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Abstract—In this paper, the problem of designing a linear
precoder for Multiple-Input Multiple-Output (MIMO) systems
employing Low-Density Parity-Check (LDPC) codes is addressed
under the constraint of minimizing the dependence between the
system’s receiving branches, thus reducing the relevant trans-
mitter and receiver complexities. Our approach constitutes an
interesting generalization of Bit-Interleaved Coded Modulation
with Multiple Beamforming (BICMB) which has shown many
benefits in MIMO systems. We start with a Pareto optimal surface
modeling of the system and show the difficulty involved in the cor-
responding optimization problem. We then propose an alternative,
practical technique, called Per-Group Precoding (PGP), which
groups together multiple input symbol streams and corresponding
receiving branches in the “virtual”” channel domain (after singular
value decomposition of the original MIMO channel), and thus
results in independent transmitting/receiving streams between
groups. We show with numerical results that PGP offers almost
optimal performance, albeit with significant reduction both in
the precoder optimization and LDPC EXIT chart based decoding
complexities.

Index Terms—Per-group processing, maximal diversity pre-
coder, near-capacity achieving channel coding, pareto optimal
precoder, receiver independence factor.

I. INTRODUCTION

HE concept of Multiple-Input Multiple-Output (MIMO)

still represents a prevailing research direction in wireless
communications due to its ever increasing capability to offer
higher rate, more efficient communications, as measured by
spectral utilization, and under low transmitting or receiving
power. Within MIMO research, BICMB [1]-[3] has shown
great potential for practical application, due to its excellent
diversity gains and its simplicity. For example, BICMB in con-
junction with convolutional coding offers maximum diversity
and maximum spatial multiplexing simultaneously [1], thus
it represents an optimal technique for this type of Forward
Error Correction (FEC). In addition, there are many past works
available which investigated with success linear precoding
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through exploitation of a unitary precoding matrix, mainly from
a diversity maximization point of view [4], [5]. On the other
hand, LDPC coding is the currently prevailing, near-capacity
achieving error-correction technique that operates based on
input to output mutual information and extrinsic information
transfer (EXIT) charts [6], [7]. The problem of designing an
optimal linear precoder toward maximizing the mutual informa-
tion between the input and output was first considered in [8], [9]
where the first optimal power allocation strategies are presented
(e.g., Mercury Waterfilling (MWF)), together with general
equations for the optimal precoder design. In addition, [10]
also considered precoders for mutual information maximization
and showed that the left eigenvectors of the optimal precoder
can be set equal to the right eigenvectors of the channel.
Finally, in [11], a mutual information maximizing precoder for
a parallel layer MIMO detection system is presented reducing
the performance gap between maximum likelihood and parallel
layer detection.

Recently, globally optimal linear precoding techniques were
presented [12], [13] for finite alphabet inputs, capable of
achieving mutual information rates much higher than the pre-
viously presented MWF [8] techniques, by introducing input
symbol correlation through a unitary input transformation ma-
trix in conjunction with channel weight adjustment (power allo-
cation). These mutual information maximizing globally optimal
precoders are more appropriate for LDPC codes which are
very popular currently, than e.g., Maximal Diversity Precoders
(MDP) [12]. However, the gains presented in [12], [14], [15]
are achieved at the expense of significantly increased system
complexity, even for small modulation constellation size M
(e.g., M = 2.4). In addition, the interesting design of [12]
requires a significant computational complexity increase at the
receiver, even in its simplified implementation for M-ary Phase
Shift Keying (MPSK) systems [14], due to e.g., the dependence
present between receiving branches. This increase could be
prohibitive if the receiver is the mobile destination, or if the
number of receiving branches is high.

In this paper, we propose linear precoding techniques which
offer high mutual information between input and output in
a MIMO system with Quadrature Amplitude Modulation
(QAM) and also offer semi-independence among the receiving
branches, thus highly simplifying the Maximum A Posteriori
probability (MAP) detector operation, and hence significantly
reducing the receiver complexity. First, we investigate the the-
oretical aspects of jointly maximizing the mutual information
rate and the independence of the receiving branches. This is
done within a Pareto optimal surface context. We show that this
problem becomes very involved due to the non-concavity of
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Fig. 1. Original MIMO System model at baseband with Linear Precoder G, N;
transmitting antennas, N, receiving antennas, and LDPC encoder and decoder.
A generic coding rate R is assumed for the LDPC encoder. A similar system
can be built for the equivalent channel presented.

the functions involved and thus more practical solutions should
be sought. We then proceed to propose a new, interesting tech-
nique that groups together “similar” small numbers of multiple
streams of input data and receiving branches and then it applies
optimized precoding on each group. We carefully look at the
group selection strategy, and we show that the best selection is
based on selecting input and output groups based on maximum
separation of their singular values. The proposed technique
is named Per Group Precoding (PGP). PGP offers very good
performance with significantly reduced complexity both at the
precoder design and receiver levels, due to the independence
among different groups and it can be successfully applied even
to QAM constellations with M > 16.

II. LINEAR PRECODER OPTIMIZATION
WITH REDUCED COMPLEXITY

The N, transmit antenna, N, receive antenna MIMO model
(Fig. 1) is described by the following equation

y = HGx +n, (1)

where y is the N, x 1 received vector, H is the N, x N;
MIMO channel matrix comprising independent complex Gaus-
sian components of mean zero and variance one and assumed
quasi-static [1], G is the precoder matrix of size N; X Ny, X is
the N, x 1 data vector with independent, identically distributed
components of (normalized) power one (thus with covariance
matrix Ky = I,), each of which is in the QAM constellation,
and n represents the circularly symmetric complex Additive
White Gaussian Noise (AWGN) of size N, x 1, with mean zero
and covariance matrix K,, = G,%IN,, where Iy, is the N, x N,
identity matrix, and 62 = ﬁ, SNR being the (coded) symbol
signal-to-noise ratio. The precoding matrix G needs to satisfy
the following power constraint

tr(GG") =N, )

where tr(A), A" denote the trace, and the Hermitian transpose
of matrix A, respectively.
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An equivalent model, assuming without loss of generality
Nyy = Ny = N; in the virtual domain (after singular value
decomposition (SVD),! where Ny, Ny represent the transmit-
ting and receiving antennas in the virtual domain, respectively,
called herein the “virtual” channel can be easily built based on
[12] as follows

y=ZuZcVix+n, (3)

where Xy and X are diagonal matrices containing non-zero
singular values of H, G, respectively, padded with zeroes if
necessary for dimension consistency, and V¢ is the matrix of
the right singular vectors of G. Thus, all matrices in (3) are of
size N; x N;, while the vectors are of size N; x 1. When LDPC
coding with sufficient blocklength (see below) is employed
in this MIMO system, the overall utilization in b/s/Hz is
determined by the mutual information between the transmitting
branches x and the receiving ones, y [6], [7]. It is shown [12]
that the mutual information between x and y, I(x;y), is only
a function of W = V02%{2%;V’&, an important property toward
mutual information maximization. The optimal precoder G is
found by solving

maxémize I(x;y)
subject to  tr(GG") = N;. “)

In (4), the constraint present is due to the total (normalized)
average MIMO input power which needs to be kept equal
to N;. The average MIMO input power is given as Pyyo =
E(tr(Gxx"G")) = tr(GG"), due to the assumptions made on x.
The solution to (4) results in exponential complexity at both
transmitter and receiver, as shown in Section II.

