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Abstract—Coding-based restoration techniques have proactive
restoration which results in time savings over other state-of-
the-art restoration techniques. Diversity coding is a coding-
based recovery technique which offers near-hitless restoration
with a competitive spare capacity requirement with respect
to other techniques. In this paper, we show that diversity
coding can achieve sub-ms restoration time. In addition, we
develop two optimal algorithms for pre-provisioning of the static
traffic and one for the dynamic provisioning of the traffic on-
demand. There is one algorithm for systematic and one for
non-systematic diversity coding in pre-provisioning. An MIP
formulation and an ILP formulation are developed for systematic
and non-systematic cases, respectively. The MIP formulation
of the systematic diversity coding requires much fewer integer
variables and constraints than similar optimal coding-based
formulations. In dynamic provisioning, an ILP-based algorithm
covers both of the systematic and non-systematic diversity coding.
In all scenarios, diversity coding results in smaller restoration
time, higher transmission integrity, and much reduced signal-
ing complexity than the existing techniques in the literature.
Simulation results indicate that diversity coding has significantly
higher restoration speed than Shared Path Protection (SPP) and
p-cycle techniques from the literature as well as Synchronous
Optical Network (SONET) rings, which are commonly deployed
by service providers today. In terms of capacity efficiency, it
outperforms SONET rings and 1+1 APS, whereas it may require
more extra capacity than the p-cycle technique and SPP. Diversity
coding offers a preferable tradeoff which offers two orders of
magnitude increase in restoration speed at the expense of less
than 26% extra spare capacity.

Index Terms—Network fault-tolerance, network coding, linear
programming.

I. INTRODUCTION

CABLE cuts in wide area networks are common. They
happen approximately 4.39 times a year per 1000 sheath

miles [1]. In this paper, we focus on recovery from single link
failures which consist of 70% of all the failures [2], although
our techniques can be generalized to multiple link failures. The
prominent restoration techniques can be listed as ring-based
restoration, mesh-based restoration, and the p-cycle technique
[3], [4], [5]. Each technique offers a different tradeoff in terms
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of capacity efficiency and restoration speed. For voice traffic,
telephone network industry set the restoration time goal to 50
ms, which is the lower bound of the failure perception time
by users. For IP traffic, it is always desirable to decrease the
restoration time to even smaller values due to the complexities
introduced by the different layers of the networking hierarchy.
In networking industry, hitless switching is considered to be
the ultimate restoration technique, in which end nodes do not
experience the failure even as a bit [3].

Mesh-based restoration techniques are grouped into two,
namely path-based restoration and link-based restoration. The
simplest form of path-based restoration techniques are 1 + 1
and 1 : 1 Automatic Protection Switching (APS). They
reserve a link-disjoint dedicated backup path for every pri-
mary path. In this paper, link-disjointness actually refers to
span-disjointness, where each span consists of two opposite
directional links with arbitrary capacity. In 1 + 1 APS, the
backup path transmits the same data in the primary path at
all times. The 1 : 1 APS scheme can be extended to N : M
APS, which requires M link-disjoint backup paths to protect
the N link-disjoint primary paths from any M link failures [3].
Mesh-based protection schemes employ sharing of the spare
capacity among different primary paths in order to offer high
capacity efficiency at the expense of lower restoration speed
and higher signaling complexity. Shared-path protection (SPP)
is a path-based restoration technique that has been studied
extensively in both all-optical [6] and opaque [7] networks.

The accompanying restoration technique of the standard
Synchronous Optical Network (SONET) is based on pro-
tection switching over reserved capacity of multi-node ring
structures, known as self-healing rings or SONET rings. More
than 100% capacity, in terms of fiber miles, is deployed over
self-healing rings to match and protect all of the affected
traffic over the failed links. However, due to geographical
deployment of self-healing rings, required redundant capacity
in fiber miles exceeds 100%.

A technique that combines the speed advantage of SONET
rings and the capacity efficiency of mesh-based restoration is
known as p-cycle protection [8]. P-cycle protection is faster
than mesh-based techniques because it eliminates most of the
cross-connect configurations that are required to reroute the
traffic after the failure. The same idea is used in mesh-based
techniques by [9] and [10], named as “hot-standby” and “pre-
cross-connected trials” (PXT), respectively.

Coding based link failure recovery was introduced in [11],
[12] and was called diversity coding. In single failure diversity
coding, N primary links are protected using a separate N+1st

protection link which carries the modulo-2 sum of the data
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signals in each of the primary links. Assuming all N+1 links
are disjoint, in other words physically diverse, then any single
link failure can impair only one of them and the failed data can
be extracted by applying modulo-2 sum to the received data.
The biggest advantage of this technique is the fast automatic
recovery from single link failures by eliminating the complex
and time-consuming signaling and rerouting operations. The
fact that a single protection link carries the coded data of
N primary links leads to capacity savings. As a result, both
the restoration speed and the capacity efficiency goals can be
achieved, albeit within certain limits. Its proactive restoration
simplifies the network management, minimizes the signaling
overhead, and eliminates the instability threat that can be
caused by the dynamic configuration of the optical cross-
connects [13]. Diversity coding, like APS, can be generalized
to multiple link failures by deploying M protection links to
protect N primary links from M link failures. In [4], diversity
coding is applied to arbitrary network topologies, using a
heuristic algorithm. There, it is shown that diversity coding
is much faster than a typical SPP technique known as source
rerouting, and the p-cycle technique. In [14], both primary
paths and protection paths are incorporated into coding op-
erations which results in further capacity savings over typical
diversity coding structures. The optimal algorithms of diversity
coding for both pre-provisioning and dynamic provisioning
are presented in [15]. It is shown that, diversity coding can
achieve sub-ms restoration time if proper synchronization and
buffering are implemented.

We introduced a technique that converts any sharing-based
solution of SPP into a coding-based solution in [16], called
as Coded Path Protection (CPP). The conversion makes the
restoration automatic, faster, and simpler with some slight
extra capacity. In that paper, it is shown that, coding-based
restoration techniques preserve the transmission integrity after
a link failure. CPP provides, in addition to encoding inside the
network, decoding inside the network as has been sought for
within the context of network coding.

We would like to note that although the publication of [11]
and [12] predate the topic of network coding, diversity coding
is a form of network coding. For the purposes of this paper,
it has the goal of minimizing a distance metric, in addition to
optimum erasure coding in a network.

Designing a survivable network against single link failures
consists of two main steps, namely a restoration technique
and a capacity placement algorithm. The performance of the
design depends on both of these structures and it is evalu-
ated by a number of different criteria. The restoration speed
and the capacity efficiency are the most important metrics.
Since the goal is to implement the restoration techniques in
arbitrary networks, the complexity of the capacity placement
algorithm plays a vital role for design purposes especially
in big networks and dense traffic scenarios. Therefore, the
challenge is to develop a sufficiently simple and efficient
restoration technique jointly with a design algorithm that can
optimally provision the traffic with low complexity. Both
static and dynamic traffic consist of multiple unicasts between
different nodes. A small improvement in the restoration tech-
nique can cause an exponential increase in the complexity
of the optimal capacity placement algorithm. A theoretically

superior restoration technique can result in inferior results if
the accompanying design algorithm is not simple enough to
find the near-optimum solutions with the limited resources. In
this paper, optimal design techniques with low complexity are
presented for diversity coding under static and dynamic traffic
scenarios, respectively.

