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Abstract—For broadband wireless communication systems,
Orthogonal Frequency Division Multiplexing (OFDM) has been
combined with Multi-Input Multi-Output (MIMO) techniques.
Bit-Interleaved Coded Multiple Beamforming (BICMB) can
achieve both spatial diversity and spatial multiplexing for flat
fading MIMO channels. For frequency selective fading MIMO
channels, BICMB with OFDM (BICMB-OFDM) can be applied
to achieve both spatial diversity and multipath diversity, making
it an important technique. However, analyzing the diversity of
BICMB-OFDM is a challenging problem. In this paper, the
diversity analysis of BICMB-OFDM is carried out. First, the
maximum achievable diversity is derived and a full diversity
condition RcSL ≤ 1 is proved, where Rc, S, and L are the
code rate, the number of parallel steams transmitted at each
subcarrier, and the number of channel taps, respectively. Then,
the performance degradation due to the correlation among
subcarriers is investigated. Finally, the subcarrier grouping
technique is employed to combat the performance degradation
and provide multi-user compatibility.

Index Terms—MIMO systems, frequency division multiplex-
ing, singular value decomposition, diversity methods, convolu-
tional codes, correlation, subcarrier multiplexing.

I. INTRODUCTION

SUBSTANTIAL research and development interests have
been drawn on Multiple-Input Multiple-Output (MIMO)

systems because they can provide high spectral efficiency and
performance in a given bandwidth. In a MIMO system, beam-
forming techniques exploiting Singular Value Decomposition
(SVD) can be employed to achieve spatial multiplexing1 and
thereby increase the data rate, or to enhance performance,
when the Channel State Information (CSI) is available at both
the transmitter and receiver [3].

For flat fading MIMO channels, single beamforming car-
rying only one symbol at a time achieves full diversity [4],
[5]. However, spatial multiplexing without channel coding
results in the loss of the full diversity order. To overcome
the performance degradation, Bit-Interleaved Coded Multiple
Beamforming (BICMB) was proposed [6]–[8]. BICMB sys-
tems studied so far employ convolutional codes [9] as channel
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1In this paper, the term “spatial multiplexing” is used to describe the

number of spatial subchannels, as in [1]. Note that the term is different from
“spatial multiplexing gain” defined in [2].

coding, and interleave the coded bit codewords through the
multiple subchannels with different diversity orders. BICMB
can achieve the full diversity order as long as the code rate
Rc and the number of employed subchannels S satisfy the
condition RcS ≤ 1 [10]–[12].

If the channel is in frequency selective fading, Orthogonal
Frequency Division Multiplexing (OFDM) can be used to
combat the Inter-Symbol Interference (ISI) caused by mul-
tipath propagation [13]. The advantages of OFDM are well-
known. In particular, multipath diversity can be achieved by
adding channel coding [14], [15]. MIMO techniques have
been incorporated with OFDM for all broadband wireless
communication standards, i.e., the Institute of Electrical and
Electronics Engineers (IEEE) 802.11 Wireless Fidelity (WiFi)
standard [16], the IEEE 802.16 Worldwide Interoperability for
Microwave Access (WiMAX) standard [17], and the Third
Generation Partnership Project (3GPP) Long Term Evolution
(LTE) standard [18]. Beamforming can be combined with
OFDM for frequency selective MIMO channels to combat
ISI and achieve spatial diversity [19]. Moreover, both spatial
diversity and multipath diversity can be achieved by adding
channel coding, e.g., BICMB with OFDM (BICMB-OFDM),
[7], [20], [21]. Therefore, BICMB-OFDM can be an important
technique for broadband wireless communication. However,
the diversity analysis of BICMB-OFDM is a difficult chal-
lenge.

In [7], an initial attempt to investigate the diversity of
BICMB-OFDM was based on two over-optimistic assump-
tions. First, the sth singular values realized by SVD at all
subcarriers were assumed to be independent and identically
distributed, which is not practical in general. Second, the bit
interleaver was assumed to satisfy the condition that at least
one error bit of each error event is carried on the subchannels
with each index s, which is not always valid. Moreover, the
relation between the diversity and the combination of the bit
interleaver and the convolutional code was not investigated
well enough as in [11], [12] for BICMB in flat fading MIMO
channels. Unfortunately, the analysis in [11], [12] cannot be
generalized in a straightforward manner to BICMB-OFDM
for frequency selective fading MIMO channels because the
diversity now jointly depends on all subcarriers.

In this paper, the diversity analysis of BICMB-OFDM is
carried out with more reasonable assumptions than [7], and
the relation between the diversity and the combination of the
bit interleaver and the convolutional code is better investigated
as in [11], [12]. First, the maximum achievable diversity is
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Fig. 1. Structure of BICMB-OFDM.

derived and the important α-spectra directly determining the
diversity are introduced. Based on the analysis, a sufficient
and necessary full diversity condition, RcSL ≤ 1 where S is
the number of streams transmitted at each subcarrier and L is
the number of channel taps, is proved. Then, the performance
degradation caused by the correlation among subcarriers is
investigated. To overcome the performance degradation, the
subcarrier grouping technique [22]–[24] which also provides
multi-user compatibility, is employed.

II. SYSTEM MODEL

A BICMB system employing Nt transmit and Nr receive
antennas, a convolutional code of code rate Rc, and transmit-
ting S parallel data streams has the maximum diversity order
of

D = (Nr − �RcS�+ 1)(Nt − �RcS�+ 1). (1)

For a system description of BICMB, as well as the derivation
of (1), we refer the reader to [11], [12].

BICMB-OFDM was proposed to achieve both spatial di-
versity and multipath diversity for MIMO frequency selective
channels, [7], [20], [21]. The structure of BICMB-OFDM is
presented in Fig. 1. First, the convolutional encoder of code
rate Rc, possibly combined with a perforation matrix for a
high rate punctured code [25], generates the bit codeword c
from the information bits. Then, an interleaved bit sequence is
generated by a random bit interleaver before being modulated,
e.g., Quadrature Amplitude Modulation (QAM), to a symbol
sequence. Assume that the symbol sequence is transmitted
through M subcarriers, and S ≤ min{Nt, Nr} streams are
transmitted for each subcarrier at the same time. Hence, an
S × 1 symbol vector xk(m) is transmitted through the mth
subcarrier at the kth time instant with m = 1, . . . ,M . The
length of Cyclic Prefix (CP), which is employed by OFDM to
combat ISI caused by multipath propagation, is assumed to be
Lcp where Lcp ≥ L with L denoting the number of channel
taps.