When an appropriate LDPC code” of sufficient blocklength
N, is employed in the described MIMO system, in conjunction
with Gray coding and interleaving employed at the transmitter,
followed by MAP detector at the receiver, the system offers
very low bit error rate (BER) (e.g., BER < 10~%) [6], [7],
provided that the coding rate of the LDPC code satisfies the
condition

1(x,y)

R< ———.
Nt logz(M)

®)

This is due to the fact that LDPC codes are near-capacity
achieving codes. For example, based on the published results in
[12], a blocklength N}, > 2400 would suffice toward meeting (5)
closely for a 2 x 2 MIMO system. Thus, designing precoders
for high input-output mutual information is more appropriate
for LDPC systems than other type of precoders, e.g., MDP.
Based on this fact, we focus on this type of precoder designs
without special attention on the LDPC code design details.

'Due to SVD, the original N, x N; system described by (1) is equivalent to a
size N; x N; virtual MIMO system.

2Other types of near-capacity achieving channel coding, e.g., Turbo coding
could also be employed in our MIMO precoding schemes, as well. However,
as LDPC codes represent one form of the currently prevailing channel coding
techniques, we decided to focus on this type of channel coding herein.
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A. Pareto Surface Precoder Optimization

In this paper, we are interested in precoders which are
capable of maximizing jointly /(x;y) and a measure of inde-
pendence between the elements of y in (3). Our rationale is that
these types of precoders lead to simpler designs with reduced
complexity both at the transmitter and the receiver. To see this,
we use the fact that higher values of the degree of indepen-
dence between the elements of y are facilitated by independent
partitions of the MIMO channel input-output space into inde-
pendent groups. An input-output MIMO Independent Group
Partition (IGP) with N, groups, P, is defined as follows: P =
{81, , SN, }, where each group in the partition, §; with 1 <i <
Ng, comprises Ng; unique, non-intersecting input-output vector

pairs, (X5,ys), which satisfy U?ﬁ"lﬂ\[(x&) = Ui\i"lﬂ\[(y&) =
{1,2,-+,N; } and N (x5) Ny N(xs;) = N(ys) Njei N(Vs;) =
0, where A/(-) represents the index set (nodes) present in the
argument set (within the parenthesis). In addition, IGP requires
that each input node, n, in a partition set §; is connected only
to the corresponding outputs in §, in other words, the elements
of V¢ corresponding to all other outputs are set to zero, i.e.,
Vg(n, j) =0, for output nodes j with j & N (ys), and where
V(n, j) represents the ith row, jth column entry of matrix Vg
of (3). All the IGP schemes considered herein use square group
structure, i.e., with same number of input and output elements
in each group. In other words, | A(xs)| = | A (ys,)| = Nyi, with
T N = N

Thus, the IGP structure clearly defines N, independent
MIMO input-output groups, i.e., N, independent, smaller di-
mension MIMO systems. In the sequel we will also need the
notion of an Output only Independent Group Partition (OIGP).
Let p(-) be the pdf of the quantity within the parenthesis,
and let Pr(-) be the probability of the quantity within the
parenthesis. An OIGP MIMO system is defined as a partition
of the output vector y into N, independent groups, i.e., with

ply) = ]'[jvzg1 p(ys)- An interesting fact is that an AWGN
MIMO system as defined by (3) is equivalent to an IGP with
the same number of groups, Ny, as we show below. Now we
present two lemmas that are essential to the overall paper
understanding, with their proofs presented in the Appendices.

Lemma 2.1: Any MIMO OIGP with N, groups is equivalent
to a MIMO IGP with the same number of groups.

Based on this lemma, we see that seeking for higher degree of
independence in the output of the MIMO system is equivalent
to searching for an IGP.

Now, let S(/)(1 <1 < N,), be the mapping from the /th input
x; to its corresponding group, and let |S(/)| be the number of
elements in this group.

Lemma 2.2: Any MIMO OIGP with N, groups results in an
equivalent expression of the symbol MAP probability, Pr(x;|y),
as follows

Pr(x;ly) = Pr (xi[ys)

where we have used Pr(+) since x; takes values in a discrete set.

Due to this lemma, the MAP detector with OIGP needs to
only look at the MIMO system defined by S(i) to calculate the
MAP probability, thus simplifying the overall MAP detector
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complexity as only N,; < N; input and output nodes are present
in the MAP detector of x;. Then each group can be separately
precoded and decoded at the receiver thus simplifying the over-
all system complexity. This reduction in the receiver complexity
is evaluated in more detail in Section III.

A widely accepted measure of independence among the
elements of a random vector is the difference between the joint
entropy and the sum of all marginal entropies, which herein is
called Receiver Independence Factor (RIF)

Ny
RIF = H(y) — H;(y) = H(y) — X, Hi(yi), (6)
i=1

where H(-) represents the entropy of the argument in the
parenthesis, y; is the ith receiving branch, and we defined
Hi(y) = Zfil H;(y;). Thus, to exploit a high RIF jointly with a
high mutual information, one should aim at jointly maximizing
over G the vector [H(y)RIF]" over the (proper) cone RZ,
satisfying the power constraint tr(GG") = N, resulting in a
multicriterion problem [16]. A scalarization of this problem
simplifies the problem complexity dramatically and results in a
well-accepted method to recover optimal points of the original
problem,3 where fy(x) is the objective function. In addition,
scalarization and Pareto optimal point finding is the natural
way to study multicriterion problems such as the one we are
dealing with here. For problems over R2, i.e., with fy(x) =
[fo1(x) fo2(x)]7, scalarization leads to maximizing over x the
Pareto surface scalar function fy;(x) -+ Ao fo2(x) with A9 > 0.
The Pareto optimization objective function [16] for our RIF
MIMO precoder should then be

Ny
Imw+m<mw—zmm0, )
i=1

where Ay > 0. However, due to the MIMO model in (1), since
the noise is complex Gaussian with independent components,

I(x;y) =H(y) — H(y|x) = H(y) — N,log, (rec,), (8)

where log,(-) represents the logarithm with base 2. Thus,
by substituting (8) into (9), the following equivalent problem
results, since —N, log, (Tec?) is constant

maxi;mize (ho+1)H(y) — hoH (y)
subject to tr(GGh) =N, 9)

where Ay > 0. Substituting A = Ag/(Ao + 1), the following
equivalent optimization problem needs to be solved to find the
Pareto optimal precoder G:

N,

imi H(y)—A H(y;
maximize (y) Zi i(yi)
subject to  tr(GG") =N,
0<A<,

and (10)

3A point xg in the multicriterion problem is optimal iff fy(Xo) <2 fo(x) for
T
feasible x points leads to x = Xg.
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called the “original problem.” Using the “equivalent model” of
(3), the following problem needs to be solved instead:

Ny
maximize  H(y)—A» H;(y;
W=VL3Z32 Vi ) ,; i)
(%) =N,
0<A<I,

subject to
and

1)

called the “equivalent problem” where the reception model
of (3) is employed. Our initial goal is to search for precoder
solutions to the problem in (11), for a general A, to better
understand this type of optimal precoder. Then, by increasing A,
we should be capable to achieve a precoder solution with parti-
tioned branches (due to high independence). This will result in a
much simpler problem as each sub-precoder (corresponding to
different partition) will be easier to determine. However, as our
analysis below shows, the problem in (11) is not amenable to a
solution. To see this we need a series of lemmas and theorems
regarding the parameters of the problem as presented below.