Coding-based recovery techniques have higher restoration
speed than the rerouting-based techniques since they are
proactive. In this paper, for the first time, the restoration speed
of a coding-based recovery technique is quantified within
sub-ms. In addition, the synchronization mechanism required
for this operation is simpler than the competitive techniques
in [15] and [17] since it only requires N − 1 buffers for
each coding group with N connection demands. Second, in
this paper, we present an optimal design algorithm for diver-
sity coding that can achieve competitive capacity efficiency
compared to state-of-the-art recovery techniques. The optimal
algorithm is based on Mixed Integer Programming (MIP) and
is much simpler than the coding-based optimal algorithms in
the literature e.g., [15], [17], and [18]. Third, we present the
first coding-based dynamic provisioning algorithm for single
link failure recovery. This algorithm is also optimal under a
set of assumptions.

This paper consists of two parts. The first part addresses
the pre-provisioning problem of the static traffic whereas the
second part deals with the dynamic traffic.

II. DIVERSITY CODING TREE

In this section, we present how to achieve recovery within
sub-ms in the case of single link failures and how to pre-
provision the static traffic with an optimal design algorithm.
The recovery technique we adopt is a form of diversity coding
in which the coding operations are carried out among the
connections with the same destination node. In this paper,
there are three observations that leverage the simplicity of
this coding structure. First, this coding structure achieves
sub-ms restoration time in optical networks with a simple
synchronization structure. Besides the restoration time and
synchronization complexity, it also simplifies the signaling
complexity. Second, it enables decomposition of the traffic
matrix into smaller groups which decreases the design algo-
rithm complexity without loss of optimality. The partitioned
traffic subgroups can be input to parallel MIP formulations.
Third, the nature of the coding structure helps eliminate some
of the variables and constraints in the MIP formulation. This
enables application of diversity coding on realistic networks.
The optimal design algorithm is realized with an MIP for-
mulation and called Diversity Coding Tree algorithm. In this
algorithm, a primary tree structure serves as the primary
paths and a protection tree serves as the protection paths
of a set of connections. Moreover, the diversity coding tree
inputs unidirectional connections. This flexibility adds strength
to diversity coding tree technique in offering solutions for
nonsymmetric traffic scenarios.

An example is provided in Fig. 1(a). In this figure, nodes
S1, S2, and S3 transmit their data, given as a, b, and c,
respectively, to the common destination node D. The primary
tree is shown with solid black lines and arrows. The protection



3880 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 9, SEPTEMBER 2013

�

�

�

�

�

�

�

	




��

��

aa

b b

c

c

c
ba ⊕

c

cba ⊕⊕

��

��

��

�

(a)

�

�

�

�

�

�

�

	




��

��

�

��

��

��

aa

b b

c

c

c
ba ⊕

c

cba ⊕⊕

��

��

��

(b)

Fig. 1. An example of the diversity coding tree structure (a) There are
three link-disjoint primary paths spanned by the primary tree and there is
a link-disjoint protection tree, (b) The synchronization buffers for the tree
structure.

tree is disjoint to all these links used by the primary tree and
it encodes the data to be protected on the tree structure, shown
in this case with dashed black lines and arrows. In the sequel,
we call the set of connections protected by the same set of
primary and protection trees a Coding Group.

A. Synchronization and Buffering

In order to achieve near-hitless recovery, the arrival in-
stances of the signals in the same coding group must be
the same. If so, restoration time will be upper-bounded by a
very small interval which includes failure detection, protection
switching, and a single XOR operation. This is ensured via
synchronization and buffering. We present a simpler syn-
chronization mechanism than the one in [15]. In addition,
the buffering delays are reduced. The example Fig. 1(a) is
replicated in Fig. 1(b) with some additional features. The
boxes B1, B2, and B3 are buffers that synchronize the
primary tree and the protection tree for near-hitless switching.
These buffers equalize the arrival instances of the primary
signals and the protection (parity) signal. The delay values
of the buffers can be calculated with the help of a variable
dix,y,z,v which is equal to total time when signal i traverses
from node x to node v over intermediate nodes y and z.

Then buffer delays are calculated according to the example in
Fig. 1(b), assuming da1,2,3,6 is the longest path in the coding
group, db2,3,6 ≥ db2,7,6, and dc4,3,6 ≥ dc4,10,11,6

B1 = da1,2,3,6 − da1,6 (1)

B2 = db2,3,6 − db2,7,6 (2)

B3 = dc4,3,6 − dc4,10,11,6. (3)

Total number of buffers is N−1, reduced by N compared to
the synchronization mechanism in [15]. They are placed at the
incoming links of the destination node except the link which
carries the latest arriving signal of the decoding operation.
The buffers at the intermediate nodes in [15] are eliminated.
Assuming the protection tree is the longest path in the coding
group, each signal on the primary tree is delayed as long as
the propagation delay difference of the same signal between
the primary and protection tree. The buffering delays are
reduced by eliminating the synchronization mechanism over
the protection tree, which does not compromise the decoding
structure.

To achieve fine synchronization, either pointer processing
or the Global Positioning System (GPS) can be used. In a
simpler implementation, in packet networks, packet headers
with sequence numbers can be employed for the same purpose.
Besides the synchronization and buffering requirements, the
nodes should be able to carry out XOR operations in high
speed. One way is to carry out those operations in the
optical domain as shown in [19]. The second alternative is
to convert those signals into electrical domain and carry out
these operations in the electrical domain. The destination node
also has a small memory requirement for decoding purposes.

A frame structure enables the correction of bit errors via a
two-dimensional mechanism. When one employs CRC checks
on the bits of the primary paths, then one knows the existence
of errors on those paths, then one can treat the frame with the
bad CRC check as “erased” and recover it using the data in
the protection path and the primary paths. Assuming N is the
number of primary paths, there is one protection path, p is the
raw Bit Error Rate (BER), and L is the size of a frame, the
probability of the frame being in error is 1 − (1 − p)L. The
calculation of the probabilities of error is complicated, but they
are dominated by a polynomial in the form of (1−p)N . Then,
the probability of error after this mechanism is dominated by
NLp2, which is much smaller than the raw BER p for practical
values of N , L, and p.

B. Diversity Coding Tree

The design algorithm for systematic diversity coding is
given in this section. We call this algorithm when employed
for pre-provisioning, diversity coding tree. In systematic di-
versity coding, there are link-disjoint primary paths and coded
protection paths which are link-disjoint to primary paths. The
optimal diversity coding tree algorithm uses ideas from a p-
cycle approach that is based on a cycle exclusion technique
[20]. The diversity coding tree algorithm is also simpler
than the optimal algorithms of similar coding-based recovery
techniques in [15], [17], and [18].
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One of the novelties in the diversity coding tree algorithm
is the way the primary and protection paths are formed.
Instead of building the primary and protection paths of
each connection with a separate variable in the MIP [17],
the diversity coding tree algorithm builds trees that replace
primary and protection paths for the connections that are
protected together. Therefore, it carries out the same task with
a significantly smaller number of variables and constraints.
More details about the complexity analysis can be found
in Section II-B6. There are two separate trees forming the
primary and protection paths of the connections, respectively.
In primary tree, there is a link-disjoint path from each source
node to the destination node, defining the primary path of that
source node. The primary tree consists of multiple link-disjoint
branches originating from the source nodes that merge at the
common destination node. Even though these branches do not
share a link, the resulting structure is a tree in the context
of graph theory. The protection tree serves as the common
protection path for all of the connections protected by the same
tree. The branches of this tree can merge until they reach the
root of the tree, which is the destination node. The primary
tree and the protection tree of the same diversity coding tree
structure are link-disjoint.