The frequency selective fading MIMO channel with L taps
is assumed to be quasi-static Rayleigh and known by both the
transmitter and the receiver, which is given by H̆(l) ∈ C

Nr×Nt

with l = 1, . . . , L, where C stands for the set of complex
numbers. Let

H(m) =

L∑
l=1

H̆(l) exp

(
−i

2π(m− 1)τl
MT

)
(2)

denote the quasi-static flat fading MIMO channel observed
at the mth subcarrier, where T denotes the sampling period,
τl indicates the lth tap delay, and i =

√−1 [26]. Then,
SVD beamforming is carried out for each subcarrier. The
beamforming matrices at the mth subcarrier are determined
by SVD of H(m), i.e., H(m) = U(m)Λ(m)VH(m), where
the Nr ×Nr matrix U(m) and the Nt×Nt matrix V(m) are
unitary, and the Nr×Nt matrix Λ(m) is diagonal rectangular
whose sth diagonal element, λs(m) ∈ R+, is a singular
value of H(m) or a square root of the eigenvalue φs(m)
of H(m)HH(m) in decreasing order with s = 1, . . . , S,
where R+ denotes the set of positive real numbers. When S
streams are transmitted at the same time, the first S columns
of U(m) and V(m), i.e., US(m) and VS(m), are chosen as
beamforming matrices at the receiver and transmitter at the
mth subcarrier, respectively.

For each subcarrier, the multiplications with beamforming
matrices are carried out before executing the Inverse Fast
Fourier Transform (IFFT) and adding CP at the transmitter,
and after executing the Fast Fourier Transform (FFT) and
removing CP at the receiver, respectively. Therefore, the
system input-output relation for the mth subcarrier at the kth
time instant is

yk,s(m) = λs(m)xk,s(m) + nk,s(m), (3)

with s = 1, . . . , S, where yk,s(m) and xk,s(m) are the sth
element of the S × 1 received symbol vector yk(m) and the
transmitted symbol vector xk(m) respectively, and nk,s(m) is
the additive white Gaussian noise with zero mean and variance
N0 = Nt/γ [27], with γ denoting the received Signal-to-
Noise Ratio (SNR) over all the receive antennas. Note that
the total transmitted power is scaled by Nt in order to make
the received SNR γ.

The location of the coded bit ck′ within the transmitted
symbol is denoted as k′ → (k,m, s, j), which means that ck′

is mapped onto the jth bit position on the label of xk,s(m).
Let χ denote the signal set of the modulation scheme, and let
χj
b denote a subset of χ whose labels have b ∈ {0, 1} at the jth

bit position. By using the location information and the input-
output relation in (3), the receiver calculates the Maximum
Likelihood (ML) bit metrics for ck′ = b ∈ {0, 1} as

Δ(yk,s(m), ck′) = min
x∈χj

c
k′
|yk,s(m)− λs(m)x|2 . (4)

Finally, the ML decoder, which applies the soft-input Viterbi
decoding [9] to find a codeword ĉ with the minimum sum
weight and its corresponding information bit sequence b̂,
uses the bit metrics calculated by (4) and makes decisions
according to the rule given by [28] as

ĉ = argmin
c

∑
k′

Δ(yk,s(m), ck′). (5)

III. MAXIMUM ACHIEVABLE DIVERSITY OF

BICMB-OFDM

The performance of BICMB-OFDM is bounded by the
union of the Pairwise Error Probability (PEP) corresponding
to each error event [7], [20], [21]. In particular, the overall
diversity order is dominated by the pairwise errors which
have the smallest negative exponent of SNR in their PEP
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representations. Define an M × S matrix A, whose element
αm,s denotes the number of distinct bits transmitting through
the sth subchannel of the mth subcarrier for an error path,
which implies that

∑M
m=1

∑S
s=1 αm,s = dH . Let aTm denote

the mth row of A. Note that the α-spectrum here is similar to
BICMB in the case of flat fading MIMO channels introduced
in [11], [12]. Consider the case that different MIMO delay
spread channels are uncorrelated and have equal power, and
each element of each tap is statistically independent and
modeled as a complex Gaussian random variable with zero
mean and variance 1/L, then all subcarriers are independent
in the case of L = M [29], [30]. In the following part of
this section, this special case is considered. Although this
special case is not practical, its diversity analysis provides
the maximum achievable diversity for the practical case. The
reason is that correlation among subcarriers for the practical
case has a negative effect on performance, which will be
discussed in Section IV.

In the case of L = M , an upper bound of PEP is

Pr (c → ĉ) ≤
∏

m,am �=0

ζm

(
d2minαm,min

4Nt
γ

)−Dm

, (6)

with Dm = (Nr − δm + 1)(Nt − δm + 1), where dmin is the
minimum Euclidean distance [31] in the constellation, αm,min

denotes the minimum non-zero element in am, δm denotes the
index of the first non-zero element in am, and ζm is a constant
[29], [30]. Therefore, the diversity can be easily found from
(6), which is

D =
∑

m,am �=0

Dm. (7)

Because the error paths with the worst diversity order
dominate the performance, the results of (6) and (7) show
that the maximum achievable diversity of BICMB-OFDM is
directly decided by the α-spectra. Note that the α-spectra
are related with the bit interleaver and the trellis structure of
the convolutional code, and they can be derived by a similar
approach to BICMB in the case of flat fading MIMO channels
presented in [11], or by computer search. An example is
provided below to show the relation between the α-spectra
and the diversity.
Example: Consider the parameters Nt = Nr = S = L =
M = 2. Assume that the Rc = 1/2 convolutional code
with generator polynomial (5, 7) in octal is employed, and
the bit interleaver applies simple bit rotation, i.e., the sth
bit in the mth group of S bits are transmitted through the
sth subchannels at the mth subcarrier for one time instant.
In this case, the dominant error path has the α-spectrum
A = [0 1; 2 2], which implies that δ1 = 2 and δ2 = 1.
Hence, D1 = 1 and D2 = 4 in (6). Therefore, the maximum
achievable diversity order in (7) is D = D1 +D2 = 5.

A. The α-spectra

A method to derive the α-spectra is illustrated by the
following simple example.
Example: Consider that the system is composed of a 4-state
Rc = 1/2 convolutional encoder and a spatial de-multiplexer
rotating with an order of a, b, c, and d which represent the four
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Fig. 2. Trellis of 4-state Rc = 1/2 convolutional code with 4 streams

streams of transmission. Fig. 2 represents a trellis diagram of
this convolutional encoder for one period at the steady state.
Since a convolutional code is linear, the all-zeros codeword
is assumed to be the input to the encoder. To find a transfer
function of a convolutional code and a spatial de-multiplexer,
the branches are labeled as a combination of aβa , bβb , cβc , and
dβd , where the exponent denotes the number of usage for each
subchannel which causes error decoding. Additionally, ZβZ ,
whose exponent satisfies βZ = βa+βb+βc+βd, is included to
get the relation between the Hamming distance dH [9] of two
codewords and α-spectrum of an error event. Furthermore, the
non-zero states are symbolically labeled from X11 to X23 as
in Fig. 2, while the zero state is labeled as Xi if branches split
and Xo if branches merge, also as shown in Fig. 2.