Let S represent a subset of the receiving node set
{1,2,---,N,} and let y 5 be the restriction of y to .S. We need to
introduce here the following two Minimum Mean Square Error
(MMSE) matrices which are instrumental in the results pre-
sented herein, due to the intimate connection between MMSE
matrices and the gradient of H(y) with respect to different
parameters, e.g., W, in complex Gaussian MIMO channels with
finite alphabet inputs [12], [17].

Dy (v5) = E ((x—E(xlys)) (x=E(xlys))lys ). (12)
and

(Dxxh,S =E (q)xxh (yS)) :

For the special case when all receiving branches are considered,
the notations @, (y) and @, are used, for the two MMSE
matrices, respectively. The following are results we prove in
this paper.

Lemma 2.3: The functions H;(y;), i = 1,2,---,N; are con-
cave functions of W, with gradient VwH;(y;) = éq)xxh7 S={i}-

13)

Here i in the subscript stands for selecting the ith receiving
branch only.

Lemma 2.4: The function H;(y) is a concave function of W
with gradient, VwH;(y) = é 221 Pt s—(iy-

Theorem 2.5: The optimarll precoder of (10) satisfies

Nr
H'HG®,,, — 1Y H/H,GP

i=1

75:{1} = VG, (14)

xx/!

for some positive constant v, and where A; represents the ith
row of a matrix A.

The equation described in (14) fits within the class of
Sylvester matrix equations [18] for which solutions can be
found. However, in our case, the MMSE matrices ®,,, and
Dyn 5 {i}(l < i < N,) are also functions of the precoder matrix,
G. Thus, finding optimal G based on (14) becomes highly in-
volved. In addition, (14) represents an interesting generalization
of the optimal linear precoder equation which first appeared in
[8] (for the A = 0 case).
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Fig. 2. Pareto optimal maximization. The BICMB solution is shown as the
bisecting line segment of the —7/2 angle, together with its normal vector. A
Pareto optimal point is shown as a circle. The maximum achievable mutual
information under BICMB, Hpjcpg max(¥), the global maximum, H.(y), and
the maximum under full independence, Hj juq.(y) are also shown.

Theorem 2.6: The case of ordinary BICMB is the solution
of the equivalent problem (11) with A = 1, i.e., with Vg =1
being the optimal V¢ and X an arbitrary non-negative element
diagonal matrix satisfying tr(£2) = N;.

In Fig. 2 we present a general scenario for the proposed
Pareto type optimization. The BICMB Pareto optimal solution
is the bisecting line of the —m/2 angle of the coordinates.
Clearly, the objective function value set, B, defines in general
a complicated non-convex boundary line on which, there might
exist some additional Pareto optimal points, as shown.

Theorem 2.7: The objective in the equivalent problem in (11)
is not a concave function of W when A = 1.

Thus, based on this theorem, the optimization problems de-
scribed in (10), and (11) are in general more involved, due to the
lack of concavity of the objective function with respect to W.

The proofs of these lemmas and theorems are presented in
the Appendices. As entropies are scalar functions of complex
matrices in our model, the approach to proving most of these is
based on differentiation theory of complex matrices as per [19]
and invoking Hessian matrices and the Schur complement [16].

From the above presented theorems, we see that depending
on the value of A, the Pareto surface precoder optimization ap-
proach leads to either BICMB when A = 1, or to a very complex
solution as described in Theorem 2.5. Further, as BICMB does
not fully utilize the benefits of precoding as required by LDPC
codes, its utility within the current context is limited. In general,
although increasing A facilitates solutions which offer partition
in the input-output space, one needs to find specific solutions
for each A to be able to capitalize on this fact. Thus, although the
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Pareto surface is the natural way to study this type of multicrite-
rion optimization precoder, the required complexity is too high
to achieve this. Armed with this result, we next investigate an
alternative setup that leads to a different problem with a better
solution for our purposes. However, in Section III we present
some results which corroborate the concept of Pareto optimal
precoder in the context described here. More specifically, we
show that the joint search for optimal values of H(y),RIF leads
to precoder designs which indeed outperform other designs in
achieving almost optimal mutual information while at the same
time they require significantly lower computational complex-
ities at the transmitter and receiver. Thus, the Pareto optimal
precoder represents a conceptually correct design choice.

B. A Different Optimization Problem

For any N, group partition of the “virtual” receiving
branches, y in the equivalent model (3), i.e.,

N(ys)Njz N(ys;) =0 and U, N(ys)={1,2,--, N}, (15)

where A(-) represents the index set (nodes) present in the
argument set (within the parenthesis), the following inequality
is true for fixed Vg, Z5:

Ng Ny

H(y) < Y Hi(ys) < > Hi(yi)

i=1 i=1

(16)

This is a very fundamental result in information theory [20] and
equality holds if and only if the group outputs are independent.
Thus, a general partitioning in larger groups brings the MIMO
output entropy closer to the partition one (note that this applies
to the MIMO input-output mutual information too, due to its
irrelevant constant difference from the entropy value). Consider
the following optimization problem:

Ng
maximize H(y)— Z Hi(ys)
Ve.Z i=1

subjectto - A(ys) Njzi N(ys;) =0
N,
Ui:gl N(yé}) = {1727' : 'aNt}'

The solution of this problem leads to independence between the

and (17

N, output groups, i.e., H(y) = Z?E] H;i(ys) (e.g. [20]), creating
an OIGP, as explained above. Based on Lemma 1, an OIGP
for this type of AWGN MIMO channel is equivalent to an IGP,
thus inputs need to be also partitioned into the same number of
groups, wherin each input group is only connected to one output
group only. To take advantage of this, consider the following
problem:

maximize
Ve.Zg

Ng
subjectto  H(y) = Y Hi(ys)
i=1

H(y)

and tr (Xg) =N (18)
This way, the previous result can be easily utilized to exploit
this type of inter-group independence. This is the generalized

PGP problem (G-PGP). A simpler version is obtained if we
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further specialize the power constraint in (18) to tr(ZzGi) =
N, for i = 1,2,---,N,. The corresponding solution is called
Per Group Precoding (PGP) and it is found as follows: For
a particular variable selection method, let xy,, y; be the data
variables and the receiving vector variables in the ith selection
subset (group), respectively. Let us denote by N, N, Ng,
the numbers of spatially multiplexed data streams, spatially
multiplexed receiving antennas per group, and of PGP groups,
respectively, then, N; = ngjl N;, and N, = Z;\El N;,. PGP solves
the following N, optimization sub-problems, one for each i
(group) (i=1,2,---,Ng):

ma)%gnze (X52 Ys;)
subject to W];i =W
and tr(g,) =N, (19)

Theorem 2.8: The PGP solution is in the feasible region of
the original problem (9).