The optimal MIP formulation of diversity coding tree tech-
nique is provided below. The input parameters are

• G(V,E) : Network graph,
• S : The set of spans in the network, a span consists of

two links in opposite directions,
• N : Enumerated list of all unit-demand connections

which have the destination node d,
• ae : Cost associated with link e,
• T : Maximum number of diversity coding groups al-

lowed, about half of the number of connections in each
subproblem,

• Γi(v) : The set of incoming links of each node v,
• Γo(v) : The set of outgoing links of each node v,
• si : Source node of the connection demand i,
• d : The common destination node,
• NDd : The nodal degree of the destination node d,
• α : A constant employed in the algorithm where 1

|V | ≥
α ≥ 0,

• β : A constant employed in the algorithm, β ≥ 2 ×
max(|V |,maxi(NDi)).

Next we provide the variables. Except the last two, they are
binary and take the value of 0 or 1.

• n(i, t) : Equals 1 iff connection i is routed and protected
by the diversity coding group t,

• de(t) : Equals 1 iff the primary tree of coding group t
passes through link e,

• ce(t) : Equals 1 iff the protection tree of coding group t
passes through link e,

• pv(t) : A continuous variable between 0 and 1, resulting
in an MIP formulation. It keeps the “voltage” value of
node v in the protection tree of t. It is possible to set
this variable as an integer larger than 0 but that makes
the simulation run slower,

• gv(t) : Same as pv(t) except it is used for the primary
tree of t.

The objective function is to minimize the total cost incurred
by primary and protection paths of each coding group

min
∑
e∈E

T∑
t=1

ae × (de(t) + ce(t)). (4)

1) Coding Group Formation:

T∑
t=1

n(i, t) = 1 ∀i, (5)

N∑
i=1

n(i, t) ≤ NDd − 1 ∀t. (6)

The first constraint ensures that a connection can be routed
and protected by only one diversity coding group. In a coding
group with N connections, there are N link-disjoint paths
inside the primary tree and at least 1 link-disjoint path as the
protection tree. The required number of link-disjoint paths are
at least N + 1 for a coding group with size N . However, the
nodal degree of the destination node is limited. Therefore, the
maximum size of a coding group is limited by NDd − 1.

2) Building Primary Trees:

∑
e∈Γo(v)

de(t) =

N∑
i=1,si=v

n(i, t) +
∑

e∈Γi(v)

de(t) ∀v �= d, ∀t.

(7)∑
e∈Γi(v),v=d

de(t) =

N∑
i=1

n(i, t) ∀t, (8)

∑
e∈Γo(v),v=d

de(t) = 0 ∀t, (9)

The constraints above define the structure of the primary
trees depending on the node they traverse. A primary tree
must have a link-disjoint path from each source node of the
protected connections to the destination node. If node v is
not a destination node, it can be an intermediate node or a
source node or both. However, the behavior of the primary tree
is the same on these nodes. There are two rules to consider
while building primary trees on non-destination nodes. First,
there must be a branch of the primary tree t on the outgoing
links of a non-destination node for each protected connection
originating from this node. Second, a non-destination node
must forward the primary tree branches that are input using
its outgoing links. In equation (7), on a non-destination node,
the number of outgoing branches belonging to the primary tree
t is equal to the number of incoming links carrying a branch
of primary tree t plus the number of connections protected
by coding group t that are originated at that node. Equation
(7) satisfies both of the rules. If node v is a destination node,
then the total number of incoming links carrying the primary
tree of t must be equal to the number of connections protected
by that coding group t as mathematically stated by equation
(8). In equation (9), it is ensured that there is no primary tree
on the outgoing links of the destination node since they are
supposed to terminate at that node.
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pu (t) pv (t)

e

ce (t)

Fig. 2. A typical link in the protection tree t.

3) Building Protection Trees:

∑
e∈Γo(v)

ce(t) ≥

N∑
i=1,si=v

n(i, t)

β
+

∑
e∈Γi(v)

ce(t)

β
∀v �= d, ∀t.

(10)

∑
e∈Γi(v),v=d

ce(t) ≥

N∑
i=1

n(i, t)

β
∀t, (11)

∑
e∈Γo(v),v=d

ce(t) ≤ 0 ∀t. (12)

The structure of the protection tree also depends on the nature
of the node it is traversing over. Inequality (10) is similar to
equation (7) except with one fundamental difference. Primary
paths are link-disjoint and are not coded so they cannot merge.
On the other hand, protection paths, which are link-disjoint to
primary paths, are coded when they merge at the encoding
nodes. Inequality (10) makes sure that if a node inputs one
or more protection signals then it encodes those signals and
uses at least one of its outgoing links to transmit the encoded
signal to the destination node. The objective function makes
sure that the encoded signals are transmitted over only a single
outgoing link of the encoding node. The constraints regarding
the destination node are different than the constraints regarding
other nodes. In inequality (11), if coding group t protects at
least one connection then there must be at least one branch of
the protection tree of t carrying the protection signals on the
incoming links of the destination node. In some cases, some of
the branches of the protection tree, carrying different signals,
may not merge and input to the destination node separately.
This does not compromise the decoding structure. Inequality
(12) ensures that there are no branches of the protection tree
on the outgoing links of the destination node since they are
supposed the terminate at that node.

4) Link-Disjointness:

de(t) + df (t) + ce(t) + cf (t) ≤ 1 ∀e, f ∈ g, ∀g ∈ S, ∀t.
(13)

The primary tree and the protection tree must be link-disjoint
which is satisfied by (13). The variables e and f are the links
of span g in the opposite directions because a failure over this
span affects both of these links at the same time.

The link-disjointness criterion between the primary paths of
the connections in the same coding group is ensured implicitly
while the MIP formulation builds the primary trees.

5) Cycle Prevention: In order to prevent getting cyclic (or
loop) structures inside the trees, we choose to assign two
“voltage” values to each node in the tree, as in [20], for
the primary and protection trees, respectively. These are not
actual voltage values, instead they are each a metric used as a

0.1

0.2

0.30.1 0.3

Contradiction

Fig. 3. Voltage value contradiction in a loop structure.

variable in the formulation. We would like to emphasize that
this voltage value is only used in the sense of a resemblance to
the familiar Kirchoff’s voltage law. It is an assigned variable
to prevent loops.

gv(t)− gu(t) ≥ α · de(t)− (1− de(t)) ∀e = u → v, ∀t.
(14)

pv(t)− pu(t) ≥ α · ce(t)− (1− ce(t)) ∀e = u → v, ∀t.
(15)

In inequalities (14) and (15), the voltage value at the head
node should be higher than the voltage value at the tail node
of the links which are part of the primary or protection trees,
respectively. Fig. 2 shows a typical link in the network. The
voltage value of node v must be higher than the voltage
value of node u. This voltage relationship prevents the cyclic
structures to be a part of the diversity coding trees such
as in Fig. 3. These variables are crucial to ensure that the
inequalities (7)-(12) produce valid primary and protection
trees.