Define x = [X11, X12, X13, X21, X22, X23]
T . Then, one

state equation is given by the matrix equation

x = Fx+ tXi

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0
0 0 0 dZ 0 cZ
0 0 0 cZ 0 dZ
0 1 0 0 0 0
bZ 0 aZ 0 0 0
aZ 0 bZ 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
x+

⎡
⎢⎢⎢⎢⎢⎢⎣

cdZ2

0
0

abZ2

0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
Xi.

(8)

Similarly,

Xo = gx =
[
0 abZ2 0 0 cdZ2 0

]
x. (9)

The transfer function is represented in closed form by using
the method in [25] as

T(a, b, c, d, Z) = g [I− F]−1 t

= gt+

∞∑
u=1

gFut

= Z5(a2b2d+ bc2d2)+

Z6(2a2bc2d+ a2b2d2 + b2c2d2)+

Z7(a2b3c2 + 2a2b2c2d+ 2a2bc2d2+

b3c2d2 + a2b2d3 + a2c2d3)+

Z8(a4b2c2 + 4a2b3c2d+ 4a2b2c2d2+
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b4c2d2 + a2c4d2 + 4a2bc2d3 + a2b2d4) + · · · , (10)

where [I−F]−1 can be expanded as I+F+F2+ · · · through
an infinite power series of matrices.

Consider BICMB-OFDM with parameters Nt = Nr =
S = L = M = 2. Therefore, four streams are transmitted
simultaneously. Assume that a and b are assigned to be the
first and second streams transmitted by the first subcarrier
respectively, and c and d are assigned to be the first and second
streams transmitted by the second subcarrier respectively. The
α-spectra can be figured out from the transfer function. For
example, there are two error events with dh = 5 whose α-
spectra are [2 2; 0 1] and [0 1; 2 2] respectively.

This method can be applied to any K-state Rc = kc/nc

convolutional code where kc and nc are positive integers with
kc < nc and BICMB-OFDM with M subcarriers and S
streams transmitted at each subcarrier. Note that Rc = kc/nc

implies that each kc sections in the trellis of the convolutional
code generates nc coded bits. If the spatial de-multiplexer
is not a random switch for the whole packet, the period of
the spatial de-multiplexer is an integer multiple of the Least
Common Multiple (LCM) of nc and SM . Note that a period
of the interleaver is restricted to an integer multiple of the
trellis sections. Define Q = LCM(nc, SM) as the number of
coded bits for a minimum period. Then, the dimension of the
vector x is nQ(K − 1)kc/nc where n is a positive integer.

B. Full Diversity Condition

Note that since the subcarriers are independent of each
other in the case of M = L, the MIMO channels in (2) in
the frequency domain can be addressed as the block fading
MIMO channels considered in [32]. According to [32], the full
diversity is NrNtL, which is consistent with the full diversity
of frequency selective fading MIMO channels [3]. Based on
the results of (6) and (7), full diversity of NrNtL can be
achieved by BICMB-OFDM if and only if all entries in the
first column of the A matrix are non-zero, i.e., αm,1 	= 0, ∀m,
for all error events. To meet such requirements of the α-
spectra, the condition RcSL ≤ 1 needs to be satisfied. In
the following, the proof of the full diversity condition with
the rate of the convolutional code is provided.

Proof: To prove the necessity, assume that an information
bit sequence b with length Nb = JRcSL is transmitted, then
a bit sequence cm,s containing J bits is transmitted at the sth
subchannel of the mth subcarrier. If RcSL > 1, because the
number of different codewords 2Nb is larger than the number
of different bit sequences cm,s, 2J , there always exists at least
a pair of codewords which results in the same cm,s. As a
result, the pairs of codewords with the same cm,1 result in
αm,1 = 0, and therefore cause full diversity loss.

To prove the sufficiency, consider a bit interleaver employ-
ing simple rotation with the condition RcSL ≤ 1. Simple
rotation means that the coded bits are multiplexed for each
subchannel at each subcarrier, with increasing order of sub-
channels first and then subcarriers, i.e., the first subchannel
of the first subcarrier, · · · , the last subchannel of the first
subcarrier, the first subchannel of the second subcarrier, and so
on. Because Rc ≤ 1/(SL), the number of coded bits generated
from each section in the trellis structure of the convolutional

code is no less than SL. In this case, all subchannels at
each subcarrier could be assigned to one section in the trellis
structure of the convolutional code. Since the trellis of the
convolutional code can be designed such that the coded bits
generated from the first branch splitting from the zero state
are all errored bits of an error event, each subchannel of
all subcarriers could be used at least once, which guarantees
αm,1 	= 0, ∀m, for all error paths. Therefore, full diversity can
be achieved.

This concludes the proof.
The proof of the necessity above implies that in the case

of RcSL > 1, there always exists at least an error path
with no errored bits transmitted through the first subchannel
of a subcarrier. Therefore, full diversity cannot be achieved.
In this case, the bit interleaver should be designed such
that consecutive coded bits are transmitted over different
subchannels of different subcarriers to provide the maximum
achievable diversity, which depends on the α-spectra.

To better illustrate the proof of the sufficiency above, a
simple example is given below.
Example: Consider the parameters Nt = Nr = L = M = 2
and S = 1. Also assume that the Rc = 1/2 convolutional code
with generator polynomial (5, 7) in octal is used. Note that the
trellis structure of this code can be represented by one section
of the trellis in Fig. 2. Since Rc = 1/2 ≤ 1/(SL), both of
the SL = 2 subchannels could be assigned to one section
in the trellis structure of the convolutional code. Assume that
a and b are assigned to be the streams transmitted by the
first and the second subcarriers respectively. Then, the trellis
diagram for one period at the steady state of this combination
of the convolutional code and the bit interleaver can actually
be represented as the first section in Fig. 2. Now, due to the
fact that the coded bits generated from the first branch splitting
from the zero state are all errored bits of an error event, the
full diversity requirements αm,1 	= 0, ∀m for all error paths
are satisfied.

Note that the full diversity condition of BICMB for flat
fading MIMO channels is RcS ≤ 1 [10]–[12]. Now the
condition RcSL ≤ 1 of BICMB-OFDM for frequency selec-
tive fading MIMO channels involves the number of channel
taps L. It is not a simple generalization because the total
parallel steams in actually SM instead of SL. Moreover, a
similar full diversity condition RcNtL ≤ 1 for block fading
MIMO channels was derived in [32]. Note that the condition
RcSL ≤ 1 of BICMB-OFDM for frequency selective fading
MIMO channels is tighter since S ≤ min{Nt, Nr}.

