, a significant improvement. We would
also like to emphasize that the no-precoding scheme requires
a very high exponential MAP detector complexity, on the
order of M9 while for the low-SNR-superior PGP, this
complexity is on the order of M? only. Thus, even in the higher
SNR region where the no-precoding scheme can achieve a
higher throughput, the complexity required at the user site
becomes prohibitive. This demonstrates the superiority of
PGP on the Massive MIMO downlink. On the other hand,
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Fig. 15. I(x;y) results for PGP and no-precoding cases for a randomly
generated 4 x 100 H downlink CSIT MIMO system and QAM M = 16, 64
modulation.

in lower SNR, the PGP scheme achieves both much higher
throughput with simultaneously exponentially lower MAP
detector complexity at the user site detector. Note that the
performance provided by PGP on the downlink depends on
the number of symbols processed jointly. This number is
currently limited by the computational complexity available.
This limitation does not occur on the uplink since in that
case N; < N,.

VI. CONCLUSIONS

In this paper, the problem of designing a linear precoder
for MIMO systems toward mutual information maximization
is addressed for QAM with M > 16 and in conjunction with
large MIMO system size. A major obstacle toward this goal
is a lack of efficient techniques for evaluating 7(x,y) and its
derivatives. We have presented a novel solution to this problem
based on the Gauss-Hermite quadrature. We then applied a
global optimization framework to derive an almost globally
optimal precoder for the case of QAM with M = 16 and 32
and small antenna size configurations. We showed that under
CSIT in this case, significant gains are available for the
lower SNR range over no precoding, or MDP. We showed
that for the standard 2 x 2 channel, although the globally
optimal precoder offers significant gains over MDP and the no-
precoder configurations in the low SNR region, it fails to offer
gains as high as 1 bps/Hz. However, we demonstrated that by
employing another 2 x 2 channel gains as high as 1.4 bps/Hz
are possible. For systems of large MIMO configurations, we
applied the complexity-simplifying PGP concept [26] to derive
semi-optimal precoding results. Under Statistical CSI, we
showed that for urban 3GPP SCM channels, an interesting
saturation effect in the no-precoding case takes place, while the
semi-optimal PGP precoder offers dramatically better results
in this case and it does not experience any saturation as the
SNR increases, e.g., it achieves the maximum information
rate, /(x;y) = N,log,(M) at high SNR. Furthermore, we
applied the same Gauss-Hermite approximation approach to
CSIT with a large number of antennas with the same success.
We showed that for specific type of channels similar to urban
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3GPP SCM [27], the PGP approach offers very high gains
over the no-precoding case in the high SNR}, regime. Finally,
we considered a Massive MIMO scenario in conjunction with
CSIT and showed that by carefully designing the downlink
and uplink precoders, the methodology shows very high gains,
especially on the downlink, although it employs an exponen-
tially simpler MAP detector at the user site. Based on the
evidence presented, the novel application of the Gauss-Hermite
quadrature rule in the MIMO scenario allows for gener-
alizing the interesting results presented in [16] and [21]
to the QAM case with ease. Because of the simplification
achieved by the combination of PGP and the Gauss-Hermite
approximation, we were able to derive results with, e.g.,
N, = N, = 100 as well as with M = 64 efficiently.
In addition, the presented Gauss-Hermite approximation offers
important simplification in the evaluation of the MMSE covari-
ance matrix of the MIMO channel which is required in,
among other areas, the Statistical CSI equivalent channel
determination [21].

APPENDIX A
GAUSS-HERMITE QUADRATURE APPROXIMATION IN
MIMO INPUT OUTPUT MUTUAL INFORMATION

I(x;y) = H(x) — H(x]y) = N;log,(M) — H(x|y), where
the conditional entropy, H (x|y) can be written as [32]

N, 1
log(2) + MM Zk:

1
x ]En(log2 (Z eXp(—; [In—HG (Xt — Xp,)| |2)))

H(x|y) =

m
N, 1 +00 5
- 0,021
log(2)+MNl ; . Az (n]0, o °T)
1
x log, (Z exp(—?Hn —HG(x¢ — Xm)||2)) dn,
m

(22)

where A((n|0, 02I) represents the probability density func-
tion (pdf) of the circularly symmetric complex random vector
due to AWGN. Let us define

+o0

fi = N;(n]0, °1T)

—00

1
x log, (z exp —plln —HG(x; — Xm)||2)) dn.

