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Abstract—In this paper, we address the uplink resource
scheduling problem in single carrier frequency-domain multiple
access systems. In particular, we focus on the efficiency and fair-
ness trade-offs in scheduling and resource allocation for wireless
cellular networks. We present an efficient implementation method
that translates these scheduling problems into set partitioning
problems that are well-studied in the literature. Then, we discuss
a family of utility functions that enable us to investigate the
performance of different frequency domain schedulers such as
the sum-rate maximization, proportional fair, and max-min fair
schedulers. We use the price of fairness as a metric to analytically
quantify these trade-offs. Based on the intuition that fairness of
resource allocation in cellular radio networks corresponds to
the prioritization of cell-edge user rates, we demonstrate that
the proportional fair scheduler significantly improves fairness
among users, and increases the rates offered to the cell-edge
and median users when compared to the sum-rate maximization
scheduler. This comes at the cost of reducing the cell-center user
rates and the aggregate user rate. We present the steps on how
to take into account the practical implementation constraints,
in particular, those related with the discrete Fourier transform
implementation, in the problem formulation. Simulation results
that illustrate these trade-offs are also presented. We conclude
that this type of analysis can provide guidelines for the network
operators to control the efficiency and fairness trade-off as the
data traffic grows.

Index Terms—Efficiency, fairness, integer programming, re-
source allocation, SC-FDMA, scheduling.

I. INTRODUCTION

THE global mobile data traffic grew 70 percent in 2012
[1], and this trend is expected to continue in the next

decade. These data rate demands are not only challenging
to achieve, but also raise concerns on power consumption of
next-generation wireless systems. In this paper, we address
the concerns on efficiency, fairness, and power consumption
for different schedulers. We discuss these in a Long-Term
Evolution (LTE) system. LTE systems employ single carrier
frequency domain multiple access (SC-FDMA) transmissions
in the uplink transmissions to achieve high power-efficiency,
improved coverage, and reduced power consumption at user
equipments (UEs) [2]. This transmission scheme also provides
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a smaller peak-to-average power ratio (PAPR) compared to the
orthogonal frequency division multiplexing access (OFDMA)
that is used in the downlink, and thereby achieves significant
cost and battery life savings for UEs.

In terms of resource management, there are four main algo-
rithms in LTE. These are admission control, packet scheduling,
power control, and interference control [2]. In this paper, we
focus on the packet scheduling and power control algorithms.
Let us note that LTE systems are designed to offer large
flexibility in packet scheduling in time, frequency, and spa-
tial domains. Through control channel signals, base stations
schedule each transmission, so that the users are allocated
orthogonal resources without any overlap. In order to keep
the required signaling overhead manageable, especially for the
uplink transmissions, the subcarriers are scheduled in groups
in the frequency domain. Each subcarrier that occupies a
bandwidth of 15 kHz is grouped in 12 subcarriers. These
12 subcarriers are called as a resource block (RB). Resource
scheduling is then carried out with an allocation granularity
of 180 kHz in the frequency domain [2, p. 78].

Frequency domain packet scheduling (FDPS) is a method
used in LTE systems to allocate radio resources in the fre-
quency domain such that the capacity of the system and the
user experience are improved under some quality of service
(QoS) and fairness constraints. When resource allocation for
multiple users is considered, each user experiences differ-
ent channel conditions and has different QoS requirements.
FDPS allows assigning the resources such that the system
performance can be optimized for different QoS requirements
and efficiency versus fairness trade-offs. Typically, RBs are
allocated to the users with the highest channel gains. Contrary
to the best channel assignment strategy in OFDMA systems,
only consecutive resources are assigned to users in SC-FDMA
systems.

The works in [3], [4] investigate resource allocation prob-
lems in air traffic, health care, organ donor, and call center
scheduling applications. In all these areas, utilities are shared
among multiple users, and naturally, trade-offs between ef-
ficiency and fairness arise. The price of fairness is a metric
introduced in [3], [4] to quantify the losses incurred to achieve
fairness in the system. This metric can be used by the central
decision maker to characterize and balance these trade-offs.
Same observations can be made in scheduling and resource al-
location in cellular radio networks. Especially, these trade-offs
characterize the cell-edge user performance. In cases where
the cell-center users are favored to increase the aggregate cell
throughput, this may lead to cell-edge user rate starvation
cases. In this paper, we use the price of fairness to characterize
these trade-offs in an analytical framework.
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Scheduling granularity per RB and contiguous resource
assignment constraints provide significant benefits to reduce
the control signal overhead and the search space of the
SC-FDMA resource allocation problem. However, there are
implementation constraints to be considered. In particular, we
focus on the discrete Fourier transform (DFT) implementa-
tion constraints. The radices of DFT operations are typically
chosen as prime factors [5]. In the early phases of the LTE
standardization process, it was proposed to limit the DFT sizes
to radices of 2, 3, and 5 [6].

A. Related Works

Related works in literature in channel dependent scheduling
in SC-FDMA systems include [7]–[13]. It is shown in [7] that
the FDPS problem in SC-FDMA systems with the contiguity
constraint is NP-hard. The authors of [7] considered maximiz-
ing the proportional fair (PF) metric of users and presented
four suboptimal algorithms with RB granularity. The same
problem is also addressed in [8] on a per subcarrier basis
where the authors presented two algorithms with different
complexities. The first algorithm achieved the optimal solution
with relatively high computational complexity, and the second
yielded a suboptimal solution. The works in [9] and [10]
proposed suboptimal greedy heuristic algorithms to maximize
utility functions based on channel capacity and PF metrics,
respectively. However, they did not consider the contiguity
constraint. Another related work in [11] proposed three sub-
optimal algorithms based on the PF metric with RB granularity
in varying levels of complexity. The efficiency and fairness of
these schedulers are further studied in [12], [13]. In particular,
the authors in [13] compared the performance of the heuristic
algorithms presented in [7] and [11] to solve the sum-rate
maximization (SRM) and PF scheduling problems. Although
the work in [13] also identified the efficiency and fairness
trade-offs in these schedulers, it did not quantify the efficiency
losses or provide bounds for these trade-offs. We need to note
that, unlike the heuristic solutions in [7] and [11]–[13], the
work in our paper satisfies the optimality conditions, albeit
with some increased complexity. Furthermore, the work in [13]
considers a single-cell simulation setup whereas in our paper,
we consider a more realistic multi-cell multiuser scenario that
is proposed in the standards [14], [15].