IV. NEGATIVE EFFECT OF SUBCARRIER CORRELATION

In practice, M is always much larger than L. In this case,
correlation exists among subcarriers [29], [30], [33]. Hence,
to calculate PEP, the joint Probability Density Function (PDF)
of diagonal elements in Λ(m)ΛH(m) for all m satisfying
am 	= 0, which are eigenvalues of a set of correlated Wishart
matrices [34], is required [29], [30]. However, this is an
extremely difficult problem. The joint PDF of two correlated
Wishart matrices is given in [35]–[37], which is already highly
complicated. To the best of our knowledge, the joint PDF of
more than two correlated Wishart matrices is not available in
the literature. The maximum diversity of an OFDM-MIMO



3798 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

system is known to be NrNtL [3]. In the case of BICMB-
OFDM with M > L, a performance degradation caused by
subcarrier correlation is to be expected. Because, otherwise,
the diversity can exceed the full diversity of NrNtL, which
is a contradiction. In this section, the negative effect of
correlation on the performance between two subcarriers is
investigated to provide an intuitive insight.

Consider an error path whose dH distinct bits between
two bit codewords are all transmitted through two correlated
subcarriers with correlation ρ in absolute value, which could
be the practical case. Define X = max(Nt, Nr) and Y =
min(Nt, Nr). Let Φ = [φ1, . . . , φY ] and Φ̃ = [φ̃1, . . . , φ̃Y ]
denote the ordered eigenvalues of the two correlated Wishart
matrices HHH and H̃H̃H , respectively. Note that φu = λ2

u.
Let a = [α1, . . . , αY ] and ã = [α̃1, . . . , α̃Y ] denote the α-
spectra of Φ and Φ̃ respectively. Define p = [p1, . . . , pW ]
and p̃ = [p̃1, . . . , p̃W̃ ] whose elements are the indices corre-
sponding to the non-zero elements in a and ã, respectively, i.e,
αpw 	= 0 and α̃p̃w̃ 	= 0. Similarly, define q = [q1, . . . , qY−W ]
and q̃ = [q̃1, . . . , q̃Y−W̃ ] whose elements are the indices
corresponding to zero elements in a and ã, respectively, i.e,
αqw = 0 and α̃q̃w̃ = 0. Define Φp = [φp1 , . . . , φpw ],
Φ̃p̃ = [φ̃p̃1 , . . . , φ̃p̃w̃ ], Φq = [φq1 , . . . , φqw ], and Φ̃q̃ =
[φ̃q̃1 , . . . , φ̃q̃w̃ ]. Therefore, the PEP is written as

Pr (c → ĉ) ≤ E

[
exp

(
−d2min(a

TΦ+ ãT Φ̃)

4N0

)]

≤ E

⎡
⎣exp

⎛
⎝−μ(

W∑
w=1

φpw +

W̃∑
w̃=1

φ̃p̃w̃ )

⎞
⎠
⎤
⎦ (11)

with μ =
(
d2minαmin

)
/ (4N0), where αmin indicates the

minimum element in a and ã. To solve (11), the marginal
PDF f(Φp, Φ̃p̃) is needed by calculating

f(Φp, Φ̃p̃) =

∫
· · ·
∫
Dq

∫
· · ·
∫
Dq̃

f(Φ, Φ̃) dΦq dΦ̃q̃.

(12)

The joint PDF f(Φ, Φ̃) is available in [35]–[37] as

f(Φ, Φ̃) = exp

(
− 1

1− ρ2

Y∑
u=1

(φu + φ̃u)

)
f1(Φ, Φ̃), (13)

with the polynomial f1(Φ, Φ̃) defined as

f1(Φ, Φ̃) = [

Y∏
u<v

(φu − φv)(φ̃u − φ̃v)]

× det[(φuφ̃v)
(X−Y )/2IX−Y (2

√
εφuφ̃v)], (14)

where det[hu,v] represents the determinant of the matrix with
the (u, v)th element given by hu,v, IN (t) is the modified
Bessel function of order N which is given by

IN (t) =

∞∑
j=0

1

j!(j +N + 1)!

(
t

2

)2j+N

, (15)

and ε ≈ ρ2/(1 − ρ2)2. Because the exponent of μ =
(d2minαmin)/(4N0) is related to the diversity, the constant
appearing in the literature is ignored in (14) for brevity.

Since the eigenvalues of the Wishart matrices are pos-
itive and real, the relations exp(− 1

1−ρ2φu) ≤ 1 and

exp(− 1
1−ρ2 φ̃u) ≤ 1 are valid in (13). By applying the

relations
∫ v

0 ute−u du ≤ 1
t+1v

t+1 and
∫∞
0 ute−u du = t! to

Φq and Φ̃q̃, the marginal PDF f(Φp, Φ̃p̃) in (12) is upper
bounded as

f(Φp, Φ̃p̃) ≤ exp

(
−
∑W

w=1 φpw +
∑W̃

w̃=1 φ̃p̃w̃

1− ρ2

)

× f2(Φp, Φ̃p̃), (16)

where f2(Φp, Φ̃p̃) is a polynomial corresponding to (13).
Then (11) is rewritten as

Pr (c → ĉ) ≤
∫ ∞

0

∫ φp1

0

· · ·
∫ φpW−1

0

∫ ∞

0

∫ φp̃1

0

· · ·
∫ φp̃

W̃−1

0

exp

⎛
⎝−(μ+

1

1− ρ2
)(

W∑
w=1

φpw +

W̃∑
w̃=1

φ̃p̃w̃ )

⎞
⎠

× f2(Φp, Φ̃p̃) dΦp dΦ̃p̃. (17)

Note that since f2(Φp, Φ̃p̃) is a polynomial, its multivariate
terms can be integrated separately, and the term with the
worst performance dominates the overall performance. To
solve (17), Theorem 2 in [38] can be applied to integrate Φp

and Φ̃p̃ independently for each multivariate term. Based on
this theorem the multivariate term with the smallest degree in
f2(Φp, Φ̃p̃) results in the smallest degree of (μ + 1

1−ρ2 )
−1,

which dominates the overall performance. The smallest degree
of f2(Φp, Φ̃p̃) is (X−p1+1)(Y −p1+1)+(X− p̃1+1)(Y −
p̃1 + 1)−W − W̃ , and the proof is provided in Appendix A.
Therefore, (17) is upper bounded by

Pr (c → ĉ) ≤ ζ

(
d2minαmin

4Nt
γ +

1

1− ρ2

)−D

, (18)

with D = (X−p1+1)(Y −p1+1)+(X− p̃1+1)(Y − p̃1+1),
where ζ is a constant.

The negative effect of subcarrier correlation is proved by
(18). When γ → ∞, the diversity order is the same as the
uncorrelated case in (6) and (7). However, on the practical
SNR range, the performance is degraded due to the term 1

1−ρ2 ,
which is independent of γ. Specifically, when the subcarrier
correlation ρ is small, 1

1−ρ2 is also relatively small, and its
effect on the performance is not significant when the SNR
is relatively large, and the uncorrelated case ρ = 0 offers the
performance upper bound. On the other hand, when ρ is large,

1
1−ρ2 is also relatively large compared to γ, then significant
performance degradation could be caused, depending on the
SNR. When ρ = 1, which means all the distinct bits of the
error path are transmitted through one subcarrier, no multipath
diversity is achieved, and the diversity equals BICMB in the
case of flat fading MIMO channels introduced in [11], [12],
which provides the performance lower bound.