As an example, in Fig. 4(a), assume that there are 8
connections originated from Sis to D. The nodal degree of
the destination node is 5 which means the maximum size of a
coding group is 4. Therefore, the connections are partitioned
into two different coding groups, the first group includes
S1 − D, S2 − D, S3 − D, and S4 − D. The other group
includes the rest of the connections.

In Fig 4(b), there is an example of the primary tree
belonging to the first coding group formed in Fig. 4(a). In that
example, there are four connections originating from nodes
S1, S2, S3, and S4 to node D carrying signals a, b, c, and d ,
respectively. The primary tree of this coding group is depicted
in Fig. 4(b) with thick straight arrows. As seen on node D,
there are four branches of the primary tree on the incoming
links of the destination node, each carrying the signal of a
different connection. Nodes 1, 2, and 4 are pure source nodes
of the connections protected by this coding group. It is seen
that a new primary tree branch originates from each source
node. Node 10 is both an intermediate and a source node.
When equation (7) is applied to this node, there are two
branches of primary tree on its outgoing links. One of the
primary tree branches carry the signal of the connection S4−D
and the other branch is formed by forwarding the tree branch
on the incoming link 4 → 10 to outgoing link 10 → 11. As
seen in Fig. 4(b), equations (7)-(9) ensure that there is a link-
disjoint primary path in the primary tree for each protected
connection.

The protection tree of the example in Fig. 4 is depicted in
Fig. 4(c). Nodes 1, 4, and 10 are pure source nodes whereas
node 3 is a pure intermediate node and node 2 is both. There
is only a single branch of protection tree over the incoming
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Fig. 4. A diversity coding tree example with 8 connection demands, (a)
The source nodes of the 8 connections and the common destination node, (b)
In the primary tree, on each non-destination node, the number of incoming
signals is equal to that of outgoing signals, (c) In the protection tree, a non-
destination node merges the incoming signal flows into a single outgoing link,
(d) In a coding group, the primary and the protection trees are link-disjoint.

links of the destination node. At node 2, the signals a and b
are coded since node 2 inputs two signals and merges them
over a single branch of the protection tree. At node 3, three

incoming branches of the protection tree are merged into a
single outgoing branch. The signals of those branches are
coded as well. As seen in Fig. 4(c), inequalities (10)-(12)
ensure that the protection tree originates from the source nodes
and its branches merge until they arrive at the destination
(root) node of the tree.

In Fig. 4(d), it is shown that the primary and protection trees
of a coding group are link-disjoint to ensure decodability.

6) Design Complexity Comparison: We leveraged the na-
ture of the adopted diversity coding technique to simplify the
design algorithm in two ways. First, the novel diversity coding
tree algorithm requires dramatically fewer number of variables
and constraints than the similar optimal algorithms of coding-
based recovery techniques e.g., [17]. Second, the traffic matrix
can be partitioned into smaller groups and each subgroup can
be input to a parallel simulation without loss of optimality.

The diversity coding tree algorithm replaces the individual
primary and protection paths with trees which leads to savings
in the number of integer variables in the MIP formulation.
Table I compares the complexities of different LP formulations
of optimal coding-based algorithms. The techniques in [15],
[17], and [18] are compared with the novel technique in terms
of the total number of integer variables and constraints. We
assume T = |N |/2.

In MIP, the complexity incurred by the continuous variables
are negligible compared to that of the integer variables. As
seen in Table I, the novel algorithm requires significantly
fewer number of integer variables and constraints compared
to the other techniques including the preceding work in [15].
It is also more scalable than the other techniques with larger
network size and larger traffic matrix.

The adopted diversity coding structure implements coding
on connections with the same destination node. In Fig. 5(a),
there is an example of a typical traffic matrix of a network
with 11 nodes. The rows are source nodes and the columns
are destination nodes. The indices are the total connections
between two nodes, which makes |N | = 176. However, in
our algorithm, the connections with different destination nodes
cannot interact with each other. Therefore, it is possible to
partition that matrix into vectors of connections depending on
their destination nodes. In Fig. 5(b), the set of connections
with destination node equal to 1 are encircled, which makes
|N | = 12 for this group. This observation leads to significant
simplification of design complexity since |N | has a significant
effect on the complexity as shown in Table I. The whole
traffic matrix can be partitioned into vectors which can be
input to parallel simulations without loss of optimality. On
the other hand, in general diversity coding, any connection
can be encoded with other connections in the traffic matrix.
Therefore, it is impossible to partition the traffic matrix into
smaller groups without loss of optimality. The only insight is
to partition connections which have closer destination nodes
[4]. Even in that case, the size of the non-optimal partitions
in general diversity coding cannot be as small as the size of
the optimal partitions in the adopted diversity coding.

C. Non-systematic Coding

In this section, we present the optimal design algorithm for
non-systematic diversity coding, where each connection has
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TABLE I
COMPLEXITY COMPARISONS OF THE LP FORMULATIONS OF DIFFERENT TECHNIQUES

Technique Number of integer variables Number of constraints
Diversity Coding Tree |N ||E|+ |N |2/2 3|N ||E|/2 + |N ||V |+ 7|N |/2
Diversity Coding Tree in [15] 3|N ||E|/2 + |N |2/2 |N |3|E|/2 + |N |2|E|/2 + ...
ILP formulation in [17] |N |2/2(|E|+ 1) + 3|N ||E| |N |4/8 + ...
ILP formulation in [18] |N ||E|(|V |+ 2) + |N |(|N |+ 2|V |) + ... |N ||V |(3|E|+ |N |+ |V |) + ...

(a) (b)

Fig. 5. (a) An exampler traffic matrix. The rows are source nodes and
the columns are destination nodes. The indices are total number of unit-
demand connections between these nodes, (b) The connections are partitioned
depending on their destination node. The connections with destination node
1 are encircled as a subgroup and so on.

two paths and each path can be coded with others under some
rules. There are N connection demands in a coding group.
Each connection demand has two link-disjoint paths carrying
the same signal, which is distinct from other connection
demands. The paths that are to be coded together are assigned
to the same subgroup of a coding group. The total number of
subgroups varies between N+1 and 2N . The number of paths
in a subgroup takes values from zero to N . In the received
vector of the destination node, each connection demand is
represented as a variable and each subgroup is represented as
an equation. If there are smaller than or equal to N subgroups,
some data cannot be recovered in some failure scenarios
because that leaves N − 1 equations for N unknowns. In the
opposite extreme, there will be maximum 2N subgroups if
each path is transmitted separately, which is the case in 1+1
APS. For example, in systematic diversity coding, there are a
total of N + 1 subgroups, N of them are the primary paths
and one of them is the combination of protection paths. The
common destination node carries out the decoding operation
over the received vector.

A non-systematic code can be built by assigning paths to
the subgroups arbitrarily. However, the critical point in the
construction of a non-systematic code is the decodability of
all N transmitted signals. The N data signals can be decoded
under any single link failure scenario as long as any N
equations of the received vector are linearly independent. It
is clear that any subset of linear equations with size N of
the received vector are independent and N +1 subgroups are
sufficient in systematic diversity coding.