The FDPS problem is also addressed in LTE downlink
systems. The work in [16] presents linear programming (LP)
solutions for various schedulers. The authors of [16] assume
that the signal-to-noise-ratio (SNR) to the channel quality
indicator (CQI) mapping for a fixed block error ratio (BLER)
is linear. The study in [16] shows that the throughput can
be estimated based on the uplink CQI feedback reports, and
these estimates can be employed in the scheduling problem
formulation. The constraint matrices of the LP problems in
[16] are similar to those of [8] except for the contiguity
constraint. Also, in [17] and [18], the authors present a cross-
layer optimization framework for the utility-based scheduling
problem in OFDM networks. The analysis in [17] considers
an infinite number of subcarriers, whereas a finite number of
subcarriers and more realistic conditions are investigated in
[18]. The two-part paper [17], [18] studies the necessary and
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Fig. 1. The trade-off between efficiency and fairness is depicted for a family
of utility functions.

sufficient conditions for the dynamic subcarrier assignment
(DSA), adaptive power allocation (APA), and their joint allo-
cation schemes. The results in [17] identify that DSA offers a
significant improvement over the fixed subcarrier assignment
(FSA) scheme, while APA provides a limited improvement
over FSA. The joint DSA and APA allocation has a marginal
gain over the DSA scheme. However, in [18], with a finite
number of subcarriers, the improvements of APA are more
significant compared to the DSA scheme. This time, their
joint allocation offers a substantial gain over both schemes.
Since APA within RBs is not standardized in LTE systems, in
this paper, we will only consider equal power allocation for
the subcarriers in RBs. Similar to [18], we will also propose
a DSA method in order to improve the sum utility of the
users. In [19], the authors investigate the effects of finite
and full buffer traffic models using the utility maximization
framework in OFDMA networks. The study in [19] uses the
same family of utility functions as in our paper. The results in
[19] show that as the parameter characterizing the family of
utility functions, α, decreases, the cell-edge user rates increase,
and the authors propose to use a specific value of α = 0.6 as
the best trade-off point. As we will show in the sequel, as α
increases, the fairness of user rates improves, and the fairness
in wireless networks determines the cell-edge user rates [20].
The study in [19] also presents the gains of an α-fair scheduler
over PF scheduler at different network loads. In our paper,
along with a numerical study, we provide the upper bounds
for these gains such that the network operator (as the decision
maker) can make an informed decision on the efficiency and
fairness trade-off before its implementation.

B. Contributions

In this paper, we study the FDPS problem in an SC-
FDMA system. We follow the optimal solution framework
in [8], but employ it with RB granularity in the frequency
domain to reduce computational complexity by two orders
of magnitude. Our solution approach involves a utility-based
resource allocation scheme such that we can exploit the
multiuser diversity. We formulate the FDPS problem as a
set partitioning problem which can be solved by branch-
and-cut methods. We investigate a family of utility functions
called as the α-fair utility function. In particular, we study
the SRM, PF, and max-min fair (MMF) utilities. We consider
the functions of user capacity as the utility to be maximized,
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and define the system efficiency as the sum of user rates.
By using these utility functions, we solve the FDPS problem.
We identify the optimality conditions, and present the size of
the solution spaces and computational complexities of these
schedulers. Moreover, we propose to use the price of fairness
as a comparison metric between schedulers. The price of
fairness of a scheduler defines the amount of aggregate loss
of a scheduler when compared to the SRM scheduler. Along
with a fairness index (such as Jain’s fairness index [21]), the
decision maker can acquire how much system efficiency loss is
incurred while improving fairness by a certain amount. To the
best of our knowledge, this metric has not been explored in a
multiuser cellular radio environment. We depict the trade-offs
between efficiency and fairness for α-fair schedulers in Fig. 1.
The SRM scheduler achieves the highest system efficiency of
1, i.e., the price of fairness of SRM scheduler is 0, but it
lacks fairness among the users. When fairness is introduced
to the system, the system efficiency decreases, or equivalently,
the price of fairness increases. At the highest fairness, MMF
scheduler maximizes the minimum user rate. Unfortunately,
the (1, 0) point on Fig. 1 cannot be achieved since the most
efficient solution lacks fairness, and the most fair solution
lacks efficiency. Also, note that these points correspond to
the optimal scheduler solutions that are Pareto optimal which
means that there is no user whose rate can be increased without
decreasing the rates of other users. With the use of price of
fairness metric, this paper answers the following questions:
How do the cell-edge users get affected when the scheduler
tries to maximize the sum-rate per cell? How can we improve
fairness among users, especially between cell-center and cell-
edge users? And, how much aggregate rate loss is incurred
while introducing fairness? We present upper bounds on the
aggregate cell rate loss for the PF scheduler. We describe
how to include DFT constraints to construct RB assignment
patterns and how to form the constraint matrix. The optimality
conditions of the investigated problems are also presented. The
analytical framework is supported with the numerical results
of these FDPS problems. We derive conclusions based on the
trade-offs between different types of schedulers.

The remainder of this paper is organized as follows. Section
II introduces the system model and discusses the uplink power
control in LTE systems. Section III presents the utility-based
resource allocation framework and discusses α-fair utility
functions. Also, we define and provide the upper bounds on the
price of fairness in this section to quantify the scheduler effi-
ciencies. In Section IV, we study and formulate the scheduling
problems. We identify the necessary optimality conditions
for the α-fair schedulers. An effective solution method is
also presented. The implementation constraints and exact
dimensions of the search spaces are also investigated. Sections
V-VI discuss the results of proposed FDPS problems in a
realistic simulation environment along with some concluding
remarks.

II. SYSTEM MODEL

In this section, SC-FDMA uplink system model and the up-
link power control mechanism in LTE standards are described.
First, we start with introducing the notations used in this
paper. The vectors and matrices are represented by boldface
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Fig. 2. The transmitter structure of an SC-FDMA system.

characters, e.g., x, A. The dimensions of the vectors are shown
by subscripts, e.g., xN is an N×1 column vector. Vectors in a
set are enumerated by superscripts, e.g., x1N , . . . , xKN . We use
1N and 0N to denote all ones and all zeros column vectors,
respectively. The transpose of a column vector x is given by
xT . The sets are shown by capital calligraphic font, e.g., the
set N includes N = {1, . . . , N}. A subset of set N is denoted
by subscripting it as Nk, and |Nk| denotes the cardinality of
the subset. The total number of ones in vector x is denoted by
w(x) where x consists of binary elements 0 and 1. Finally, any
power value P is represented in dB with the notation P dB.