This is due to the fact that the solution offered by PGP in the
equivalent model constitutes a solution to the original problem,
i.e., the block diagonal matrix

V =diag [V, -, Vy,]

Ve 0 0 0
0 Vp 0 - 0
0 0 0 0 Vg,

is a unitary matrix, and the diagonal matrix

EG = diag [21 gt ’ZNg}

satisfies Zg\]jl tr():%;i) = N,. The complete proof is presented in
the Appendix.

C. Computational Complexity Evaluation and Comparison

The original linear precoder (global) optimization problem
as described by (9) is solved in [12]. Assuming N, = N;, as it is
the case for the presented results herein, we can perform a basic
calculation of the complexity involved at the transmitter and
receiver sites of a MIMO system employing linear precoding
techniques to increase the input-output mutual information. We
are evaluating the computational complexity order O for the
different transmitter and receiver processing stages employed.
O represents the total number of calculations, including the
number of real additions, and multiplications required for a
task, expressed as a constant times the dominating calculation
factor involved in the task. The computational complexity order
is then this calculation dominating factor of the task.

1) Evaluation of Transmitter Complexity: Table I shows the
complexity order for the different precoder stages at the trans-
mitter. These are the gradient evaluations (GE), as required by
the two backtracking line search algorithms, the two required
evaluations of the objective function / (OE) per backtracking
line search iteration, and the calculation of d® of the differential
of the unitary matrix © (UE). Table I presents the corresponding
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TABLE 1
TRANSMITTER COMPUTATIONAL COMPLEXITY ORDER
OF GLOBALLY OPTIMAL LINEAR PRECODER

Attribute Computational Complexity Order, O
GE 202N
OE 20 2N
UE 8N}

TABLE II
MAP DETECTOR COMPUTATIONAL COMPLEXITY ORDER
OF GLOBALLY OPTIMAL LINEAR PRECODER

Attribute
MAP Detector

Computational Complexity Order, O
Mt logy (M)

orders of the computational complexities for these attributes.
We see that the transmitter computational complexity order of
a global optimal precoder is M*V:.

2) Evaluation of Receiver Complexity: The major ramifica-
tion introduced at the receiver due to transmitter precoding is
the one regarding the MAP detector [6], [7] which evaluates
the channel bit log-likelihood-ratios (LLR). Table II shows the
corresponding complexity which is O(M* log, (M)).

3) Comparison of PGP to Global Optimization Complexity:
Concerning the comparison of PGP complexity versus the
globally optimal precoder one for the precoder and the MAP
detector, when receiver branches are partitioned in independent
groups (e.g., high values of RIF), each group represents expo-
nentially smaller complexity both at the precoder determination
and at the MAP detector, due to intergroup independence and
smaller dimensions per group. To see how PGP reduces the
MAP detector complexity, consider PGP in a MIMO system
with N, IGP groups. Let us focus on calculating the probability
Pr(x;|y) = Pr(x;|y (). for input symbol x; in the system. Since
PGP relies on an IGP to apply, let us use a corresponding
IGP, P = {S1,--+, 5, }, we have N, groups of nodes at both
input and output domain. Each group in the partition, .§; with
1 <i < Ng, comprises Ng; unique, non-intersecting input-output
vector pairs, (Xg,ys), as explained earlier, with Zivjl N,i = N;.
Let nj, (i, j),no(i, j) be the mapping from the partition groups to
input and output indices, respectively. In other words, n;, (i, j)
represents the input index (taking values in {1,---,N;}) of the
jth (1 < j < N,;) input of the ith group (1 <i < N,), and
similarly for n, (i, j). Also, let S(I)(1 <1 < N;), be the mapping
from the /th input x; to its corresponding group. Finally, let
X5(i) = X (i,1)5 7+ Xis > X (i, 5(i))) } D€ the set of input nodes
present in the ith group in the IGP. Then, due to Lemma 2.2 and
the fact that the MIMO channel in (3) is AWGN, we can write

Pr(xily) = Pr (xily ()
1
“ w2
M s x,,in(,'_[)ﬂin(ial)?éi
1 1
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where o< means proportional to, i.e., equal except for a mul-
tiplication constant independent of x;, and H (i) 1s the part of
H= ZHZGV’é that corresponds to X ;). This equation clearly
shows that due to the existing IGP, the MAP detector only
needs to invoke inputs from the input group corresponding to
the particular input under consideration. This also shows that
the summations required in each evaluation are of the order
MMIs0)l| due to PGP, as there are only N,js@ — 1 interfering
symbols to x;, due to inter-group independence as different
input groups connect to different antennas due to IGP. Further,
as we need M™IS6) values of this, i.e., over all possible group
input combinations, one per different input combination, the
total computational complexity order becomes MANs)| per
symbol, or M*is)l log, (M) per bit in group S(i).

For N, groups, and assuming for simplicity equal number of
N; /Ng beams per group, the corresponding complexity associ-
ated with PGP is found from Table L, II, after substituting N; / N,
for N;, and multiplying by N, since PGP needs N, smaller
global optimal precoders. This means that PGP reduces the cor-
responding computational complexities at both the transmitter
and receiver by M2Ni(1=1/Ne) imes, thus offering a significant
computational complexity reduction at both the transmitter and
receiver. For example, by using a 4 x 4 MIMO system with
QPSK modulation, PGP needs 128 times smaller computational
complexity at both the transmitter and receiver. As the number
of antennas and the modulation constellation size grow, this
PGP complexity reduction becomes more significant.

III. NUMERICAL RESULTS

The results presented herein employ PGP as described above,
as well as globally optimal precoders for comparison. Since
PGP performs a number of N, globally optimal precoder deter-
minations, albeit of smaller size, it suffices to describe the glob-
ally optimal recoder implementation. The globally optimal pre-
coder implementation methodology is performed by employing
two backtracking line searches, one for W, and another one for
ZZG, at each iteration, in a fashion similar to [12], but introducing
some improvements. Similarly to [12], we follow a block coor-
dinate gradient ascent maximization method to find the solution
to the optimization problem described in (9), employing the
virtual model of (3). It is proven in [12] that /(x;y) is a concave
function over W and ZzG. It thus becomes efficient to employ
two different gradient ascent methods, one for W, and another
one for Z%;. We employ O, X to denote the Vg and Zé, respec-
tively, evaluated during the optimization algorithm’s execution.