In non-systematic coding, the paths in each subgroup must
be specified. In [14], connection demands are randomly chosen
and paths are assigned to subgroups of the existing coding
group one by one. However, a general rule is needed to
optimally build non-systematic codes. In [21], it is reported by
Lemma 1 that the destination node can recover N data signals
from a non-systematic code as long as any subset of the data

signals with size k are transmitted over at least k + 1 paths.
In our technique, Lemma 1 can be paraphrased as

1) Lemma 1: The non-systematic code will be valid as long
as any subset of data signals with size k are members of at
least k + 1 subgroups in a coding group.

The proof can be followed from [21] by assuming Us as
the set of connection demand signals and Ls as the set of
subgroups in a coding group.

We build valid non-systematic codes with the objective
of minimizing total capacity. Therefore, we develop an op-
timization algorithm to find the code that requires lowest total
capacity while eliminating the codes that violate Lemma 1.
The following exemplifies how an invalid non-systematic code
can be detected. Assume we have four connection demands,
carrying signals a, b, c, and d in a coding group and each
connection demand has two link-disjoint paths. Assume the
first three subgroups of this coding group are given as⎡

⎣ a+ b
b+ c
c+ d

⎤
⎦ , (16)

which indicates that one path of a and b, b and c, and c and
d are coded together. That leads to a coding relationship map
shown in Fig. 6(a). In this map, there are two symbols for each
connection demand, referring to their two link-disjoint paths.
In Fig. 6(b), a bidirectional arrow between two paths means
they are in the same subgroup and therefore coded together. If
a path of a is coded together with a path of b and a path of b
is coded together with a path c, then connection demand a is
indirectly related to connection demand c, which is shown with
a dashed arrow in Fig. 6(b). In addition, pairs a− d and b− d
are indirectly related as well. If the fourth subgroup consists of
a+ d then four connection demands are bounded within four
subgroups, which is a violation of Lemma 1. In Fig. 6(c), the
relationship map is updated to include a bidirectional arrow
between a path of a and a path of d. As a result, connection
demands a and d are coded together and indirectly related at
the same time, which causes a circle shown in Fig. 6(d). We
call this a coding circle, which is an indication of the violation
of Lemma 1. Therefore, in the ILP formulation, we seek to
prevent coding circles by ensuring two different connection
demands can either be coded together or indirectly related.
The resulting non-systematic code will be valid as long as
coding circles are prevented.

An ILP formulation is developed to implement the proposed
technique with an objective to minimize total capacity on
arbitrary networks. The ILP uses the same parameter as in
Section II-B.

The variables related to non-systematic diversity coding
problem are given below. All are binary and take the value
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Fig. 6. Formation of a coding circle. A coding circle violates Lemma 1.

of 0 or 1.

• xe(i) : Equals 1 iff the path i passes through link e,
• n(i, t, s) : Equals 1 iff path i is in subgroup s of coding

group t,
• m(i, j) : Equals 1 iff path i and path j are coded together,
• r(i, f) : Equals 1 iff path i and connection demand f are

indirectly related, 0 otherwise,
• θe(t, s) : Equals 1 iff the topology of subgroup s of

coding group t includes link e.

Note that 1 ≤ i, j, s ≤ 2N , 1 ≤ f ≤ N , and 1 ≤ t ≤ T . The
objective function is

min

T∑
t=1

2N∑
s=1

∑
e∈E

ae × θe(t, s). (17)

The following inequality finds two paths for each connection
demand

∑
e∈Γi(v)

xe(i)−
∑

e∈Γo(v)

xe(i) =

⎧⎨
⎩

-1 if v = si,
1 if v = d,
0 otherwise.

(18)

Note that we require mod(i, 2) = 0 ⇒ si = si−1 for 1 ≤
i ≤ 2N .

Each path must be assigned to a single subgroup of a single
coding group which is ensured by

T∑
t=1

2N∑
s=1

n(i, t, s) = 1 ∀i, (19)

n(i, t, s)+n(i−1, t, s)≤ 1 ∀i, s, t : mod (i, 2) = 0, (20)

2N∑
s=1

n(i, t, s) =
2N∑
s=1

n(i − 1, t, s) ∀i, t : mod(i, 2) = 0,

(21)
m(i, j) ≥ n(i, t, s) + n(j, t, s)− 1 ∀i �= j, s, t. (22)

Inequality (20) ensures that paths of the same connection
cannot be in the same subgroup. However, equation (21)
ensures that they must be in the same coding group. If two
paths are in the same subgroup then they are assumed to be
coded together, which is satisfied by inequality (22).

r(i, f) ≥ m(i, j) +m(j∗, 2f) +m(j∗, 2f − 1)

−m(i, 2f)−m(i, 2f − 1)− 1 ∀i, j, f, : i �= j (23)

such that j∗ = j − 1 if mod(j, 2) = 0 and j∗ = j + 1
otherwise.

r(i, f) ≥ r(i, g) +m(2g, 2f) +m(2g, 2f − 1)

+m(2g − 1, 2f) +m(2g − 1, 2f − 1)− 1 ∀i, f �= g :

i �= 2f, i �= 2f − 1, i �= 2g, i �= 2g − 1. (24)

In inequality (23), if path i becomes indirectly related to
demand f if there exists a path j that is coded with both path
i and one of the paths carrying demand f . Moreover, path i
must not be coded with either paths of demand f . Inequality
(24) ensures that path i becomes related to demand f if path i
is related to demand g and one of the paths carrying demand g
is coded with one of the paths carrying demand f . Inequality
(25) ensures that only one of the paths carrying demand f can
be either coded with one of the paths carrying demand g or
be indirectly related to demand g. This inequality ensures the
validity of the non-systematic code by preventing the coding
circles.

r(2f, g) + r(2f − 1, g) +m(2f, 2g) +m(2f − 1, 2g)

+m(2f, 2g − 1) +m(2f − 1, 2g − 1) ≤ 1 ∀g, f : g �= f, (25)

θe(t, s) ≥ xe(i) + n(i, t, s)− 1 ∀e, i, s, t (26)

θe(t, s1) + θe(t, s2) + θf (t, s1) + θf (t, s2)

≤ 1 ∀e, f ∈ g, ∀g ∈ S, ∀t, s1, s2 (27)

Inequality (26) finds the topologies of the subgroups. The
topology of a subgroup is the union of the protection paths of
the connections in that subgroup. Inequality (27) ensures that
two subgroups have link-disjoint topologies.

In Section II-D and III-D, we will present our simulation
results. Although our techniques are applicable to electrical
and optical networks, in our simulations we focused on optical
networks.

D. Pre-Provisioning Results

In this section, we present the simulation results of sys-
tematic and non-systematic diversity coding on test networks.
Those results are compared with the simulation results of
SPP, p-cycle protection, SONET rings, and 1 + 1 APS in
terms of capacity efficiency and restoration speed. Capacity
efficiency is measured as the total capacity to route and protect
connection demands and restoration speed is measured as the
worst-case restoration time.