Assume that the system bandwidth consists of M orthogo-
nal subcarriers. These subcarriers can be grouped into clusters
to form N non-overlapping RBs. For example, according to
LTE specifications, a system with 10 MHz bandwidth occupies
M = 600 subcarriers, or equivalently, N = 50 RBs, and
each RB consists of NRB

sc = 12 consecutive subcarriers [2].
Let the total set of subcarriers and RBs be denoted by M
and N , respectively. Then, Mk and Nk represent the set of
subcarriers and RBs assigned to user k, respectively. Also,
the complete set of users in the system is represented as
K = {1, . . . ,K}, and those associated with base station c
are given by the subset Kc. The cardinality of this subset,
Kc = |Kc|, denotes the total number of users associated with
base station c. When all the RBs in the system are scheduled,
N = |N | = M/NRB

sc = |N1|+ · · ·+ |NKc | = N1+ · · ·+NKc

holds true. Furthermore, let Km denote the set of users that
are assigned to subcarrier m, and note that the set of users
in Km are located in different cells in a multi-cell multiuser
scenario.

The transmitter structure of an uplink SC-FDMA system
is depicted in Fig. 2. It includes DFT, subcarrier mapping,
and inverse fast Fourier Transform (IFFT) operations. In
LTE systems, due to the orthogonal resource assignments in
time, frequency and spatial domains help avoid the near-far
problems that existed in Wideband Code Division Multiple
Access (WCDMA). For this reason, power control in LTE
is carried out at a slower rate [2]. For a given user-base
station assignment, the fractional open-loop power control is
expressed as [22]

P dB
k = min{P dB

max, P
dB
0 + 10 log10(Nk) + βPLdB

k,ck}, (1)

where P dB
k denotes the uplink transmit power of user k,

and P dB
max denotes the maximum UE transmit power. P dB

0

is the open loop transmit power. PLdB
k,ck

is the path loss
between user k and its serving base station ck. We consider
that the path loss includes the shadow fading of the link.
Since shadow fading is a slow variation process for pedestrian
speeds, we assume it to be static over a frame duration [15].
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The path loss compensation factor β takes its value from
the set {0,0.4,0.5,0.6,0.7,0.8,0.9,1}. It determines the fairness
within the cell such that the network enables cell-edge users
with high path loss values to transmit at high power levels
for β = 1. The fairness in the system decreases as the path
loss compensation approaches zero, i.e., β → 0, since the
high path losses for cell-edge users are not compensated for.
However, this improves the rates for the cell-center and median
users due to reduced intercell interference compared to the full
path loss compensation case. The UE transmission power is
equally distributed on the allocated bandwidth such that the
UE transmit power per subcarrier is Pk,m = Pk/Mk in linear
scale.

Furthermore, in order to investigate the performance of
the frequency-domain scheduler, frequency selective fading
channel models are considered. For example, [14] provides
power delay profile models for pedestrian and vehicular users.
We denote the channel gain between user k and base station c
on subcarrier m by Hk,c(m). The channel gain has two com-
ponents, consisting of multipath and path loss plus shadowing
components. They can be expressed as

Hk,c(m) =
|Vk,c(m)|2
PLk,c

, Vk,c(m) =
L∑

l=1

vk(l) exp

(−j2πmτl
Ts

)
,

(2)

where Vk,c(m) includes the multipath effects in the received
signal for an L-path impulse response model. Ts and τl denote
the sampling time and the delay of l-th path, respectively. Each
multipath component vk(l) can be further expressed as

vk(l) =

{
A
√
Prel(l)wk(l) if l = �τl/Ts�+ 1

0 otherwise,
(3)

where wk(l) denotes a zero-mean Gaussian noise process.
Prel(l) denotes the relative power of the l-th path. The term
A normalizes the average multipath power to unity such that
E[

∑ |vk(l)|2] = 1. The sampling time Ts and the sampling
frequency fs in LTE systems depend on the system bandwidth.
The sampling frequency is given by fs = 1/Ts = BscM ,
where the total number of subcarriers M is also the IFFT size
and the bandwidth of each subcarrier is fixed to Bsc = 15
kHz. For example, in a 10 MHz bandwidth, there are 600
subcarriers and M = 1024. Then, the sampling frequency
becomes fs = 15.36 MHz [23, p. 70]. The SNR on each
subcarrier m assigned to user k is given by

γk,m =
Pk,mHk,c(m)

σ2
c

=
Pk,m|Vk,c(m)|2

PLk,c σ2
c

, (4)

where σ2
c is the thermal noise effective on a subcarrier at base

station c. Similarly, the signal-to-interference-plus-noise ratio
(SINR) of user k on subcarrier m is given by

Γk,m =
Pk,mHk,c(m)∑

j∈Km, j �=k Pj,mHj,c(m) + σ2
c

. (5)

We assume that ideal channel estimates for each link are
available. Typically, frequency domain minimum mean square
error (MMSE) equalizers are employed at the base station
receivers. The wideband SNR for user k, γk, can be calculated

using the individual SNR of each subcarrier m assigned to user
k, γk,m as [23], [24]

γk =

⎛
⎜⎝ 1

1
Mk

∑
m∈Mk

γk,m

γk,m+1

− 1

⎞
⎟⎠

−1

. (6)

Similarly, the wideband SINR of user k, Γk, can be defined
by replacing γk,m with Γk,m in (6). The channel capacity
of user k defines the maximum reliable communication rate
over a channel. However, in practical communication systems,
one needs to account for other factors (e.g., reference signals,
control signal overhead, frame retransmissions, etc.) to derive
the actual throughput of a user. Therefore, the throughput of
a user depends on the system parameters and protocols. It
is shown in [25] that these factors can be accounted for by
scaling the bandwidth and the SINR such that the throughput
of user k is given by

Ck(Γ) = b1BscNkNsc log2 (1 + Γk/b2) , (7)

where b1 accounts for the bandwidth losses due to control
signals and b2 considers the SINR implementation efficiency
of LTE. However, in a multi-cell scenario, estimating the
exact interference levels per subframe requires excessive traffic
signaling among base stations. Therefore, in this paper, we
use the throughput estimates based on the SNR of each link
during scheduling phase. This corresponds to noncooperative
scheduling in game theory [26]. Hence, the scheduler at each
base station uses the following utility

Ck(γ) = b1BscNkNsc log2 (1 + γk/b2) , (8)

to solve the FDPS problem. The same type of scheduling is
also studied in [7]–[13], [16]–[18].

III. UTILITY-BASED RESOURCE ALLOCATION

In this section, we present the utility-based resource al-
location and study a family of utility functions that enable
us to investigate the SRM, PF, and MMF schedulers. We
also discuss the price of fairness metric and investigate the
corresponding upper bounds for each of these schedulers.