Note that the analysis in this section is not limited to
equal power channel taps, and can also be applied to unequal
power channel taps, non-constant sampling time, and other
assumptions, which cause different subcarrier correlation.
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Fig. 3. Structure of BICMB-OFDM with subcarrier grouping.

V. SUBCARRIER GROUPING

The idea of subcarrier grouping technique is to transmit
multiple streams of information through multiple group of sub-
carriers of OFDM. It was suggested for multi-user interference
elimination [22], Peak-to-Average Ratio (PAR) reduction [23],
and complexity reduction [24]. In this paper, the subcarrier
correlation technique is applied to overcome the performance
loss caused by subcarrier correlation.

Note that ρ = 0 when (m−m′)L/M ∈ Z, where Z denotes
the set of integer numbers. This means that although correla-
tion exists among subcarriers for L < M , some subcarriers
could be uncorrelated if M/L ∈ Z+, where Z+ denotes the set
of positive integer numbers. In this case, there are G = M/L
groups of L uncorrelated subcarriers. As a result, the subcar-
rier grouping technique can be applied to transmit multiple
streams of bit codewords through these G different groups of
uncorrelated subcarriers, instead of transmitting one stream
of the bit codeword through all the correlated subcarriers.
As a result, the negative effect of subcarrier correlation is
completely avoided, and the maximum achievable diversity is
thereby achieved. Note that the best choice of the number of
subcarriers in one group is L, since smaller choice results in
less diversity while larger choice causes subcarrier correlation
which degrades performance.
Example: Consider the case of L = 2 and M = 64. Then,
the gth and the (g + 32)th subcarriers are uncorrelated for
g = 1, . . . , 32. The subcarrier grouping technique can transmit
32 streams of bit codewords simultaneously through the 32
groups of two uncorrelated subcarriers without performance
degradation.

Fig. 3 presents the structure of BICMB-OFDM with sub-
carrier grouping. In Fig. 3, T1 is a permutation matrix at the
transmitter distributing the modulated symbols from different
streams to their corresponding subcarriers, while T2 = T−1

1

is a permutation matrix at the receiver distributing the re-
ceived symbols of different subcarriers to their corresponding
streams for decoding. Compared to BICMB-OFDM without
subcarrier grouping, BICMB-OFDM with subcarrier grouping
achieves better performance with the same transmission rate
and decoding complexity. Note that the structure of BICMB-
OFDM with subcarrier grouping in Fig. 3 can also be con-
sidered as Orthogonal Frequency-Division Multiple Access
(OFDMA) [39] version of BICMB-OFDM. OFDMA is a
multi-user version of the OFDM and it has been used in the
mobility mode of WiMAX [17] as well as the downlink of
LTE [18]. The multiple access in OFDMA is achieved by

Fig. 4. Structure of BICMB-OFDM with subcarrier grouping in the frequency
domain for one bit stream transmission of the gth subcarrier group.

assigning subsets of subcarriers to individual users, which is
similar to the subcarrier grouping technique. As a result, with
subcarrier grouping, BICMB-OFDM can provide multi-user
compatibility.

Fig. 4 presents the structure of BICMB-OFDM with sub-
carrier grouping in the frequency domain for one bit stream
transmission of the gth subcarrier group with g ∈ {1, . . . , G},
and mg,l = (l−1)G+g for l = 1, . . . , L in the figure denotes
the corresponding subcarrier index for the lth subcarrier of
the gth group. Note that Fig. 4 can also present the structure
of BICMB-OFDM in the frequency domain when L = M .
Therefore, the diversity analysis for L = M in Section III can
also be applied to BICMB-OFDM with subcarrier grouping.
As a result, the full diversity condition RcSL ≤ 1 holds
for BICMB-OFDM with subcarrier grouping as well. In this
paper, the number of employed subchannels by SVD for each
subcarrier is assumed to be the same, which is S. However,
they could be different in practice. In that case, the full
diversity condition is Rc

∑L
l=1 Sg,l ≤ 1 where Sg,l denotes

the number of employed subchannels by SVD for the lth
subcarrier of the gth group.

Note that when the channel taps have different powers, there
are no uncorrelated subcarriers in general [29], [30]. However,
some of them could have weak correlation. Therefore, the sub-
carrier grouping technique can still be applied to combat the
performance degradation, although it now can no longer fully
recover the performance because of subcarrier correlation.

VI. SIMULATION RESULTS

To verify the diversity analysis, 2 × 2, M = 64 BICMB-
OFDM with L = 2 and L = 4 using 4-QAM are considered
for simulations. The number of employed subchannels for each
subcarrier is assumed to be the same. The generator polyno-
mials in octal for the convolutional codes with Rc = 1/4
and Rc = 1/2 are (5, 7, 7, 7), and (5, 7) respectively, and the
codes with Rc = 2/3 and Rc = 4/5 are punctured from
the Rc = 1/2 code [25]. The length of CP is Lcp = 16.
Each OFDM symbol has 4μs duration, of which 0.8μs is
CP. Equal and exponential power channel taps are considered.
For the exponential channel model [40], the ratios of non-
negligible path power to the first path power are −7dB, the
mean excess delays are 30ns for L = 2 and 65ns for L = 4,
respectively. The bit interleaver employs simple rotation. Note
that simulations of 2 × 2, L = 2 and L = 4 BICMB-OFDM
are shown in this section because the diversity values could
be investigated explicitly through figures.
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Fig. 5. BER vs. SNR for 2 × 2, L = 2, M = 64 BICMB-OFDM with
subcarrier grouping over equal power channel taps.
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Fig. 6. BER vs. SNR for 2× 2, L = 4, M = 64, S = 1 BICMB-OFDM
with subcarrier grouping over equal power channel taps.

A. Diversity of BICMB-OFDM with Subcarrier Grouping

Fig. 5 shows the Bit Error Rate (BER) performance of 2×
2, L = 2, M = 64 BICMB-OFDM employing subcarrier
grouping over equal power channel taps with different S and
Rc. The A matrices that dominate the performance derived
by the method introduced in Section III-A are provided in the
figure. The diversity results of all curves equal the maximum
achievable diversity orders derived from Section III, which are
directly decided by the A matrices. Specifically, in the cases
of S = 1, Rc = 1/4 and Rc = 2/3 codes, whose dominant A
matrices are A = [2; 3] and A = [0; 5] respectively, achieve
diversity values of 8 and 4 respectively. As for S = 2, the
codes with Rc = 1/4, Rc = 1/2, Rc = 2/3, and Rc = 4/5,
whose dominant A matrices are A = [2 3; 3 3], A = [0 1; 2 2],
A = [0 2; 0 3], and A = [0 0; 0 4] respectively, offer diversity
of 8, 5, 2, and 1 respectively. Note that full diversity of 8 is
achieved with the condition RcSL ≤ 1.