We have three test networks to analyze the comparative
performance of these five techniques. These networks are the
COST 239 network [3], the NSFNET network [22] and the
Smallnet network [20]. Their topologies are given in Fig. 7(a),
Fig. 7(b) and Fig. 7(c), respectively. In Fig. 7(a)-7(c), the
numbers next to the nodes are node indices, whereas in
Fig. 7(a)-7(b), the numbers next to the links are costs (lengths)
of using that link. In the Smallnet network, link lengths are
set to 100 kilometers. The traffic matrix of the COST 239
network is taken from [20].The COST 239 network charac-
terizes the network between major European metropolises.
The traffic matrix of the NSFNET network consists of 300
random unit-sized demands, which are chosen using a realistic
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Fig. 7. Test networks, (a) COST 239 network, (b) NSFNET network, (c)
Smallnet network.

gravity-based model [23]. Each node in the NSFNET network
represents a U.S. metropolitan area and their population is
proportional to the weight of each node in the connection
demand selection process. The traffic matrix of the Smallnet
network consists of randomly selected 250 random unit-sized
demands according to the gravity-based model. It is assumed
that node 3 and node 10 have 5 units of population and rest of
the nodes have 1 unit population to highlight the comparative
performance of diversity coding in a traffic scenario similar
to U.S. coast-to-coast traffic.

For p-cycle protection, optimal cycle-exclusion based ILP
for joint capacity placement (JCP) and spare capacity place-
ment (SCP) algorithms from [20] are employed depending on
the network scenario. The SCP design algorithm for SPP is
taken from [3, p. 406]. The algorithm of SPP is suboptimal
due to the extremely high complexity of the optimal ILP
formulation of SPP. The design algorithm for SONET 4-
fiber bidirectional line switched rings is developed using the

design algorithm of p-cycle protection. The design algorithm
for 1 + 1 APS is simply finding the shortest pair of disjoint
primary and protection paths for each connection. It can be
implemented using different, relatively simple design algo-
rithms. The design algorithms for SPP, p-cycle protection, and
SONET rings are developed with the assumption of symmetric
traffic. Diversity coding tree and 1+1 APS treat nonsymmetric
traffic the same as the symmetric traffic. Therefore, they
can maintain their performance under nonsymmetric traffic
whereas the other techniques are expected to behave worse.

In COST 239 and Smallnet networks, JCP is carried out
with the exception of the design algorithm of SPP. In the
NSFNET network, since both the network size and the traffic
matrix are relatively large, SCP is carried out instead of JCP
for all. It will become clear from simulation results that this
change does not affect our overall conclusion in this paper. In
SCP, the primary paths are routed using the shortest paths
and the algorithms minimize the total spare capacity. The
traffic matrix is partitioned into smallest number of groups
when the computational resources are not able to compute
the problem for the whole traffic matrix at once. Simulation
results for the COST 239 network, the Smallnet network,
and the NSFNET network are given in Table II, Table III,
and Table IV, respectively. TC means total capacity to route
and protect the traffic and RT is the worst-case restoration
time. The restoration times of systematic and non-systematic
diversity coding are simply

RTSDC = F+M+S, RTN−SDC = 2×F+2×M+S+T,

where F is the failure detection time, M is the node processing
time, and S is the node switching time. The maximum values
for F , M , and S are taken as 10μs [16]. RTN−SDC is
larger than RTSDC due to added complexity in the decoding
structure. In non-systematic coding, assume two primary paths
carrying data a and b are encoded and a + b is formed. If
the link carrying data a fails, the receiver will still treat the
encoded data as a+ b, not 0+ b, unless the intermediate node
detects this failure and issues a feedforward error signal. In
order to guarantee correct decoding, there is an extra detection
and node processing operation in the intermediate node so that
the receiver can adjust its decoding structure. T represents the
transmission time of the feedforward signal in non-systematic
diversity coding, which is also taken as 10μs. There is also
additional detection and node processing times in RTN−SDC .
In reality, these values depend on the nature of the network, the
adopted network protocol, and the transmission technology.
However, in today’s networks, these numbers are in the sub-
ms range. The propagation delay difference in the restoration
time formulation of diversity coding is eliminated because of
the buffers, which equalize the arrival time to the destination
node of each path in the same coding group. The restoration
time formulation of SPP is taken from [24] as

RTSPP = F +2× dsd +(hsi +1)×M +X +(hb +1)×M.

The symbol X refers to the configuration time of an optical
cross-connect (OXC), hb is the number of hops in the protec-
tion path between destination node d and source node s, his is
number of nodes between node i, which detects the failure, and
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TABLE II
SIMULATION RESULTS OF COST 239 NETWORK

COST 239 Network, 11 nodes, 26 spans

Scheme TC
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
N-S. Div. Cod. 217560 2× F + 2×M + S + T (60μs)
S. Div. Cod. 226200 F +M + S (30μs)
1 + 1 APS 355530 F + S (20μs)
SPP 216630 25.11 25.61 29.61 34.61
p-cycle 215190 31.26 31.76 35.76 40.76
SONET 288140 26.2 26.7 30.7 35.7

TABLE III
SIMULATION RESULTS OF SMALLNET NETWORK

Smallnet Network, 10 nodes, 22 spans

Scheme TC
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
N-S. Div. Cod. 77900 2× F + 2×M + S + T (60μs)
S. Div. Cod. 78000 F +M + S (30μs)
1 + 1 APS 103700 F + S (20μs)
SPP 65000 5.59 6.09 10.09 15.09
p-cycle 67300 5.11 5.61 9.61 14.61
SONET 92600 4.6 5.1 9.1 14.1

node s. Finally, dsd represents the propagation delay between
node s and node d. It is optimistically assumed that the OXC
configurations over the protection path can be carried out
simultaneously, which is opposed by some researchers in [8],
[10], and [13]. The restoration time formulation of p-cycle
protection is taken from [16], which is

RTp−cycle = F +X + h×M + d,

where the parameter d is the longest propagation delay be-
tween any two nodes in a p-cycle and h is the number of nodes
in a cycle. The restoration time formulation of SONET rings is
the same as p-cycle protection except that, in simulations, the
longest rings are usually shorter than longest p-cycles resulting
in shorter restoration time. In 1+1 APS, restoration is basically
detecting the failure and switching the traffic from the primary
path to the protection path assuming they are synchronized.
Then,

RT1+1 = F + S.

As stated earlier, we conservatively assume that F , M , and S
have values about 10μs each. This makes RT approximately
30μs for systematic diversity coding, 60μs for non-systematic
diversity coding and 20μs for 1+1 APS in Tables II-IV, where
“S.” and “N-S.” mean systematic and non-systematic, respec-
tively. It is noted that the restoration time results are evaluated
based on the assumptions above and the simulation results. In
this paper, CPLEX 12.2 is used to run LP formulations.