A. Utility Functions

To analyze the utility-based frequency-domain resource
allocation in noncooperative cells, we use the α-fair utility
function that is defined in [27] as

Uα (Ck) =

{
log (Ck) if α = 1

C1−α
k /(1− α) if α �= 1, α ≥ 0,

(9)

where α is the parameter that characterizes the efficiency and
fairness trade-off. When α = 0 is considered, the scheduler
simply maximizes the sum of individual utilities. This is also
called as the utilitarian solution in optimization theory and it
has the maximum efficiency [3]. In this paper, we refer to this
allocation as the SRM scheduler. In cellular radio systems,
this corresponds to the best effort solution.
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When α = 1, the scheduler is referred to as the PF
scheduler. This scheduler is well-studied in the literature [3],
[4], [27]–[29].

Kc∑
k=1

rk − r∗k
r∗k

≤ 0, (10)

where rk and r∗k are the kth elements of the rate vectors r and
r∗, respectively.

In general, as α increases, the efficiency of the system
decreases [3], [4] (see [30] for a unique counter example). The
MMF scheduler maximizes the minimum rate offered to the
users and achieves the maximum fairness. Besides the SRM,
PF, and MMF schedulers, we will also look into α values in
the range 0 < α < 1 to further analyze the trade-offs between
efficiency and fairness.

In order to provide the reader some intuition about utility
functions, the following observations are important. Notice
that the α-fair utility function in (9) is a nondecreasing
concave up function for α > 0. This makes this utility
function achieve fairness as α increases. This can be shown as
follows. We know that if Uα(C) is a nondecreasing concave
up function, then U ′

α(Ck) ≥ U ′
α(Cj) for Ck ≤ Cj , where

U ′
α(C) denotes the derivative of the utility function. This

means that for any nondecreasing concave up utility function,
the increases in small rates are more favored compared to the
larger rates. Note that we are using the terms rate and utility
interchangeably since we focus on the user rate as the utility to
be maximized. Similarly, any nondecreasing convex (concave
down) utility function that one defines will favor the increases
in the larger utilities. When the utility function is linear, the
increases in all utilities are favored equal.

B. The Price of Fairness

We can now introduce the price of fairness as a metric
to compare scheduler efficiencies. When resources are shared
among users, natural questions on how to allocate resources
and how to balance the trade-off of efficiency versus fairness
arise. In fact, this general problem can be observed in many
areas of economics, finance, and social welfare. In the sequel,
we define the expressions for the price of fairness and derive
the upper bounds in both single-cell and multi-cell environ-
ments. In particular, the detrimental effects of interference
need to be considered in the multi-cell scenario. Let us first
start with defining the system efficiency of the SRM scheduler
in a single-cell scenario as

USRM (γ) =
∑
k∈Kc

C∗
k (γ) , (11)

where C∗
k (γ) represents the throughput of users associated

with base station c in the optimal solution. Similarly, the
aggregate throughput of the optimal solutions for the α-fair,
PF, and MMF schedulers are denoted by Uα, UPF , and
UMMF , respectively. Next, the price of fairness is defined
as the percentage loss in the efficiency of a scheduler when
compared to the utilitarian solution [3], [4]. In a single-cell
scenario, it is given by

PoF (U (γ)) =
USRM (γ)− U (γ)

USRM (γ)
, (12)

where U (γ) denotes the sum of utilities for any scheduler, and
PoF (U (γ)) ranges between 0 and 1. A lower price of fairness
means higher efficiency. It achieves its lowest value of zero
at the utilitarian solution, i.e., U = USRM . In general, as the
system efficiency decreases, fairness in the system increases,
and consequently, the price of fairness increases. At the worst
case, when the scheduler does not schedule any resources, the
price of fairness becomes 1.

The application of this metric in wireless cellular radio
communications enables us to quantify the performance of
different schedulers and select the parameter α. Let us note
that in cellular radio communications, each user experiences
different channel conditions due to the random nature of wire-
less radio. Therefore, they have different maximum achievable
utilities. For instance, cell-center users achieve significantly
higher peak rates compared to those of cell-edge users. In
[4], upper bounds are derived for the price of fairness of α-
fair schedulers where users have unequal achievable utilities.
They are given by

PoF(Uα) ≤ 1− min
x∈[1,Kc]

(
B
L

) 1
α x1+ 1

α +Kc − x(
B
L

) 1
α x1+ 1

α + B
L (Kc − x)x

, (13)

where B and L represent the highest and lowest maximum
achievable utilities over all users, respectively. In order to
find appropriate B and L parameters, we make the following
observation. In an adaptive bandwidth system, the maximum
achievable utility of user k is achieved when full bandwidth
is scheduled to user k. Then, B and L are given as

B =b1BscM log2

(
1 +

γl
b2

)
, s.t. l = arg max

k∈Kc

Ck (γ) (14)

L =b1BscM log2

(
1 +

γm
b2

)
, s.t. m = arg min

k∈Kc

Ck (γ) ,

where γl and γm denote the wideband SNR values when the
whole bandwidth is scheduled to users l and m, respectively.
As the ratio of the highest to lowest maximum achievable util-
ity, B/L, increases, the bound in (13) loosens [4]. Similarly,
the price of fairness in a multi-cell scenario is defined as

PoF (U (Γ)) =
USRM (Γ)− U (Γ)

USRM (Γ)
, (15)

where USRM (Γ) and U (Γ) denote the sum of user throughput
including the interference such as U (Γ) =

∑
k∈Kc

Ck (Γ). In
Section V, we demonstrate that employing this metric and
the bounds on each α-fair scheduler give network operators
an analytical tool to compare and quantify the efficiency and
fairness trade-offs.

C. A Case Study

Consider a network where the SRM scheduler satisfies the
QoS constraints of users and the network operator wants to
increase the fairness in the network without violating these
constraints. Let us assume that the network operator can
tolerate a system efficiency loss up to 20% compared to the
SRM scheduler in order to increase the fairness and we want to
determine an appropriate α value such that the efficiency and
fairness trade-off can be balanced. This scenario may occur in
cases where the operators need to improve the user satisfaction
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considering the QoS constraints. In this example, we consider
a simplified simulation setup with Kc = 2 users and N = 15
RBs in a single-cell scenario. Fig. 3 depicts the feasibility
region for different α values. We identify the critical points
in the feasibility region that correspond to optimal solutions
of different α-fair schedulers. Note that the boundaries of the
feasibility region are Pareto optimal, which was discussed in
Section I-B. We assume that P dB

0 = −70 dBm and β = 1
is employed. Furthermore, let the path loss values of user 1
and 2 to be 60 dB and 90 dB, respectively, and ignore the
frequency fading and shadow fading for the sake of simplicity.
The corresponding solutions and the feasibility region are
depicted in Fig. 3. It can be observed that the SRM scheduler
maximizes the sum rate without any fairness concerns. It
assigns all the resources to user 1 which achieves 55.11 Mbps,
while user 2 is not served. The PF scheduler ignores the
solution where any user is not assigned any resources since the
payoff of such a solution will be log(0) = −∞. Instead, the PF
scheduler always allocates a resource to each user and achieves
a more fair distribution of resources compared to the SRM
scheduler. In this case, it assigns 8 RBs and 7 RBs to users
1 and 2, respectively, and their throughput are 29.39 Mbps
and 17.16 Mbps. It can be observed that as the fairness is
introduced to the system, the system efficiency is reduced.
Also, we observe that the MMF scheduler allocates more RBs
to the users with low channel gains in order to increase the
minimum rate user. This is achieved, again, at the expense of
system efficiency. With the MMF scheduler, users 1 and 2 are
assigned 6 RBs and 9 RBs, respectively, and they are served
at 22.05 Mbps and 21.48 Mbps.