Similarly, Fig. 6 shows the BER performance of 2 × 2,
L = 4, M = 64, S = 1 BICMB-OFDM employing subcarrier
grouping over equal power channel taps with different Rc.
The A matrices that dominate the performance derived by
the method introduced in Section III-A are provided in the
figure. The diversity results of all curves equal the maximum
achievable diversity orders derived from Section III, which

are directly decided by the A matrices. Specifically, the codes
with Rc = 1/4, Rc = 1/2, Rc = 2/3, and Rc = 4/5, whose
dominant A matrices are A = [2; 3; 3; 3], A = [0; 1; 2; 2],
A = [0; 2; 0; 3], and A = [0; 0; 0; 4] respectively, offer
diversity of 16, 12, 8, and 4 respectively. Note that full
diversity of 16 is achieved with the condition RcSL ≤ 1.

Fig. 5 and Fig. 6 verify the relation between the diversity
and the α-spectra as well as the full diversity condition
RcSL ≤ 1 derived in Section III for BICMB-OFDM with sub-
carrier grouping. The full diversity condition implies that if the
number of streams S transmitted at each subcarrier increases,
the code rate Rc may have to decrease in order to keep full
diversity. As a result, increasing the number of parallel streams
may not fully improve the total transmission rate, which is
a similar issue to the full diversity condition RcS ≤ 1 of
BICMB for flat fading MIMO channels introduced in [11],
[12]. In fact, for flat fading MIMO channels, other than
channel coding, the constellation precoding technique has been
incorporated with both uncoded and coded SVD beamforming
to achieve full diversity and full multiplexing simultaneously,
with the trade-off of a higher decoding complexity [41]–[44].
Specifically, in the uncoded case, full diversity requires that all
streams are precoded. On the other hand, for the coded case,
which is BICMB, even without the condition RcS ≤ 1, other
than full precoding, partial precoding with lower decoding
complexity than full precoding could also achieve both full
diversity and full multiplexing with the properly designed
combination of the convolutional code, the bit interleaver,
and the constellation precoder. Moreover, Perfect Space-Time
Block Codes (PSTBCs) [45], which have the properties of
full rate, full diversity, uniform average transmitted energy
per antenna, good shaping of the constellation, and nonvan-
ishing constant minimum determinant for increasing spectral
efficiency which offers high coding gain, have been considered
as an alternative scheme to replace the constellation precoding
technique for both uncoded and coded SVD beamforming
with constellation precoding in order to reduce the decoding
complexity in dimensions 2 and 4 while achieving almost
the same performance [46]–[48]. Since these techniques have
successfully solved the restricted full diversity condition issue
of RcS ≤ 1 for BICMB in the case of flat fading MIMO
channels, it may be possible to incorporate these techniques
into BICMB-OFDM so that its full diversity condition is
not restricted to RcSL ≤ 1 for frequency selective MIMO
channels. However, the design criteria and diversity analysis
cannot be generalized in a straightforward manner because of
the increased system complexity, and they are discussed in
another work by the authors [49], [50].

B. Negative Effect of Subcarrier Correlation

Fig. 7 shows the BER performance of examined PEPs with
S = 2, where the simplest case of an error event with dH =
2 is examined for two subcarriers with different correlation
coefficient ρ in absolute value, which are derived from the
2 × 2, L = 2, M = 64 BICMB-OFDM over equal power
channel taps. The figure shows that when ρ = 0, which implies
that the two subcarriers are uncorrelated, A = [1 0; 1 0] and
A = [1 0; 0 1] offer diversity of 8 and 5 respectively. On the
other hand, when ρ 	= 0, performance degradation is caused by
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Fig. 7. BER vs. SNR for examined PEPs of two subcarriers with different
correlation coefficient for 2 × 2, L = 2, M = 64, S = 2 BICMB-OFDM
over equal power channel taps.
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Fig. 8. BER vs. SNR for 2 × 2, L = 2, M = 64, S = 1, Rc =
1/2 BICMB-OFDM with and without subcarrier grouping over equal and
exponential power channel taps.

subcarrier correlation, and stronger correlation results in worse
performance loss. When ρ = 1, which means that the dH = 2
distinct bits are transmitted through only one subcarrier and
no multipath diversity is achieved, both A = [2 0; 0 0] and
A = [1 1; 0 0] provide diversity of 4. The results are consistent
with the analysis provided in Section IV, and they show the
negative effect of subcarrier correlation on performance.

Fig. 8 shows the BER performance of 2×2, L = 2, M = 64,
S = 1, Rc = 1/2 BICMB-OFDM with and without subcarrier
grouping over equal and exponential power channel taps. In
the figure, w/ and w/o denote with and without respectively,
while SG denotes subcarrier grouping. The results show that
the subcarrier grouping technique can combat the performance
loss caused by subcarrier correlation for both equal and
exponential power channel taps. As discussed in Section V, the
maximum achievable diversity of 8 is provided by employing
subcarrier grouping for equal power channel taps, since there
is no subcarrier correlation. As for the case of exponential
power channel taps, subcarrier grouping cannot fully recover
the performance loss because subcarrier correlation still exists.

Fig. 9 shows the correlation ρ of two subcarriers with
different separation for 2 × 2, L = 2, M = 64 BICMB-
OFDM over equal and exponential power channel taps. The
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Fig. 9. Correlation vs. subcarrier separation for 2 × 2, L = 2, M = 64
BICMB-OFDM over equal and exponential power channel taps.
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Fig. 10. BER vs. SNR for 2 × 2, L = 4, M = 64, S = 1, Rc =
1/4 BICMB-OFDM with and without subcarrier grouping over equal and
exponential power channel taps.

figure shows that the channel with exponential power taps
causes stronger subcarrier correlation than equal power taps,
which results in worse performance as shown in Fig. 8.

Similarly to Fig. 8, Fig. 10 shows the BER performance
of 2 × 2, L = 4, M = 64, S = 1, Rc = 1/4 BICMB-
OFDM with and without subcarrier grouping over equal and
exponential power channel taps. The results show that the
negative effect of subcarrier correlation on performance can be
overcome by the subcarrier grouping technique for both equal
and exponential power channel taps. For equal power channel
taps, the maximum achievable diversity of 16 is achieved
by applying subcarrier grouping as discussed in Section V
because subcarrier correlation is totally removed. On the other
hand, since subcarrier correlation is not totally reduced in the
case of exponential power channel taps, subcarrier grouping
cannot fully restore the performance.

Similarly to Fig. 9, Fig. 11 shows the correlation ρ of
two subcarriers with different separation for 2 × 2, L = 4,
M = 64 BICMB-OFDM over equal and exponential power
channel taps. The figure shows that the subcarrier correlation
of exponential power channel taps is larger than equal power
channel taps so that it achieves worse performance as shown
in Fig. 10.