Xm

(23)

There is an intimate connection between f; and the parameter
Hi(y) = Eyx {—logy(p(y))Ix =x;} called the Input-
Dependent Output Entropy (IDOE) herein. Note that IDOE
represents the entropy at the receiver output when the input
is X¢. This parameter is different that the conditional entropy.
By using standard entropic identities, we can easily see that

Ji = —H(y) + 2N, logy (o) + Ny logy (z) + Ni log, (M).
(24)
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Thus, since our Gauss-Hermite approximation focuses on
finding approximations to each of the f; terms, one per input
symbol, it equivalently offers estimates of the IDOE terms
Hi(y). This gives a physical meaning to the estimated terms f
presented below.

Since n has independent components over the different
receiving antennas, and over the real and imaginary dimen-
sions, the integral above can be partitioned into 2N, real
integrals in tandem, in the following manner: Define by
Npy, Ry, With o = 1, -+ | N,, the oth receiving antenna real
and imaginary noise component, respectively. Also define by
HGxr — X)) and (HG(xx — Xp,))ip, the vth receiving
antenna real and imaginary component of (HG(xx — X)),
respectively. We then have

1 n? +nl-2”
%(n|09021) = n—Nro-er exp(— ZI 01_)2 )9 (25)
N,
dn = [ dnydni,. (26)
v=1
and
1 2
> exp(—=In — HG(x¢ — x|
o
1
= 2 exp(=— (> 0ty — (HG (X — X))’
m v
+ D iy — Gk — x))in)D)).  (27)
v
The Gauss-Hermite quadrature is as follows:
+00 5 L
[ eweadrwa s S e, @9
—00

=1

for any real function f(x), and with vector c
[c(1)---c(L)]T being the “weights,” and v; are the “nodes”
of the approximation. The approximation is based on the
following weights and nodes [23]

2L=111 /2%
L>(Hp—1(v7))?

c(l) = 29)

where H; _1(x) = (—1)L_1exp(x2)diLLill (exp(—x?)) is the

(L — 1)-th order Hermitian polynomial, and the value of the
node v; equals the root of Hy (x) for /[ =1,2,---, L.

Applying the Gauss-Hermite quadrature 2N, times in
tandem to the integral in (23), and after changing variables,
we get that

. 1\ M- L L L L
fe ™ fi = (;) DD D> D> elkelkin) -+

kri=1ki1=1 krny =1 kin, =1
X C(klNr)gk(o-nkrl 5 o-nkl‘l s T o-nkrNr s o-nkiNr )9
(30)

where

k(0N s ONgyy s+ 5 O Ny, Oy ) (31)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 10, OCTOBER 2016

is the value of the function (from (30))

1
log, (Z exp(——In — HG (x; = X |2>) (32)

evaluated at n, = ov({k,,, kip }11)\];1)
For the special case N, = 2, (30) becomes
N2 L Lo LoL
i=(3) X X3 cthenettn
kri=1ki1=1 kpp=1kip=1
x c(kr2)e(ki2) k(0 iy, O Nkyy 5 0Ny s ONG,),  (33)

which using basic properties of bilinear forms can be
rewritten as

R 1 2 L L L L
fe = (;) D00 D0 D elkekineke)

kri=1kii=1ko=1kip=1
x c(kiz)gk(onky1, ong, , onk,, ong,)

1\2
= (—) c'Fy 1c,
T

where Fy ; is an L x L matrix with k., k;; element equal to

(34)

Fiilkr1, kit]l = ¢' Vi 1c, (35)
with Vi | being an L x L matrix with k.2, k;> element equal to
Vi ilkr2, kiz]l = gk(onk,,, ong,, onk,, ong,),  (36)

so that the different f; can be approximated efficiently, and
then summing them over the different x, as per (22), we get
an approximation for H (x|y),

N, 1 A

log(2) T ;fk
Zc’ch
k

N, n 1
log(2) MM
c’(ZVk)c
k
c'Ve,

H(x]y) ~

N
log(2) 2MMN
LJ’_
log(2)

T (37)
where V.= 3", Vi.