The maximum achievable utilities of users 1 and 2 are
55.1 Mbps and 33.8 Mbps, respectively. The theoretical upper
bounds of the price of fairness for α = {0.25, 0.5, 0.75, 1} and
the MMF scheduler are {0.073, 0.147, 0.179, 0.199, 0.282},
respectively, using the bounds in (13). The empirical values of
the price of fairness are {0.055, 0.103, 0.129, 0.155, 0.210},
in the same order as before. Notice that the bounds are tight.
Also, for the given system efficiency tolerance, the network
operator decides to employ α = 1 by only using the maximum
achievable utilities of its users without the need of extensive
simulations.

IV. FDPS SCHEDULERS

In this section, we present the FDPS problem formulation,
implementation constraints, optimality conditions, set parti-
tioning method, and solution space dimensions.

A. Problem Formulation

We can now discuss the uplink FDPS problem for an SC-
FDMA system. As shown earlier, we investigate a family
of objectives parameterized by a single variable, α. Given
the utility function defined in (9), the FDPS problem can be
mathematically expressed as follows

P1: max
{N1,...,NKc}∈N

Kc∑
k=1

ωkUα (Ck(γ)) (16a)

s.t. Nk ∩ Nj = ∅, ∀ k �= j (16b)

N1 ∪ · · · ∪ NKc ⊆ N (16c)

Nk ∈ {1, . . . , N}, ∀ k (16d)

where ωk denotes the nonnegative QoS weight for user k.
The first constraint assigns each RB to only one user without
any overlap, and the second constraint ensures that all the
resources are assigned. The third constraint denotes that the
cardinality of the set of RBs scheduled to user k can take any
integer values up to N . Note that the construction of RB as-
signment sets, Nk, ensures the contiguity of RB assignments.

In a multiuser scenario, there may exist assignments that
yield cases where some users do not get any resources. We
refer to this as the user rate starvation, and it creates a sig-
nificant problem for network operators in terms of satisfying
user experience and QoS requirements. Typically, user rate
starvation occurs when the cell-edge users that experience low
channel gains are not served at the benefit of improving the
rates of cell-center users. In order to avoid user rate starvation
cases, we consider the following assumption.

Assumption 1: At every subframe, each user k ∈ Kc,
connected to base station ck, is assigned at least one RB.
Assumption 1 can be incorporated into problem P1 by intro-
ducing an additional constraint. Then, we rewrite the schedul-
ing problem as

P2: max
{N1,...,NKc}∈N

Kc∑
k=1

ωkUα (Ck(γ)) (17a)

s.t. Nk ∩ Nj = ∅, ∀ k �= j (17b)

N1 ∪ · · · ∪ NKc ⊆ N (17c)

1 ≤ Nk ≤ N −Kc + 1, ∀k ∈ Kc (17d)

where the third constraint includes Assumption 1. We use P2
to solve the PF scheduling problem efficiently. Section IV-E
discusses that this constraint significantly reduces the search
space and results in a faster algorithm. Note that for the PF
scheduler, any user that does not get any resources contributes
to the objective as log(0) = −∞, and the optimal solution
does not allow such an allocation.

The MMF scheduling problem considers the same con-
straints in P2 but it has a different objective. This problem
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can be written as

P3: max
{N1,...,NKc}∈N

min
k∈Kc

ωkUα (Ck(γ)) (18a)

s.t. (17b)− (17d).

If a user is not allocated any resource, then the objective of
the MMF scheduler will be zero which does not occur unless
Kc > N , and we avoid this condition in this paper. Hence,
using P2-P3 instead of P1 for the PF and MMF schedulers
still achieves the optimal solution when Kc ≤ N is satisfied.

B. Implementation Constraints

The practical constraints for the SC-FDMA system include
those of the DFT implementations. In order to support an
efficient DFT design, it was agreed in [31] to restrict the
largest prime-factor that needs to be supported. In this paper,
we consider the implementation of radix set {2, 3, 5}. Then,
the number of RBs assigned to a user needs to be divisible by
2, 3, and 5. Note that, although we have only considered these
three radices for a computationally fast implementation, this
can be extended to include any radices. Hence, the number of
resources allocated to user k in the uplink can only take the
following values [32, p. 17] [23],

Nk = |Nk| = 2υ1 × 3υ2 × 5υ3 , ∀ k ∈ Kc (19)

where υ1, υ2, and υ3 are non-negative integers. It is shown
in [31] that the DFT constraints of the above radix set reduce
the number of complex multiplications more than five-folds
compared to the unconstrained case.

The DFT constraints can be added to the FDPS problem as
follows

P4: max
{N1,...,NKc}∈N

Kc∑
k=1

ωkUα (Ck(γ)) (20a)

s.t. Nk ∩ Nj = ∅, ∀ k �= j (20b)

N1 ∪ · · · ∪ NKc ⊆ N (20c)

Nk = 2υ1 3υ2 5υ3 , ∀k ∈ Kc (20d)

1 ≤ Nk ≤ N −Kc + 1, ∀k ∈ Kc (20e)

where the constraint in (20d) includes the DFT constraint that
the number of RBs that can be scheduled to a user needs to be
a multiple of the radix set. The last constraint in (20e) ensures
that every user gets at least one RB. Section V discusses the
simulation results with and without the DFT constraints in
order to observe the effects of implementation constraints on
the system efficiencies.