Fig. 7 verifies the negative effect of subcarrier correlation
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Fig. 11. Correlation vs. subcarrier separation for 2 × 2, L = 4, M = 64
BICMB-OFDM over equal and exponential power channel taps.

as analyzed in Section IV, while Fig. 8 and Fig. 10 verify
the advantage of BICMB-OFDM with subcarrier grouping
over BICMB-OFDM without subcarrier grouping. Other than
the subcarrier grouping technique, focus can be drawn on
the design of the bit interleaver to combat the subcarrier
correlation. As illustrated in Section III-A, the bit interleaver
is directly related to the α-spectra which reflect the sub-
carrier distribution of the distinct bits for each error path
and thereby determine the diversity. In fact, the performance
degradation results from the error paths whose distinct bits
are transmitted by correlated subcarriers. Therefore, negative
effect of subcarrier correlation can be reduced by a properly
designed bit interleaver so that the errored bits of every
error event are carried on uncorrelated or weakly correlated
subcarriers. However, only considering the worst-case error
event is already very difficult. For BICMB-OFDM, at high
SNR, the performance is dominated by the worst-case error
event of the error events which have the worst diversity order.
When the number of subcarriers is large, there may exist
too many error events with the same worst diversity order.
When subcarrier correlation exists, it is already very hard to
analyze the performance of error events which involve more
than two correlated subcarriers, as mentioned in Section IV.
As a result, it is even harder to determine the worst-case error
event. Even if the worst-case error event can be identified,
only focusing on that event is not sufficient. To lighten the
negative effect of subcarrier correlation for the worst-case
error event, the assigned subchannels need to be rearranged.
However, the rearrangement of subchannels also affects other
error events. It is probable that after the rearrangement another
error event becomes the worst one, which might be even worse
than the original worst case. As a result, all error events
need to be considered for an interleaver design. However,
because there are countless error events, it is impossible to
consider them all. In fact, such an interleaver can only find
a better arrangement of subcarriers to lighten the negative
effect of subcarrier correlation for some error events, but
the subcarrier correlation itself is not changed at all. On the
other hand, the subcarrier correlation is actually reduced by
subcarrier grouping, which results in better performance. As a
result, the subcarrier grouping technique is apparently a better
choice because it does not only achieve better performance

in an easier way but also provides multi-user compatibility
as explained in Section V. Therefore, the design of the bit
interleaver to combat subcarrier correlation is not considered
in this paper.

C. Outdated CSI and No CSI at the Transmitter

As presented in Section II, BICMB-OFDM requires the
knowledge of CSI at the Transmitter (CSIT). However, due
to the feedback delay caused by the channel-access protocols
overhead or signal processing intervals, CSIT usually becomes
outdated before actually being applied at the transmitter.
As a result, the system performance would be significantly
degraded [51]–[53]. An effective approach to overcome this
issue is to predict the channel at the receiver based on the
past channel knowledge and thereby decide the feedback [54]–
[60]. In particular, the performance degradation caused by
outdated CSIT for multiple-antenna OFDM beamforming has
been addressed with acceptable performance in [54], [56]. In
practice, similar techniques can be applied to BICMB-OFDM.

When CSIT is not available, space-time or space-frequency
coding techniques with OFDM have been used to achieve
diversity for frequency selective fading MIMO channels [61]–
[65]. In general, higher rate of the space-time or space-
frequency code results in higher decoding complexity. Orthog-
onal codes introduced in [3] can achieve the same symbol-
by-symbol decoding complexity as BICMB-OFDM. Other
than the orthogonal codes, non-orthogonal codes increase the
decoding complexity. It has been shown that with the same
decoding complexity, the same rate, and the same transmit
power, BICMB-OFDM can significantly outperform OFDM
with orthogonal codes [20], [21], which verifies the impor-
tance of CSIT.

In this subsection, we will first investigate the effects of
outdated CSIT on BICMB-OFDM, and then we will com-
pare the performance of BICMB-OFDM with another coded
MIMO-OFDM system that does not require CSIT. All the
coded MIMO-OFDM systems we will discuss have parameters
of 2 × 2, L = 4, M = 64, with 4-QAM, and have the same
transmission rate and power.

We model the outdated CSIT as in [66] which is sum-
marized here. For the lth channel tap at time t, i.e., H̆t(l),
the entries h̆u,v,t(l) are assumed to be independent complex
normal random variables with zero mean and variance σ2(l),
where u = 1, . . . , Nr and v = 1, . . . , Nt. To characterize
the outdated CSIT, the channel time variation is described
as h̆u,v,t(l) = ρh̆u,v,t−τ (l) +

√
1− ρ2e(l), where τ stands

for the delay of CSIT, h̆u,v,t−τ (l) is the (u, v)th outdated
channel which is known at the transmitter instead of the true
channel h̆u,v,t(l), ρ denotes the time correlation coefficient,
and e(l) is a random variable with zero mean and variance
σ2(l). In our simulations, ρ is derived based on Jakes’ model
[67] which depends on τ and the maximum Doppler frequency
shift. Specifically, we consider ρ ≈ 0.9 for our simulations.

Fig. 12 shows the performance of 2 × 2, L = 2, M = 64
coded MIMO-OFDM with perfect, outdated, and no CSIT.
With perfect and outdated CSIT, BICMB-OFDM introduced
in this paper is employed. Two combinations of S = 1,
Rc = 1/2, and S = 2, Rc = 1/4, are considered. As
shown in Fig. 5, they both achieve full diversity with perfect
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Fig. 12. BER vs. SNR for 2 × 2, L = 2, M = 64 coded MIMO-OFDM
with perfect, outdated, and no CSIT.

CSIT. For S = 1, symbol-by-symbol ML decoding is applied
for both perfect and outdated CSIT. On the other hand, in
the case of S = 2, symbol-by-symbol ML decoding is
only applicable for perfect CSIT. As for outdated CSIT of
S = 2, other than ML decoding which increases the decoding
complexity due to joint symbol decoding from both streams,
two suboptimal linear decoding techniques for coded MIMO-
OFDM systems, i.e., Zero-Forcing (ZF) [68] and Minimum
Mean Square Error (MMSE) [69], are also considered. When
CSIT is not available, Alamouti code [3] is employed for
the coded MIMO-OFDM system with Rc = 1/2, which was
shown achieving full diversity in [20], [21].