The procedure presented above for the N, = N, = 2 case
can be directly generalized to any N; = N, by following a
recursive procedure as follows. We repeat the above recursive
procedure until either Fy; or V;; have included all the
indices k;j, k;j. The procedure will end at a Vi ; if N, is
even and an Fy; if N —r is odd.

APPENDIX B
DERIVATION OF Vw/ THROUGH THE
GAUSS-HERMITE APPROXIMATION

Without loss of generality, let’s assume that N; N;.
Using Theorem 1, we can write by using the Gauss-Hermite
approximation with M instead of HG,

N, 1 .
10:) % Nelogs (M) — =55 = 2 D fie (38)
k
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In order to derive the gradient of I(x;y) with respect to W,
we first derive the gradient of I (x;y) with respect to M*. Start
with the differential of I (x;y) with respect to M* in (38) and

approximate the f; by fi,
1"
MM\«

L
> Z Z c(kr)e(kin)

1 R
dviel (%;y) % —~dwre S k)=
k
X

N;
L
ke1 =

r1=1kii=1 krn, =1 ki, =1
- c(krn,) x c(kin,) ZdM*
k

s 0Ny, > Oy, )) .
(39)

X (gk(o-nkrl > OMkjys -

Taking into account that gi(ong,,, onk,, - - -
is the value of

log, Z exp(—

evaluated at n, = ov({k,,, kiv}f)v;l), we can develop (39)
further, by using well-known results [31], as follows

dm+1(x;y)
L L
> >
—1ki=1

11 "
log(2) MN: \ B
rl

LL
x> elke)etkin) -

krny =1 kin, =1

s O-nkr]\]r > o-nkl‘Nr)

IIH—M(Xk —xm)|?)

c(krn,)e(kin,)

. O'nrNr,k,Nr ) O-niNr ,kiNr )}t
x dM¥),  (40)

X tr (RO 1 kyy > 01 Ky s -

where R(ony,,, ony s 0Ny, > 0Ny, ) 18 the value of

s

1
Zk: > exp(— 2 |In — M(xe —x)[1?)
x Z (exp(— lIn — M(x — %)11%)

x (= Mt = %) (0 = )" ) ) (41

evaluated at n, = ov({k,, k,-D}UN;l). In this derivation we

have used the fact that

_ o 2
dm (exp(—”n M(zkz Xon) ))
o _ 2
= L ep(- MO X ) iy — )
o o
X (X — X)) (42)

Using the fact that for a Hermitian matrix such as M, we

need to add the Hermitian of the differential above in order

to evaluate the actual gradient (see [31]), we get (19).

Now, since W = M2, by taking vectors of the matrices
on each side of this equation and applying some identities
from [31], we get that

dvec(W) = (M*) @ I +1® M) dvec(M), (43)
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where the notation vec(A) denotes the vector found from
matrix A by taking its columns one at a time, starting from
the leftmost one. Since M = W%, it is straightforward to
derive (23) by employing (43) as follows. The relationship
between the gradient and the derivative is through reshaping
the derivative row vector [31], we can thus write

Vwl ~ reshape((vec(VmI)" (MHRIT+IQ® M)_1

Nf’Nf)’

)5
(44)

where reshape(A, k, n) is the standard reshape of matrix A
with total elements kn to a matrix with k rows, n columns.

APPENDIX C
EVALUATION OF COMPUTATIONAL COMPLEXITY
IN CALCULATING I (x; y) THROUGH
GAUSS-HERMITE QUADRATURE

Let’s start with N, = 2. Then, the complexity involved
in the Gauss-Hermite quadrature approximation of 7(x;y) is
determined by the one required in the calculation of ﬁ in (34).
From (35), this is equal to (2L — 1)? times the number of
operations, including summations and products, required in
evaluating each element of the matrix V. Since Vy is a size
L x L matrix with elements given in (36), it can be seen
from (32) that the complexity of each element Vi[k,2, kin] is
L2N, (2N; + N, — 1). Since there are MYt summation terms
over k (the size of the overall multiple input constellation), the
total complexity becomes MVt (2L — 1)*L*N, (2N; + 1). For
a general value of N,, in a similar fashion, the corresponding
complexity becomes M2N (2L — 1)CNIL4*N, (2N, + N, — 1).
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