C. Optimality Conditions

Let U denote the set of feasible throughput vectors. Suppose
r, r∗ ∈ U denote two feasible rate vectors, then r∗ is optimal
if it satisfies the first-order optimality condition, that is,

∇Uα (r∗) (r − r∗) =
Kc∑
k=1

(rk − r∗k)
(r∗k)α

≤ 0, ∀ r ∈ U (21)

where ∇Uα (·) denotes the derivative of the utility function
with respect to Ck and for α ≥ 0 [33]. In the special case,
when α = 1, then (21) satisfies the proportional fairness

condition in (10). The optimality condition in (21) can be
rewritten as

gT r ≤ 1, ∀ r ∈ U (22)

where the elements of g are given by

gk =
(r∗k)

−α∑K
k=1 (r

∗
k)

1−α
, ∀ k ∈ Kc. (23)

Moreover, since the α-fair utility function is twice differen-
tiable, the second-order sufficiency condition for r∗ is that

(r − r∗)T∇2Uα(r∗)(r − r∗) = −α

Kc∑
k=1

(rk − r∗k)
2

(r∗k)
1+α < 0

(24)

is satisfied for all r ∈ U , r �= r∗, where ∇2Uα(·) denotes the
Hessian matrix of the utility function [33].

D. Set Partitioning Solution

The problems investigated above can be cast as binary
integer programming problems. The following special form
is referred to as the set partitioning problem [34]

max
x

fT x (25)

s.t. Ax = 1, xi ∈ {0, 1}, ∀ i

where A denotes the constraint matrix with binary elements 0
and 1. The vectors f and x are the weighting and the binary
assignment vectors, respectively. Both vectors have dimension
JKc × 1, where J denotes the total number of possible
contiguous resource allocation patterns for each user, and it
will be further explained in the sequel. The binary variable
xjk ∈ x is associated with RB assignment pattern j for user
k. We assign xjk = 1 if RB assignment pattern j is assigned
to user k, and 0 if not. Only one RB assignment pattern,
corresponding to a column of A, can be selected per user.

The objective vector f requires constant channel state in-
formation (CSI) updates per subframe in order to adapt to
the varying channel conditions. The α-fair utility function for
0 ≤ α < 1 uses the following objective function

fk,m =
∑

m∈Mk

ωk

(
b1BscNkN

RB
sc log2 (1 + γk/b2)

)1−α

1− α
.

(26)

In the special case, when α = 0, the SRM scheduler
maximizes the aggregate throughput. Similarly, the objective
function for the PF scheduler is

fk,m =
∑

m∈Mk

wk log
(
b1BscNkN

RB
sc log2 (1 + γk/b2)

)
(27)

where the objective is to maximize the sum of the logarithm
of utilities. Note that the base of the logarithm operator is
not critical. Unlike previous schedulers, an auxiliary variable
ν needs to be introduced to solve the MMF scheduler. Then,
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using the auxiliary variable, the MMF scheduler problem can
be translated into a mixed integer program such that

max
x

ν (28)

s.t. ν ≤ fT x

Ax = 1, xi ∈ {0, 1}, ∀ i

where ν is a free variable and f is given in (26) with α = 0.
The constraint matrix A is created once, and does not

require any updates as long as the number of users connected
to the base station stays the same. The matrix A has dimension
(Kc +N)× JKc, and it can be expressed as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 · · · AKc

1T
J 0TJ · · · 0T

J

0T
J 1TJ

. . .
...

...
. . .

. . . 0T
J

0T
J · · · 0T

J 1T
J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)

where each submatrix Ak has dimension N ×J . For illustra-
tion purposes, the constraint matrix A is divided into two parts
in (29). The upper portion of A is composed of concatenation
of submatrices, [A1, . . . ,AKc ]. Without loss of generality, we
consider that Ak’s are the same for each user. Also, each
submatrix, Ak represents the set of all RB assignment patterns
with the contiguity constraint, and it can be written as

Ak =
[

q1
N , . . . , qJ

N

]
, ∀k ∈ Kc (30)

where each column of Ak, that is q j
N , j ∈ {1, . . . , J}

represents one possible contiguous RB assignment pattern.
For example, the binary vector q 1

N = [1, 0, . . . , 0]T assigns
the first RB to user k. Also, notice that the weight of the
assignment pattern, w(q j

N ), is equal to the cardinality of
RB assignment set |Nk|, that is Nk, and we express this
as w(q j

N ) = |Nk| = Nk, ∀k ∈ Kc. Lower portion of the
constraint matrix A in (29) has Kc rows, and it ensures that
each user is assigned only one RB assignment pattern. For this
purpose, it is structured in a staircase form where each row
of Ak has J consecutive entries of ones and each column has
only a single one entry. The remaining entries of Ak are all
zeros. In fact, the construction of the constraint matrix A with
the contiguity constraint is what distinguishes single carrier
localized-FDMA schedulers from OFDM schedulers. As an
example, assume that N = 4 RBs and M = 2 users. Then,
the constraint submatrix Ak for problem P1 is given by

Ak =

⎡
⎢⎢⎣

0 1 0 0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 1 1
0 0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎦ (31)

where the columns of Ak correspond to RB assignment
patterns, qj

N , j ∈ {1, . . . , J}, with J = 11. When we impose
Assumption 1, then the first and last columns of Ak in (31)
need to be removed. The DFT constraints can be included to
the constraint submatrix Ak for P3 by removing the columns
that does not satisfy w(q j

N ) = |Nk| = 2υ13υ25υ3 . Then, the

constraint submatrix for P2 and P3 are

Ak =

⎡
⎢⎢⎣

1 0 0 0 1 0 0 1 0
0 1 0 0 1 1 0 1 1
0 0 1 0 0 1 1 1 1
0 0 0 1 0 0 1 0 1

⎤
⎥⎥⎦ (32)

where J = 9. In the next section, we shall present, in detail,
how to find the total number of resource allocation patterns
for each of the above problems.

E. Finding The Exact Search Spaces

Now, we can discuss the total number of resource allocation
patterns for the problems P1-P4 when the set partitioning
approach is applied. First, let us consider the FDPS problem
in P1. The total number of RB allocation patterns for the SRM
scheduler is

J1 = 1 +

N∑
i=1

(N − (i − 1)) =
N2

2
+

N

2
+ 1 (33)

where N ≥ Kc, and J1 increases as the number of RBs
increase. Note that J1 is independent of the number of users
in the system.