We first compare the performance of BICMB-OFDM with
perfect and outdated CSIT. In the case of S = 1, the diversity
of outdated CSIT is degraded significantly compared to perfect
CSIT. Similarly, for S = 2, the diversity of perfect CSIT is
better than all three decoders with outdated CSIT. Specifically,
ML with increased decoding complexity provides the best
performance which can be achieved with outdated CSIT, but
there is still a diversity degradation. As for suboptimal linear
decoding, MMSE achieves close performance to ML while
ZF suffers substantial performance loss. Note that with ML
or MMSE, the sensitivity of outdated CSIT for S = 2 is less
severe than the case of S = 1. In summary, there is a reduction
of diversity with the outdated CSIT. However, systems where
CSIT can be extracted readily, such as those based on Time
Domain Duplexing (TDD), will not have this reduction.

We now compare the performance of BICMB-OFDM with
the coded Alamouti-OFDM system which requires no CSIT.
In the case of perfect CSIT, our BICMB-OFDM with S = 2
has the same performance as the coded Alamouti-OFDM. On
the other hand, our BICMB-OFDM with S = 1 outperforms
the coded Alamouti-OFDM. We note with transmit power
optimization, the performance of S = 2 BICMB-OFDM
can be improved [70], thereby can beat the coded Alamouti-
OFDM. However, such a study is beyond the scope of this
paper. As for outdated CSIT, BICMB-OFDM performs worse
than the coded Alamouti-OFDM which requires no CSIT.
In summary, when the CSIT is outdated, instead of SVD
beamforming, other space-time techniques requiring no CSIT
may be a better choice. On the other hand, if CSIT can

be extracted readily such as in TDD, our BICMB-OFDM
provides performance advantage.

VII. CONCLUSIONS

BICMB-OFDM combines MIMO and OFDM to achieve
spatial diversity, multipath diversity, spatial multiplexing, and
frequency multiplexing simultaneously for frequency selective
fading MIMO channels so that it could be an important tech-
nique for broadband wireless communication. In this paper,
the diversity analysis of BICMB-OFDM is carried out. As
a result, the maximum achievable diversity is derived and
the important α-spectra directly determining the diversity is
introduced, providing important insights of BICMB-OFDM.
According to the analysis, a sufficient and necessary condition
RcSL ≤ 1 for achieving full diversity is proved, which is very
important for practical design. In addition, the negative effect
of subcarrier correlation on the performance in the practical
case is investigated, and subcarrier grouping is employed to
overcome the performance degradation and provide multi-user
compatibility. Furthermore, it is possible to employ precoding
techniques so that the full diversity condition of BICMB-
OFDM is not restricted to RcSL ≤ 1, and its diversity analysis
and design criteria are available in [49], [50].
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APPENDIX A
PROOF OF THE SMALLEST DEGREE OF f2(Φp, Φ̃p̃)

The polynomial f2(Φp, Φ̃p̃) in (16) corresponds to
(13). Because the relations

∫ v

0 ute−u du ≤ 1
t+1v

t+1 and∫∞
0 ute−u du = t! are valid, the smallest degree of
f2(Φp, Φ̃p̃) is related to the polynomial f1(Φ, Φ̃) in (13),
which is given by (14) and can be rewritten as

f1(Φ, Φ̃) = ε(X−Y )/2[

Y∏
u<v

(φu − φv)(φ̃u − φ̃v)]

× [

Y∏
u=1

(φuφ̃u)
X−Y ]det[ĨX−Y (εφuφ̃v)], (19)

where

ĨN (t) =

∞∑
j=0

tj

j!(j +N + 1)!
. (20)

Note that only the multivariate term of f1(Φ, Φ̃) determining
the smallest degree of f2(Φp, Φ̃p̃) needs to be considered.
The dominant term of f1(Φ, Φ̃) is the one with the smallest
degree and the largest eigenvalues, which depends on the
dominant term of

∏Y
u<v(φu − φv)(φ̃u − φ̃v) and the dom-

inant term of det[ĨX−Y (εφuφ̃v)]. Obviously, the dominant
term of

∏Y
u<v(φu − φv)(φ̃u − φ̃v) is

∏Y
u=1(φuφ̃u)

Y−u. On
the other hand, the dominant term of det[ĨX−Y (εφuφ̃v)] is
ζ
∏Y

u=1(φuφ̃u)
Y −u where ζ is a constant, and the proof is
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provided in Appendix B. Therefore, the dominant term in
f1(Φ, Φ̃) ignoring the constant, is given by

f̃1(Φ, Φ̃) =

Y∏
u=1

(φuφ̃u)
X+Y −2u. (21)

Therefore, the degree of f̃1(Φ, Φ̃) is

δf̃1 = 2Y (X − 1). (22)

After integration of (12), the factor
∏p1−1

u=1 φX+Y−2u
u and

the factor
∏p̃1−1

u=1 φ̃X+Y−2u
u of f̃1(Φ, Φ̃) vanish because∫∞

0 ute−u du = t!. Hence,

δvanished = (p1 − 1)(X + Y − p1) + (p̃1 − 1)(X + Y − p̃1).
(23)

Meanwhile, the eigenvalues φqu with qu > p1 and φq̃u with
q̃u > p̃1 result in increased degree because

∫ v

0
ute−u du ≤

1
t+1v

t+1. Therefore,

δadded = 2Y −W − W̃ − p1 − p̃1 + 2. (24)

As a result, the smallest degree of f2(Φp, Φ̃p̃) is

δ = δf̃1 − δvanished + δadded

= (X − p1 + 1)(Y − p1 + 1)−W

+ (X − p̃1 + 1)(Y − p̃1 + 1)− W̃ . (25)

APPENDIX B
PROOF OF THE DOMINANT TERM OF det[ĨX−Y (εφuφ̃v)]

When Y = 1,

det[ĨX−Y (εφuφ̃v)] =

∞∑
j=0

(εφ1φ̃1)
j

j!(j +X)!
(26)

and the dominant term is 1/X !.
When Y = 2,

det[ĨX−Y (εφuφ̃v)] = ĨX−Y (εφ1φ̃1)ĨX−Y (εφ2φ̃2)

− ĨX−Y (εφ1φ̃2)ĨX−Y (εφ2φ̃1)

=

2∑
u=1

2∑
v=1

(−1)u+v

⎡
⎣ ∞∑
j=0

∞∑
k>j

(εφuφ̃v)
j

j!(j +X − 1)!

(εφ3−uφ̃3−v)
k

k!(k +X − 1)!

⎤
⎦

(27)

and the dominant term is εφ1φ̃1/ [X !(X − 1)!].
When Y ≥ 3,

det[ĨX−Y (εφuφ̃v)] =

Y∑
u=1

Y∑
v=1

(−1)u+v

⎡
⎣ Y∏
k=1

∞∑
jk=0

(εφuk
φ̃vk)

jk

jk!(jk +X − Y + 1)!

⎤
⎦
jk<jk+1

(28)

where uk = [(u+k−2) mod Y ]+1 and vk = [(v+k−2) mod
Y ] + 1, and the dominant term is ζ

∏Y
k=1(φkφ̃k)

Y −k with
ζ =

∏Y
k=1 ε

Y−k/ [(Y − k)!(X − k + 1)!].
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