The value of the step of each iteration over W and Z% is
determined through backtracking line searches, one for each
of the variables W and X2. We describe the backtracking line
search for W first, then the one over ZZG. At each iteration of
the globally optimal algorithm over W, the gradient of I(x;y)
over W, VwlI is required. We then select two parameters,
o and B, both smaller than one and positive, and perform
the backtracking line search as follows: At each new trial, a
parameter #; > 0 that represents the step size is updated by
multiplying it with B;. The initial value for #; is equal to I.
Then the algorithm checks if

(W +1VwI) > [(W) + oyt || Vwl |7, (1)
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Fig. 3. Results for PGP, globally optimal precoding, no precoding, plain
beamforming, and MDP for a 3 x 3 MIMO system and QPSK modulation.

where ||Vwl||r is the Frobenius norm of VwI [19]. If the
condition is satisfied, the algorithm proceeds with calculating
anew Oyew from Wygw = W +1 ||VwI||12p, as follows:

Waew = O w28 520nEw, (22)

by employing the eigenvalue decomposition (EVD) of Wygw,
updates V}é = Opygw, and then it proceeds to the backtracking
line search over ZZG. If the condition is not satisfied, the search
updates 7; to its new and smaller value, B7; and repeats the
check on the condition, until the condition is satisfied or a
maximum number of attempts in the first loop, n; has been
reached. Then, the backtracking line search on EzG takes place
in a fashion similar to the search described for W, but with
some ramifications. First, based on the second backtracking
line search loop parameters o and [, the backtracking line
search is as follows: At each new trial, a parameter #, > O that
represents the step size is updated by multiplying it with ;. The
initial value for #, is equal to 1. Then the algorithm checks if

2
I(W+tVEZGI> > I(W) +oiats HVZZGI ’F, (23)

where [|[Vy2I|| ~is the Frobenius norm of Vs 7 [19]. If the
¢ 'F G

condition is satisfied, the algorithm proceeds with updating to
the new Xy, but after setting any negative terms in the main
diagonal of Zygw to zero and renormalizing the remaining
main diagonal entries. If the condition is not satisfied, the
search updates , to its new and smaller value, B,#, and repeats
the check on the condition, until the condition is satisfied or
a maximum number of attempts in the second loop, n, has
been reached. For most cases presented, it is worth mentioning
that only a few iterations (e.g., typically <20) are required
to converge to the PGP solution results as presented herein,
even for higher size MIMO configurations, e.g., 5 x 5 MIMO
systems. All the results consider Quadrature Phase Shift
Keying (QPSK) modulation on narrowband independently
fading channels. For a 3 x 3 MIMO system with

1 05/ 03
H=|-05j 15 -0.1j],
03 0.1j 05

Fig. 3 presents a plot of the mutual information achieved
by PGP, globally optimal precoding, no precoding, plain
beamforming (Vg = X5 = I in the model presented in (3),
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which is known to be optimal in low SNR values [14]), and the
MDP design of [4], as a function of the symbol SNR in dB. We
observe very close agreement between the performance of the
PGP and the globally optimal precoder. We also see that PGP
significantly outperforms both the plain beamforming and no
precoding case in the “medium” to “high” SNR range, by more
than 1.5 b/s/Hz and 0.7 b/s/Hz, respectively, as expected (e.g.,
[12]), however with significantly reduced receiver complexity.
In addition, PGP still outperforms MDP by about 0.5 b/s/Hz
in the medium SNR range. However, this gain of PGP comes
simultaneously with a much lower receiver complexity, due to
the output branch independence present with PGP. The reason
plain beamforming may appear to be performing worse than the
no precoding case is as follows. Plain beamforming is known to
be the optimal precoding technique for low SNR, but generally
it lacks in performance in higher SNR. Since many authors
consider it for comparison purposes, e.g., [14], we decided
to include it in our results, as well. The rationale behind this
low performance is that although the plain beamformer has
full independence, it fails to achieve high information transfer.
Based on the model of (3), not all precoders can achieve better
information transfer than the original channel (H) one.

For a better understanding of the Pareto optimization frame-
work presented in Section II and its impact on system design,
Table III presents results on the RIF for the globally optimal
precoder and the PGP for different SNR values, all for the
same 3 x 3 MIMO system presented above. We observe that
as expected, the PGP approach, due to its built-in independence
between groups, achieves significantly higher independence
than the globally optimal precoder over all SNR values. The
difference in the corresponding RIF values is about two times
over all SNR values. Thus, based on this evidence, we see that
PGP performs very close to the globally optimal precoder as far
as the mutual information is concerned based on Fig. 3, while at
the same time it offers much higher independence as shown in
Table IIT which dramatically simplifies both the precoder design
and the receiver complexity. This means that PGP achieves a
better solution to the Pareto problem in (11) over a wide range
of A. To find the range of A values [A., 1] for which PGP outper-
forms the globally optimal precoder, we need to find A.. Since
A = A5/ (1+A5), we need to find first the corresponding mini-
mum A in (9). In general, let us denote by H™1) (y), HM2) (y)
and RIF(M;),RIF(M;) the output entropies and RIF val-
ues achieved by two different precoding methods M,
and M, respectively. Then, A§ = (HM2)(y) — HM)(y))/
(RIF(M,) — RIF(M>)), provided that this value is non-
negative. For our case we find that Aj = 0.01964 at SNR =
4 dB, giving A, = 0.01926 which means that the PGP precoder
outperforms the globally optimal one based on the Pareto
scalarization objective of (11) for a very wide range of A,
i.e., for A in [0.01926, 1]. Practically this means that PGP
offers a better solution to the MIMO precoding problem as
it achieves almost the same performance with the globally
optimal precoder albeit at lower complexity. In general, the
closer A, is to zero, the smaller the gap between the globally
optimal achievable mutual information and the PGP one, as it
can be easily seen from the presented equations. Thus, based
on this evidence, it is seen that the Pareto problem presented in



KETSEOGLOU AND AYANOGLU: LINEAR PRECODING FOR MIMO WITH LDPC CODING AND REDUCED COMPLEXITY

2199

TABLE 1II
RIF COMPARISON FOR GLOBALLY OPTIMAL PRECODER AND PGP VERSUS SNR

SN R per symbol, dB Globally Optimal Precoder RIF PGP RIF
—2 —8.44 —4.46
0 —9.14 —4.33
2 —9.50 —4.27
4 —9.70 —4.10
6 —10.0 —4.01
8 —10.73 —4.00
4X4 MIMO Results TABLE IV
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Fig. 4. Results for PGP, globally optimal precoding, no precoding, plain
beamforming, and MDP for a 4 x 4 MIMO system and QPSK modulation.

(11), although intractable, provides a very useful tool in quan-
tifying MIMO precoder tradeoffs between mutual information
and complexity.

For the randomly generated 4 x 4 MIMO system with chan-
nel (see equation at the bottom of the page), and with N, =2,
2 x 2 subgroups, for a MIMO system with N; = N, =4 and
QPSK modulation, we get the results shown in Fig. 4. Clearly,
PGP still outperforms MDP by about 0.7 b/s/Hz in the medium
SNR range, while PGP outperforms the plain beamforming case
by more than 1.5 b/s/Hz and MDP in the medium to high SNR
range. At the same time PGP offers performance almost equal
to the globally optimal precoder one in the low SNR range,
while it is still very close to the globally optimal precoder at
higher SNR values.