Next, we look at the total number of RB assignment patterns
for P2. This case corresponds to the PF and MMF schedulers,
and it includes Assumption 1. Then, the total number of RB
allocation patterns is given by

J2 =

N−Kc+1∑
i=1

(N − (i− 1)) = (N −Kc + 1)

(
N

2
+

Kc

2

)
(34)

where N ≥ Kc. Also, in order to investigate the effects
of DFT implementation constraints, we revisit the SRM, PF,
and MMF scheduling problems. When we impose the DFT
constraints for the SRM scheduler, the total number of RB
allocation patterns is

J3 =
N2

2
+

N

2
+ 1−

∑
i∈E1

(N − (i− 1)) (35)

where the set E1 denotes the set of numbers that cannot be
achieved using the powers of radix set. An example set is E1 =
{7, 11, 13, 17, 19, . . .}. Note that the largest element in E1 can
be at most N . Similarly, when we consider Assumption 1
and the DFT constraints, the total number of RB allocation
patterns for the PF and MMF schedulers become

J4 =

N−Kc+1∑
i=1

(N − (i − 1))−
∑
i∈E2

(N − (i− 1)) (36)

= (N −Kc + 1)(N/2 +Kc/2)−
∑
i∈E2

(N − (i− 1))

where N ≥ Kc. E2 includes the set of numbers that are not
multiples of the radix set. The largest element of E2 is at most
equal to N −Kc + 1 due to Assumption 1.

As a final remark, if this resource allocation problem is
solved with subcarrier granularity instead of RB granularity,
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the total number of subcarrier assignment patterns per user
becomes

J5 = 1 +

M∑
i=1

M − (i− 1) =
M2

2
+

M

2
+ 1 (37)

where M ≥ Kc. Obviously, resource allocation pattern size
with subcarrier granularity in (37) is prohibitively complex to
be implemented in real time.

In order to give the reader a sense of the dimensions of
the problems investigated in this paper, we give an example
assignment in an LTE system. Assume a bandwidth of 10
MHz with 50 RBs, and 12 users per sector, J1, J2, J3, J4,
and J5 are 1276, 1209, 739, 717, and 180301, respectively.
Since the problem size closely depends on the total number
of RB allocation patterns, J is a critical factor when multi-
ple schedulers are compared. With the DFT constraints and
Assumption 1, it is clear to see that both the total number of
RB allocation patterns, J , and the problem search space are
significantly reduced.

V. NUMERICAL RESULTS

A. Simulation Setup

In this section, we present the simulation results for the α-
fair, SRM, PF, and MMF schedulers in a multi-cell multiuser
scenario. Our goal is to identify the efficiency and fairness
trade-offs of these schedulers along with the characterization
of the aggregate user rate and power. In our simulation model,
we consider 19 macrocells, in which each cell is employed
with 3-sector antennas. The users are randomly dropped within
the macrocell sector area and each user is equipped with a
single omni-directional antenna. We investigate a range of
user numbers from 2 to 16. Furthermore, we consider that
all users are always active and have data to transmit. This
model is known as the full buffer traffic model [15]. Also,
shadow fading of a user to each base station is considered to
be spatially correlated, and the procedure to generate this pa-
rameter is detailed in [14]. Shadow fading parameters among
different users are assumed to be uncorrelated, although in
practice if mobiles are close to each other, this would not hold
[14]. The simulation models and parameters are summarized
in Table I. These are in accordance with the standard models
and baseline simulation setups in [14], [15]. We assume an
uplink system with a bandwidth of 10 MHz, and included
frequency selective fading in order to observe the effects of
channel dependent scheduling. It is assumed that the power
delay profile follows the modified Pedestrian B channel model
in [14]. The channel state is assumed to be static during a
frame and it is independent from one to another. We consider
b1 = 0.75 and b2 = 1.25 as suggested in [25]. Finally, the
wrap-around technique is used to avoid edge effects.

In each simulation, the data are collected from all 57
cells and the experiment is repeated 10 times to obtain
reliable statistics. As discussed in Section II, noncooperative
schedulers are used at each base station. In particular, we
investigate five properties of each scheduler: the price of
fairness, the fairness index, the aggregate user rates, the
cumulative distribution function (c.d.f) of user rates, and the
aggregate power. We use the fairness index definition in [21]

TABLE I
SIMULATION PARAMETERS

Parameter Setting

Cell layout Hexagonal grid, 19 cells,
3-sectors per site

Channel bandwidth 10 MHz
Carrier frequency 2 GHz
Freq. selective channel model Pedestrian B Model
Path loss model 128.1 + 37.6 log10(d)
Inter-site distance 500 m
Total number of RBs 50 RBs
Maximum UE power 23 dBm
Uplink power control: P0 and β -60 dBm and 0.8
Effective thermal noise power −174 dBm/Hz
Base station noise figure 5 dB
Base station antenna gain 15 dBi
UE transmit antenna gain 0 dBi
Antenna horizontal pattern, A(θ) −min(12(θ/θ3dB)2, Am)
Am, θ3dB 20 dB, 70◦
Penetration loss 20 dB
Macrocell MCL 70 dB
Shadow fading std. dev. 8 dB
Site-to-site fading correlation 0.5
Traffic model Full buffer
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Fig. 4. The average number of iterations to solve the root problems are
depicted for the theoretical upper bounds (dotted), and the empirical results
considering the DFT constraints (dashed-lines) and without these constraints
(solid lines).

such that F = (
∑Kc

k=1 Ck(γ))
2/(Kc

∑Kc

k=1 C
2
k(γ)). It attains

its maximum value 1 when each user has the same data
rate, and its minimum value 1/Kc when all the resources are
allocated to a single user only.

B. Optimization Setup

To solve the optimization problems, we used IBM ILOG
CPLEX Optimization Studio v12.4. This tool employs the dy-
namic search method, a variant of the branch-and-cut method
[35]. In the branch-and-cut method, the binary integer problem
is first reduced to the LP problem by relaxing the binary
integer constraint. The relaxed LP problem is referred to as the
root problem, and used as a starting point to divide the main
problem into subproblems. The solution to the root problem
provides the upper bound for the solution to the binary integer
problem. By introducing new cuts, using methods such as
cutting-plane algorithms, new subproblems are formed until
the integer solution that maximizes the objective is obtained.

The average number of iterations required to solve the root
problem is no more than (JKc/2) for the binary integer
problems [34, p. 128]. Unfortunately, we cannot provide any
upper bounds for the mixed integer problem used to solve the
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Fig. 5. The c.d.f. of user rates for different schedulers are depicted.

MMF scheduler. Fig. 4 depicts the empirical results for the
average number of iterations to solve the root problems for the
α-fair, SRM, and PF schedulers. The bounds on the average
number of iterations are also shown in Fig. 4. In general, we
observe that as the number of users increases, the problem size
and the average number of iterations to find the solution for
the root problem increase. Also, we note that when the DFT
constraints are considered, we do not observe a significant
reduction in the average number of iterations to solve the root
problems compared to the case without these constraints.