As seen from the results, diversity coding is much faster
than both SPP and the p-cycle technique in each network in
each configuration. In all networks, non-systematic diversity
coding is more capacity efficient than the systematic version
as expected. However, systematic diversity coding is faster
than the non-systematic version. For pre-provisioning of the

TABLE IV
SIMULATION RESULTS OF NSFNET NETWORK

NSFNET Network, 14 nodes, 21 spans

Scheme TC
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
N-S. Div. Cod. 1562880 2× F + 2×M + S + T (60μs)
S. Div. Cod. 1581570 F +M + S (30μs)
1 + 1 APS 1881880 F + S (20μs)
SPP 1264865 82.87 83.37 87.37 92.37
p-cycle 1440435 74.41 74.91 78.91 83.91
SONET 1595840 68.74 69.24 73.24 78.24

static traffic, they are less capacity efficient than SPP in each
network. The restoration speed increases more than hundred
times over SPP. Therefore, our algorithms offer a tradeoff
for network designers where the speed increase is at least
two orders of magnitude at the expense of less than 26%
extra capacity. We believe with the existence of abundant
fiber on today’s networks, our techniques offer a desirable
tradeoff. The restoration time of SPP increases as the expected
time of OXC configuration increases. Realistically, in some
cases OXC configuration may take seconds [9]. It should be
noted that, if the nodes in the backup paths are not able to
carry out dynamic OXC configurations simultaneously, then
the restoration time of SPP increases significantly. The p-
cycle technique also results in higher capacity efficiency than
diversity coding in each network. The capacity efficiency of
the diversity coding gets closer to the capacity efficiencies of
the p-cycle technique and the SPP, when the JCP simulations
are carried out in the COST 239 network. On the other
hand, diversity coding is also more than hundred times faster
than the p-cycle technique. It is important to realize that,
the restoration time of the p-cycle technique may increase if
a link is protected via multiple p-cycles. In this case, end
nodes of the failed link have to configure multiple OXCs
simultaneously. Some nodes may not be able to carry out
these configurations in parallel. Therefore, restoration time of
p-cycles can significantly increase in some cases. Furthermore,
it is observed that capacity efficiency of the p-cycle technique
vanishes while going towards more sparse networks.

On the other hand, both versions of diversity coding are
significantly more capacity efficient than 1 + 1 APS and
SONET rings in each network. They are also much faster than
the SONET rings, which is slightly faster than the p-cycle
technique. SONET rings can offer less than 50 ms restoration
time if there is a length limit over the candidate rings with
the expense of higher total capacity. The fact that 1 + 1 APS
is faster than diversity coding becomes negligible considering
the extra delay coming from imperfections inside the optical
network.

In diversity coding, the maximum synchronization delay of
the primary paths in the COST 239 network is 8.17 ms. This
value is equal to 22.27 ms and 2 ms for the NSFNET and the
Smallnet networks, respectively.

As a breakdown of the diversity coding results, the capacity
efficiency is investigated depending on each destination node
for three networks in Table V. The spare capacity percentage
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(SCaP) is calculated as

SCaP =
Total Capacity − Shortest Working Capacity

Shortest Working Capacity
.

Shortest Working Capacity is the total capacity when there
is no protection and the traffic is routed over the shortest paths.

As it is seen from the results, diversity coding results in
lower SCaP when the destination node has a higher nodal
degree or it is closer to the edge of the network. The SCaP
results of non-systematic diversity coding are lower than or
equal to that of systematic diversity coding as expected.

III. DYNAMIC PROVISIONING

The static traffic assumptions are not always valid. In
some cases, the future network demands cannot be known or
predicted. The connections can be set up by the bandwidth-
on-demand paradigm. Therefore, there is a need for a dynamic
provisioning technique that will dynamically provision the
new connection demands without any future knowledge of the
traffic. To our knowledge, this paper presents the first coding-
based dynamic provisioning technique except its preceding
works in [15] and [25].

Some of the challenges in the dynamic provisioning prob-
lem are the tight timing constraints, the lack of knowledge
about the future traffic and preservation of the integrity of
the existing connections. In this paper, those challenges are
mitigated with a simple and optimal design algorithm. The
simplicity of the design algorithm is due to the fact that
provisioning of each connection is done one-by-one instead
of optimizing the whole set of connections at once. One-by-
one provisioning of connection demands was used for coding
in [14] and [26] as heuristic algorithms for static traffic. The
optimality of the design algorithm depends on the assumptions
listed as

1. The existing connections cannot be rearranged due to
QoS requirements,

2. At the beginning, the demand matrix is an empty set,
3. Centralized information about the state of the network

is updated and conveyed to the nodes every time there
is a change,

4. Every node is able to run the algorithm and calculate
the routes,

5. Connections can be set up when demands appear and
terminated when they no longer exist,

6. The objective function is to minimize the total cost.

The adopted diversity coding schemes are the same as the
previous section. We developed ILP formulations for both
systematic and non-systematic diversity coding with single
destination node. These schemes result in lower complexity,
lower restoration time, lower signaling, and higher coding flex-
ibility. A novelty of this paper is to show that non-systematic
coding can be implemented optimally without adding any extra
complexity to that of systematic coding. The only difference
between the two schemes is the way the cost parameters are
defined in each ILP formulation.

In this section, we will first present the algorithm for non-
systematic diversity coding. Later, systematic diversity coding
will be explained as a special case of non-systematic coding.

ILP
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Coding
Group
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Fig. 8. Extra spare capacity is calculated for each coding scenario and the
minimum is chosen.

The dynamic provisioning algorithm is based on adding new
connection demands to the established coding groups such that
the new coding group preserves the decodability under any
single link failure. When a new demand arrives, its destination
node is detected. Then, the existing coding groups which share
the same destination node with the new connection are listed.
One of the coding groups is an empty set which allows the
new demand to establish a new coding group. After that, the
new connection is hypothetically added to each listed coding
group. We developed an ILP formulation that does the adding
operations with minimum extra capacity. It finds link-disjoint
primary and protection paths for the new demand depending
on each coding scenario. Finally, the cost of each addition
scenario is evaluated and the new connection demand is added
to the group requiring the lowest extra capacity. The algorithm
is depicted in Fig. 8. In this figure, ESCi means total extra
capacity required to add a new connection demand to coding
group i. The cost vector of the links is adjusted for every
coding scenario, depending on the topology of the coding
group. Once the best available coding group is selected, the
coding group topology is updated with the new connection
and the algorithm is ready to incorporate a new connection
demand.

Before attempting to optimize the extra cost, the decodabil-
ity of the coding groups must be preserved due to the addition
of a new demand. In our algorithm, we defined a set of rules
to preserve the validity of coding groups after adding a new
connection demand. These rules are

1. One of the paths of the new connection must be link-
disjoint to any path in the coding group,

2. The other path of the new connection must be coded
with only one path in the coding group,

3. No path in the coding group can diverge after any node.
The decodability of the augmented coding groups can be
proven using induction if the rules above are followed. In
non-systematic diversity coding, the received vector at the
destination node of a coding group looks like in Fig. 9(a),
where a, b, c, and d are the coded signals and xij are the
binary coding parameters, which can take value of 0 or 1. In
reality, there may be more than N + 1 incoming paths but
some of the paths can be encoded and merged just before
they enter the destination node so that the structure above is
established. It is assumed that the signals can be extracted
from this coding vector under any single link failure scenario.
Therefore, the received matrix X = [xij ]5×4 is full rank even
if any one of its rows is deleted. Deleting a row is the analog
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TABLE V
SCAP RESULTS FOR EACH DESTINATION NODE