PGP PERFORMANCE IN THREE DIFFERENT GROUP
SELECTION SCENARIOS FOR 4 x 4 MIMO CASE

Group Combination Scheme Ib/s/Hz
G1 = {51,514}, G2 = {s2,s3} 6.78
G1 ={s1,52}, G2 = {s3,s4} 5.40
G1 ={s1,53}. G2 = {s2,54} 5.02

Consider now the performance of the previous system at
SNR = —2 dB for all different PGP subgroup formations.
Denote by {s1,s2,53,54} the set of the singular values of the
channel in descending order. Combination 1 employs groups
G = {s1,84}, Go = {s2,s3}, while Combination 2 employs
G = {s1,52}, Go = {s3,54}, and Combination 3 employs G| =
{s1,53}, G = {52, 54}. Table IV shows the performance of each
selection method. We observe that by forming groups in the
PGP by combining the most distant (in value) singular values,
best performance is achieved by the PGP.

In Fig. 5 we present the corresponding mutual information
results for a randomly generated 5 x 5 MIMO system with
(see equation at the bottom of the page), where we use N, =3
groups in PGP, two of size 2 x 2 and one of size 1 x 1, i.e.,
a single input, single output one. The selection of the groups
is based on the method presented above in which, the most
distant eigenvalues are selected in each group. We observe the
same type of behavior, i.e., PGP outperforms MDP slightly by a
maximum of 0.85 b/s/Hz at a symbol SNR = —12 dB. We also
observe that this PGP performance improvement over MDP is

1.0919 + 1.0036i
0.0608 +0.2062i
—1.0547 +0.1399i
—0.5249 +1.1227i

H— 1.6620 + 0.4926i

0.5290 —0.1723i
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0.6096 +0.2078i
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H=

—0.9545+1.0171i
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—0.0446 + 0.9689i
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—0.8538 —0.1166i
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0.3457+0.7844i



2200

5X5 MIMO Results

K.~ i — s ——roP

; : : : - ©= MDP
il Beamforming
=== No Precoding

Mutual Information, bls|Hz
o

5 i i i i i ; i i i
-12 -10 -8 -6 -4 -2 0 2 4 6 8
SNR per channel symbol, dB

Fig. 5. Results for PGP, no precoding, plain beamforming, and MDP for a
5 x 5 MIMO system and QPSK modulation.

TABLE V
PGP PERFORMANCE IN RANDOM FADING FOR PGP, NO PRECODING,
AND GLOBALLY OPTIMAL PRECODER FOR 3 x 3 MIMO CASE

SNR, dB Gl. Opt. I PGP 1 No Precoding I
—4 3.46 3.46 3.02
-2 4.37 4.37 3.84
0 5.09 5.09 4.63
5.52 5.49 5.23
5.92 5.84 5.72

still over the “low” SNR region and as SNR increases the two
methods become equivalent as far as the offered mutual infor-
mation is concerned. No results for globally optimal precoding
are presented here, due to the complexity involved.

Finally, in Table V we present preliminary results for the
mutual information in b/s/Hz for random fading channels with
independently varying complex Gaussian (Rayleigh) fading
assumed constant within each codeword transmission. For each
channel realization a PGP and globally optimal precoder is
determined, then the corresponding mutual information for
each case, including the no precoding one, is evaluated. This
process is repeated for multiple channels and the average
mutual information is then found. In Table V, results for no
precoding, PGP, and globally optimal precoder are presented
for different SNR values. We observe very close performance
agreement between PGP and the globally optimal precoder for
all SNR, as expected. In addition, a gain on the order of 15% is
achieved for PGP and the globally optimal precoder over the no
precoding case at low SNR values.

IV. CONCLUSION

In this paper, the problem of designing a linear precoder for
MIMO systems employing LDPC codes is addressed under the
constraint of minimizing the dependence between the system’s
receiving branches, thus reducing the relevant transmitter and
receiver complexities. This approach sees the overall precoding
problem in an LDPC-coded system from a brand new angle
allowing for a more practical deployment of higher dimension
MIMO systems and higher QAM constellation sizes with very
good performance over a wide SNR range.
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We show that a Pareto surface optimization leads to an
intractable problem, in general. We then target a generalization
of BICMB (which is the only tractable solution to the A = 1
Pareto problem) and show that this offers a solution to a
very meaningful precoding optimization problem that allows
for inter-group independence between different transmitting-
receiving antenna pairs in the virtual channel domain. We call
the new precoding solution PGP and we show, based on numeri-
cal results, that PGP offers indeed excellent performance, while
its computational complexity is significantly reduced compared
to the original solution. For the results presented, PGP is shown
to attain mutual information very close to the globally optimal
precoder and higher than MDP by 0.7-0.8 b/s/Hz in medium
SNR ranges. Thus, based on presented evidence, PGP is a very
good candidate for almost optimal precoding performance in
LDPC coded systems with relatively low system complexity at
both the transmitter and receiver. Our future work will look at
generalizing the presented approach to higher size modulation
constellations, e.g., QAM with M > 16.

APPENDIX A
PROOF OF LEMMA 2.1

For the if part, which is easier, let x5 be the restriction of
the input vector X to the set of indices described by § (which
is a subset of {1,2,---,N,}, using the notation of (3)). We
need to prove that if an IGP exists in a MIMO system with
output groups {ys, }f\E’ .+ then the output y pdf, p(y), can be

written as Hln\ig: , P(¥s,), i.e., the output groups are independent.
Recalling that an IGP with N, groups, P, is defined as follows:
P={5, - -,SNg}, where each group in the partition, §; with
1 <i < N,;, comprises N,; unique, non-intersecting input-
output vector pairs (with Z?El Nyi =N,), (X5,¥s ), which satisfy

Ul A(xs) = Uiy Alys) = {1,2,+, N} and N(Xs) Ny
N(xs;) = N(ys) Njzi N(ys;) = 0, where N(-) represents
the index set (nodes) present in the argument set (within the
parenthesis). In addition, IGP requires that each input node,
n, in a partition set §; is connected only to the corresponding
outputs in §, in other words, the elements of V¢ corresponding
to all other outputs are set to zero, i.e., Vg(n, j) = 0, for output
nodes j with j & N(ys ), and where V(n, j) represents the ith
row, jth column entry of matrix V¢ of (3). All the IGP schemes
considered herein use square group structure, i.e., with same
number of input and output elements in each group. In other

<N
words, | N (xg)| = |N(y5)| = Nyi, with 3% Ny; = N;. We have

p(y) :p(y17...?yNg)

:2 2p(YSI7"'aYSNg|X517"'7x5Ng)'

X St X SNg

Pr(x5l,~~-,x5Ng)

Ng
= > [Irlys.lxs,) Prixs,)

X51 XSNg m=1

Ng
=[] r@s.). (24)
m=1
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where we have used the conditional independence of outputs
from inputs which do not enter their antennas, since they belong
to different input groups.