C. Numerical Evaluation

Fig. 5 summarizes the c.d.f. of user rates for different
schedulers for Kc = 8 users. First, we observe that the
c.d.f. of each scheduler with DFT constraints (dashed-lines)
closely follows the performance of each scheduler without any
constraints (solid lines). Second, we can clearly see the user
rate starvation case for the SRM scheduler. On average, 9%
of the users do not get any resources with the SRM scheduler.
On the other hand, cell-center users achieve significantly more
rates with the SRM scheduler, especially in the region above
the 70th percentile. Second, we observe that the PF scheduler
improves user rates at and below the median, and those
rates typically correspond to the cell-edge and median users.
For instance, when we look at 5, 10, and 50th percentile
user rates, the PF schedulers provide 1.63, 2.17, and 4.13
Mbps, respectively. The SRM scheduler only achieves 0.53
and 2.64 Mbps for 10 and 50th percentile users. Around 70th
percentile, the cross-over occurs, and the SRM scheduler starts
to provide higher rates compared to the PF scheduler. Third,
the MMF scheduler assigns most of the resources to the cell-
edge users to maximize the rate for the minimum rate user, and
this significantly reduces the median and cell-center user rates.
Note that these results are expected since the fairness in the
cellular radio networks corresponds to the trade-off between
the rates provided to cell-edge and cell-center users. Thus, on
the two edges of the efficiency and fairness trade-off lies the
SRM and MMF schedulers, respectively, and the PF scheduler
balances both properties.

In Fig. 6(a)-(b), the aggregate user rates and the price of
fairness for each scheduler are depicted for various number
of users per sector. First, we observe that the performance
losses incurred by considering the DFT constraints are almost
negligible for each scheduler in both figures. In Fig. 6(a), we
depict the aggregate user rates of each scheduler for different

number of users. This plot also demonstrates the multiuser
diversity such that as the number of users increases, the
aggregate user rate increases. In Fig. 6(b), we observe that
the price of fairness of the α-fair schedulers (for α ≤ 1) are
less than 0.2 in a multi-cell multiuser scenario. Unfortunately,
the upper bounds for the price of fairness of most α-fair
schedulers (α > 0.25) are loose. This is due to the large
B/L factor discussed in Section III-B. However, we observe
that the bounds are tighter for the α = 0.25 case. The price
of fairness values for the MMF scheduler are significantly
high such that it ranges between 0.1-0.3. Notice that this
means that the system efficiency loss between the SRM and
MMF scheduler is between 10-30%. Also, it needs to be
emphasized that Figs. 6(a)-(b) are closely related with each
other. The percentage loss in the aggregate user rates depicted
in Fig. 6(a) is, in fact, the price of fairness of each scheduler
in Fig. 6(b) compared to the aggregate user rate of the SRM
scheduler. Thereby, we can argue that the price of fairness
metric gives the network operator a meaningful and reliable
metric to compare the efficiencies of any schedulers.

Fig. 6(c) depicts the fairness of each scheduler versus the
number of users. Previously in Section III, we discussed that
as α increases, the fairness increases as well. We can observe
this in Fig. 6(c). The α-fair and MMF schedulers provide
highly fair distribution of user rates compared to the SRM
scheduler. The fairness of the α-fair schedulers (α > 0)
ranges between 0.7 and 0.9, whereas the fairness of the SRM
scheduler is always less than 0.6. Moreover, the fairness
gradually decreases as the number of users increase for the
SRM scheduler. This is due to the fact that as the number
of users increase, it is more probable that the SRM scheduler
allocates more RBs to the users with good channel conditions,
and only a few RBs are scheduled to cell-edge users in order to
increase the aggregate data rate. At the worst case, the fairness
of the SRM schedulers is 0.34 for Kc = 16 users, and at this
point, the PF scheduler provides roughly three times more fair
distribution of user rates compared to the SRM scheduler.

Fig. 6(d) shows the aggregate uplink transmit power versus
the number of users for each scheduler. Note that the total
dissipated power at UEs is a critical factor due to battery life
concerns. We observe that the SRM scheduler always results
in an allocation where significantly less power is required
compared to the other schedulers. This is due to the fact that
the SRM scheduler does not necessarily allocate resources to
the cell-edge users that have high path loss values. Therefore,
it avoids cases where cell-edge users transmit at high power
levels. Also, the gap between the aggregate power of SRM and
other schedulers gradually increases as the number of users
increase.

VI. CONCLUSION

In this paper, we investigated the uplink resource scheduling
problem for SC-FDMA systems. We studied a family of utility
functions called as the α-fair utility function. In particular,
we focused on the SRM, PF, and MMF schedulers, and
highlighted the system efficiency, fairness, and power trade-
offs. We identified that the DFT implementation constraints
result in only a slight degradation in the system efficiency and
fairness. We introduced a general framework to compare the



DAVASLIOGLU and AYANOGLU: EFFICIENCY AND FAIRNESS TRADE-OFFS IN SC-FDMA SCHEDULERS 3001

2 4 6 8 10 12 14 16
25

30

35

40

45

Number of Users per Sector, K
c

A
gg

re
ga

te
 U

se
r 

R
at

e 
(M

bp
s)

 

 
SRM, α = 0
α = 0.25
α = 0.5
α = 0.75
PF, α = 1
MMF

(a)

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Upper Bounds on PoF

Number of Users, K
c

Pr
ic

e 
of

 F
ai

rn
es

s,
 P

oF

(b)

2 4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Users per Sector, K
c

Fa
ir

ne
ss

 I
nd

ex
, F

(c)

2 4 6 8 10 12 14 16
20

40

60

80

100

120

140

160

Number of Users per Sector, K
c

A
ve

ra
ge

 T
ra

ns
m

it 
Po

w
er

 (
m

W
)

(d)

Fig. 6. The aggregate user rates, price of fairness, fairness index, and aggregate user transmit power are depicted in (a)-(d), respectively, for different
schedulers in a multi-cell multiuser scenario. Solid lines indicate the performance of each scheduler without any constraints, and the dashed-lines are for the
schedulers with DFT constraints.

performance of different schedulers by using concise metrics
such as the price of fairness and fairness index. We observed
that the α-fair schedulers for α > 0 provide fairer distributions
of resources at the cost of some efficiency losses and increased
transmit power. However, finding the appropriate α parameter
that satisfies the QoS constraints and improves the cell-edge
user rates is a challenge. The analysis presented in this paper
provides network operators with a greater provisioning to
identify these trade-offs associated with resource allocation
for different schedulers and optimize the user experience in
the system. Although it is not considered in this work, the
frequency domain schedulers investigated here can be used to
complement time domain schedulers. This would require an
appropriate weighting rule, including the past user rates over
a time window, in the scheduling objective. Thereby, different
QoS requirements of each user such as delay and guaranteed
bit rate, possibly due to different types of applications, can be
included in the scheduling algorithm.
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