For the only if part, we will use mathematical induction on
Ng. We also need to invoke the fact that the noise in the MIMO
channel in (3) is AWGN and thus the conditional pdf of the
output y given the input vector X is circular complex Gaussian.
For Ny = 2 the statement becomes as follows, after setting H=
X6V, employing the model of (3): If

2

py)=T1r(vs)

=1

(25)

where y,,ys, represent a partition of the output vector y, then
an IGP with N, = 2 needs to exist in the MIMO system. For the
model in (3) we can write (here N, = min{N;, N, }, where min
stands for the minimum of a set of elements)

y) = X, p(y|x) Pr(x)

1 ||yﬁX||2>
=—— exp| ————|.
MM vy g‘ < S,

(26)

Let us separate the x vector into three, in general, parts:
X5 ,X5,,X5., representing inputs entering only outputs in xg,,
Xs,, and inputs entering both, respectively. Then,
p(y)= MN‘ N, 2Nv PIPIPIC
Lo n X¢ X¢ X
51 X5 X5
2 ~ 2
ys — H 5X v, —Hg x
7” 1 5 1 H -exp 7H 5 252 H , (27)

6}1 Gn
where Hg, [ = 1,2 represents the rows of H that correspond to
the OIGP /. We can now further break down H g x as follows

ﬁ&XIﬁ&X&%»ﬁ&XSN (28)

where Hg, ,Hg, are appropriate matrices derived from Hg,.
Substituting this into the equation and after expanding the
norms, we get

g 222 () {2

XS X52XSC =1

p(y) =

l|yg||2+Hﬁ&.X&HerHﬁslcx& :
-2 (RC(YZII?ISJIXSID

) (Re(ygﬁs,}&)) +2Re (x@lﬁglﬁ&cx5;> ] }) . (29

Summing first over xg, we observe that due to the term
_ i 72Re(y§] Hy xs,)
o

exp , the summation over x5 when

S 7# 0 will result in a function of both yg,,ys, which is not
a product of two factors containing one of the two vectors each.
In other words, the two output groups cannot be independent,
except if S, = 0, in which case we have an IGP. This proves our
assertion.
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Assume that the statement is true for Ny = k: If
k
y)=[1r(vs) (30)
=1

where yg,,--+,ys, represent a partition of the output vector y,
then an IGP with N, = k needs to exist in the MIMO system.
Then, we need to prove that for Ny = k+ 1, the statement is still
true: If

k+1
r)=]]r(vs) 31)
=1

where y,,---,ys,,, represent a partition of the output vectory,
then an IGP with N, = k+ 1 needs to exist in the MIMO system.
We prove this by invoking the already proved case of N, = 2,
together with the assumption for N, = k. Writing

p(y)=r(ys) (Iﬁp(ysl))v

we see that we have an OIGP with N, = 2 output groups defined

(32)

by ys, and the rest of the outputs, {yg };vzgz Thus, based on the
proven N, = 2 case, the system entails an IGP with N, = 2. Now

apply Lemma 1 one more time to the output groups {yg, }?/:gz,
of size k. Thus, because we assumed that for N, = k Lemma 1

is valid, we get that there is an IGP for {y 5[}?’:&'2. Totally,

including {y };v:gz, and taking the two partitions together, the
overall MIMO system has an IGP of size N, = k+ 1 groups,
proving the case Ny = k+ 1.

APPENDIX B
PROOF OF LEMMA 2.2

For an input-output MIMO IGP, 2 = {S;,---, SNg}, we have
N, groups of nodes at both input and output domain. Each group
in the partition, §; with 1 <i < N, comprises Ng; unique, non-
intersecting input-output vector pairs, (Xg,ys), as explained
in the main text, with Zf.vzgle- = N,. Let ny(i, j),n,(i, j) be
the mapping from the partition groups to input and output
indices, respectively. In other words, n;,(i, ) represents the
input index (taking values in {1,---,N,}) of the jth (1 <
Jj < N,;) input of the ith group (I < i < Ng), and simi-
larly for n,(i,j). Also, let S(/)(1 <1 < N;), be the map-
ping from the /th input x; to its group number. Finally, let
X 5i) {Xn,,, (i,1)>" 5 Xiy 5 X, (i]5(7))) } e the set of input nodes
present in the ith group of the IGP. We can then write, employ-
ing p(-) for the pdf of the variables in the parenthesis

Py, xi)
Pr(x;|ly) = ———
(xily) p(y)
Né’
ZI#i,IES(i) 2'm:I,m;éip <y|X51 XSy ’X5N8> PI‘(X)
- p(y)
1 &

= Ni . Z Z
[T P(Ys,) i#iies@m=tm#i
NX
[T Pys.lxs,)Prixs,)p(yslxs)Prxs)
m=1,m#i
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1 N

= dD VDY

I, P (¥s,) i£i1es()m=tmi

Ng
[T r(ys.Ixs,)Pr(xs,)p(ys/xs)Pr(xs)
m=1,m#i
p(yS'axi)
= =2 = Pr(xilysa) . (33)
P(¥sw) v

where the last four equations come from the conditional in-
dependence of outputs given inputs of the other groups and
the fact that the inputs are independent, the independence
of the outputs of different groups, the total probability law,
and the definition of conditional probability, respectively. Note
that Pr(x) is the probability of the overall input vector (N,
components), which due to independent input assumption and
equally likely inputs, can be written as Pr(x) = Hﬁv;  Pr(x;) =
Hivil Pr(XSk) = ﬁ

This proves that independence between groups in the parti-
tion results in a MAP detector in which, only the outputs of
the group to which an input symbol belongs are relevant for
the symbol’s MAP detector probability evaluation. This phe-
nomenon is the main reason behind the complexity reduction
offered by, e.g., PGP.

APPENDIX C
PROOF OF LEMMA 2.3

Consider the output of antenna i(1 < i < N,) in the model of
(1), written as

Y = H,’GX +n;. (34)

This represents an N; x 1 MIMO system. Thus, based on the
general results presented in [12], we see that the gradient of
H (y;) with respect to W; = Gth’HiG equals
1
VWiHi(Yi) = ?d)xxh,é‘:{i}' 35)
It still remains to show that Vw, H;(y;) = VwH;(y;). Toward this
end, we notice that

i=1

N, N,
W = G"H"HG = G" <Z H?H,) G=YW, (36)
i=1

from which we get

dvec(W) =Y dvec(W;) (37)
l
where dvec(F) represents the vector differential of the (complex)
matrix function F. This means that the derivative of W with re-
spect to W;, Dw, W =1y, and also that Dy, W* =0y,, with W*
representing the conjugate matrix of W. Now, H (y;) is a function
of W; only [12], but W; is a function of W. Thus, H(y;) is a
composite function of W and then based on the chain rule [19],

DwH(yi) = Dw,H(y:) DwWi + Dw: H(y:) DwW; .

Notice that based on the conjugation property of differentiation,
DwW; = 0y,. From the last equation, we can get the desired re-
sult that Vw,H;(y;) = VwH;(y;) by invoking the transformation

(38)
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for scalar functions from derivatives to gradients. Concerning
the concavity of H(y;) with respect to W, we note that H;(y;)
is concave with respect to W; as it equals /(x;y;) minus a
constant, where /(x;y;) represents the mutual information from
X to y;, and it is known from [12] that /(x;y;) is concave with
respect to W;. As H;(y;) only depends on W through W,, it
becomes evident that H;(y;) is also a concave function of W.
This completes the proof of Lemma 2.3.

APPENDIX D
PROOF OF LEMMA 2.4

To prove this, we note that the sum of concave functions of
a matrix variable is also concave in that variable. Thus, based
on Lemma 2.3, H/(y) = Z&IH,-(yi) is a concave function of
W with gradient that equals the sum of the gradients of H;(y;)
with respect to W which by invoking Lemma 2.3 proves the
assertion.

APPENDIX E
PROOF OF THEOREM 2.5

The proof of this Theorem is as follows: First, write the
Lagrangian of the “original” problem in (10), as
Nr
H(y) =LY Hi(y) —v (#(GG") =N),  (39)
i=1
where without loss we employed the constraint tr(GGh) <N,
and where V is a positive parameter. The critical points are now
found by setting the gradient of the Lagrangian with respect
to G equal to zero, as part of the Karush-Kuhn-Tucker (KKT)
conditions. Noticing that Vgrr(GG") = G, and upon invoking
the two previous Lemmas of this paper, (35), and the fact that
VwH (y) = éCD 5 [12], we get the desired critical point
equation described in Theorem 2.5.

xx/!

APPENDIX F
PROOF OF THEOREM 2.6

For A = 1, the “equivalent” optimization problem described
by (11) becomes

Ny
max‘i}vmize H(y) - Y Hi(yi)
i=1

subjectto W' =W
and tr (Zé) =N

and 0<A<l. (40)

Performing the maximization first over Vg, then over 5 we

see that
Ny
max { max< H(y) — ZHi(Yi) =0,
zG Ve i=1

since H(y) < Y, H;(y:), with equality if and only if Pr(y) =
]'[?ilPr(y,-) [20]. Thus, the maximum in (41) is achievable if
and only if the receiving outputs y;(i = 1,---,N,) are indepen-
dent. For this to happen, Vs needs to be equal to the identity
matrix, I. Taking into account the power constraint in (11)
completes the proof.

(41)
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APPENDIX G
PROOF OF THEOREM 2.7

The proof of the Theorem is based on contradiction of
Schur-type complement conditions [16] and Kronecker product
properties (e.g., [19]). We also exploit properties of MMSE. Let
us denote by ® the Kronecker matrix product. The complex
Hessian matrix of a scalar function of a complex matrix Z,
CH(f(Z)) is defined as [19]:

C-,]_[ (f(Z)) o }[Z,Z*f -‘]_[Z*,Z*f

= 42
Hzzf Hpaf]’ “42)
where A* is the conjugate of matrix A. In our case,
N,
F(W) =H(y) = X, Hi(yi). (43)
i=1

By applying the results for the complex Hessian matrix for
y, and y;(i = 1,---,N,) from [12], complex Hessian matrix
properties, and generalizing the results of Lemma 2, we can
see that the different parts of the composite Hessian matrix (42)
of H(y) — Z?LH,-(yi)(k = 1) with respect to W, denoted as
Hyw w- [, is given as follows, employing results on the Hessian
matrix of the mutual information with respect to W from [12],
and the previous lemmas and theorems of this paper:

Fw w (f(W))
= (Hw+w (f(W)))

-
= _(52E< xxh(y) ®q)xxh (y)

n

N,
- Zq);xh,5={i}(Yi) ®(Dxxh.5={i}(Yi)>a (44)
i=1

and
Hyw w (f(W))
= (Hw+w- (f(W)))"
1
= ;%E <\Pxx’ (Y) 0y \szf (Y)
Nr
— > W 5=} (1) ®‘Pixt75{,-}()’i)>, (45)
i=1
where
Yae (¥5) =E ((x—E(x|ys)) (x—E(x|ys)) [ys),  (46)
\Pxx’,S =E (\PXX’ (YS)) s (47)

similarly to (12), (13), and where A’ is the transpose of matrix
A. Tt is worth stressing that CH (fW)) in our case can be put in
the form required by the complex Schur complement, i.e.

A B} , (48)

CH(W) = g ¢
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since (\Pxx’ (yS) @ T;xf (YS))t =Y (YS) ® LP;X’ (YS)’ and that
for a matrix in this form to be seminegative definite it is
necessary that A be seminegative definite, based on Schur
complement properties [16]. Now notice that

Ny
::xh (Y) Q Oy (y)— 2 (I);xh.5={i} (Yi) b2 q)xxh»s:{i} (Yi) (49)
i=1

is not a positive semidefinite matrix. To show this, it suffices to
show that

;xh (Y) ® q)xxh (Y) - q):xhj:{l} (yl ) ® (I)xxh,5={1} (yl) (50)

is not positive semidefinite, since the residual sum is not posi-
tive definite.
Based on properties of MMSE matrices we know that

DOy (Y) - (Dxxh,S:{l}(yl)

is negative semidefinite, since @y 5 y)(y1) represents the
Mean Square Error (MSE) matrix of a suboptimal estimator of
x given y. Then, using properties of Kronecker products we can
easily show that

;xh (Y) ®q)xxh (y) - q);xh“g:{]}(yl ) ®(Dxxh.5={1}(yl) (51)

is negative semidefinite. This comes from the following prop-
erty: If positive semidefinite complex matrices A,B,C,D of
same size satisfy A < B, and C < D (here < is generalized
sense ordering between matrices, as per, e.g., [16], i.e., A <
B means that B — A is semipositive definite), then A ® C <
B ® D, which can be easily proven as follows: Consider the
Kronecker product (A —B) ® C < 0, as the Kronecker product
of a semipositive definite matrix C, with a seminegative one
(A —B). Thus, A® C < B® C. Similarly, we can show that
B® C < B®D. Substituting A = @ ,(y), B = ®.u(y), C=
@;X,,J:{l}(yl ), and D =@ ¢ r1y(y1) shows that the matrix
in (51) is indeed seminegative definite. Thus, Hy w+(f(W)) is
also seminegative definite as it is a seminegative definite matrix
minus a semipositive definite one, as per (45). After taking
expectation in (44), we have a semipositive definite matrix,
which contradicts the Schur complement requirement. Thus,
our assertion is proven.

APPENDIX H
PROOF OF THEOREM 2.8

It suffices to show that
VVi =1,

for V = diag[Vy, -+, Vy,]. By multiplying V by V" in blocks
we see that

VV" = diag | V1, V7, --- 7VNgV1’§,g =1 (52)
Since the component matrices are unitary, i.e. ViV? =1, thus
proving our assertion. We do not consider the power constraint
proof, since this is obvious due to the component power con-
straints required by PGP.
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