Dest. Node
Non-systematic Diversity Coding Systematic Diversity Coding

Smallnet COST 239 NSFNET Smallnet COST 239 NSFNET
Node 1 107.4 74.6 87.6 107.4 80.8 87.6
Node 2 76.0 71.4 109.1 76.0 74.8 109.1
Node 3 54.0 65.3 146.0 54.0 69.2 146.0
Node 4 61.9 79.3 81.2 61.9 81.5 81.2
Node 5 82.6 68.6 122.8 82.6 75.8 122.8
Node 6 82.3 66.6 145.4 82.3 77.9 145.4
Node 7 63.3 88.3 98.7 66.6 95.3 109.1
Node 8 94.7 96.4 194.4 94.7 108.2 194.4
Node 9 114.2 83.9 209.4 114.2 88.2 209.4
Node 10 55.7 101.3 85.4 55.7 111.6 108.4
Node 11 NA 77.6 117.3 NA 88.0 117.3
Node 12 NA NA 96.5 NA NA 96.5
Node 13 NA NA 89.9 NA NA 89.9
Node 14 NA NA 102.9 NA NA 102.9
Average 68.6 77.4 104.3 68.8 84.5 106.7
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Fig. 9. The received vector of a nonsystematic diversity coding, (a) X =
[xij ]5×4 is a “full rank + 1” matrix, (b) Addition of a new connection demand
carrying e, (c) Signals are decodable if the first path fails, (d) Signals are
decodable if the sixth path fails.

of a single link failure whereas the full rank property assures
the decodability of the signals. We call these matrices to have
“full rank + 1” property. The goal is to preserve the “full rank
+ 1” property of the augmented coding matrices after adding a
new demand. Assume that we have a new connection demand
that shares the same destination node with the connections in
matrix X, carrying signal e. Following the rules, the received
matrix can be transformed to the format in Fig. 9(b). The link
disjoint path of the new connection is represented as the sixth
row of the new coding matrix. The other copy of signal e
is coded with other signals in the coding group as arbitrarily
denoted in the fifth row. In reality, the decision to choose
the coding row is made by the ILP formulation depending on
the underlying topology with an objective of minimum extra
capacity. For decodability, the new signal should be coded
with at most one path in the coding group. The “full rank + 1”

property of the new coding matrix can be shown by checking
the decodability of the new coding vector under any single
link failure. For the no link failure case, we can derive a, b,
c, and d by solving first four rows and we can derive e using
the last row. If we delete one of the first four rows, say the
first row, then the received matrix is depicted in Fig. 9(c). We
derive e from the last row and subtract it from the fifth row.
Then the matrix generated from rows 2 to 5 that multiplies
the vector (a, b, c, d)T has full rank. Therefore, all of a, b, c,
and d can be extracted. In Fig. 9(d), the sixth row is deleted.
Then, the first four rows can be used to extract signals a, b,
c, and d. These signals can then be used to find the value of
e from the fifth row.

To preserve the “full rank + 1” property of the coding
matrix, none of the paths is allowed to diverge after any node.
If a new connection is merged with a path in the existing
coding group, they will stay together until the destination
node is reached. Otherwise, a path may span multiple rows
in the coding matrix, which may impair decodability of the
new coding group.

If the new connection demand cannot be added to any of
the possible coding groups following the mentioned rules, then
a new coding group is established by the new connection
demand itself. The new coding group will consist of two link-
disjoint paths belonging to the new connection. The received
vector of the new group becomes[

f
f

]
(28)

where f is the signal carried by the new connection. The proof
of decodability of coding groups via induction is completed
since the initial state of coding matrix X satisfies the “full
rank + 1” property.

Coding matrices with “full rank + 1” property can be built
with coefficients other than 0 and 1. However, we opt to
choose this approach because of its simplicity and the fact
that it should result in minimum overall capacity.
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Fig. 10. Addition of a new connection to an existing coding group (a)
The existing coding group, (b) The new augmented coding group after the
addition.

An example is provided to highlight how a new connection
demand is added to an existing coding group. The coding
group is shown in Fig. 10(a). There are four connection
demands from S1, S2, S3, and S4 to D whose signals
are represented as a, b, c, and d, respectively. The dashed
links belong to the coding group. There is a new connection
demand from S5 to D to be added to the existing coding
group, denoted by e. As it is seen from Fig. 10(a), there
exists a path from S5 to D over 10 → 9 → 3, which is
link-disjoint to the coding group topology. The other copy of
the new signal will be coded with one of the paths of the
existing coding group. After the addition algorithm, the new
augmented coding group topology is shown in Fig. 10(b).
As it is seen, the secondary path of the new connection
demand incurs no extra cost since it is coded over the already
established portions of the coding group. The transformation
in the X matrix is depicted in Fig. 11(a). The dashed rectangle
shows the coding matrix before addition. The corresponding
transformation of the received coding vector is shown in
Fig. 11(b). The X matrix preserves the “full rank + 1” property
after the transformation.

Systematic diversity coding is a special case of the non-
systematic diversity coding. In this case, there is a specific
distinction between primary and protection paths of each
connection demand. When a new connection demand arrives,
its protection path can only be encoded with the protection
paths of other connections in the existing coding group.
Therefore, we need to redefine the second rule of addition
as

2. The other (protection) path of the new connection must
be coded with only protection paths in the coding group.
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Fig. 11. Transformation of the X matrix after adding a new connection
demand.

The received vector of the a coding group looks like[
a+ b+ c+ d a b c d

]T
(29)

where the encoded paths span only a single row. The first row
is the union of protection paths and the rows 2−5 are primary
paths. Assume a new connection demand is to be added to this
coding group. The primary path of the new demand has to be
link-disjoint to the paths in the coding group. The protection
path of it can only be encoded with other protection paths
placed in the first row of the coding vector. The augmented
coding vector looks like[

a+ b+ c+ d+ e a b c d e
]T

(30)

We developed an integer linear programming (ILP) based
algorithm to establish and enlarge coding groups as new de-
mands arrive. The algorithm is optimal given the assumptions
mentioned above. It maps both diversity coding structures into
arbitrary topologies in order to protect the connections against
single link failures in a cost efficient way. The ILP core of
the algorithm inputs the new demand and a coding group. It
searches for possible routing and coding scenarios with lowest
cost. The cost of the links are adjusted regarding the topology
of the coding group. When the new demand is coded over an
existing link of the coding group, it incurs no extra capacity.
The ILP formulation leverages the underlying coding group
topology to find a pair of paths for the new connection at
lowest extra cost.

The parameters of the ILP formulation to find a pair of link
disjoint primary and secondary paths are as follows.

• G(V,E) : Network graph,
• S : The set of spans in the network, a span consists of

two links in the opposite directions,
• N : Enumerated list of all connections,
• ae

1 : Cost associated with link e for the primary path,
same for both non-systematic and systematic diversity
coding,

• ae
2 : Cost associated with link e for the secondary path,

depends on the nature of diversity coding,
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• Γi(v) : The set of incoming links of each node v,
• Γo(v) : The set of outgoing links of each node v.

The binary ILP variables which take values 0 or 1 are

• xe : Equals 1 iff the primary path of the new connection
passes through link e,

• ye : Equals 1 iff the secondary path of the new connection
passes through link e.

The objective function is

min
∑
e∈E

xe · ae1 + ye · ae2. (31)

∑
e∈Γi(v)

xe −
∑

e∈Γo(v)

xe =
∑

e∈Γi(v)

ye −
∑

e∈Γo(v)

ye

=

⎧⎨
⎩

-1 if v = s,
1 if v = d,
0 otherwise,

∀v, (32)

xe + xf + ye + yf ≤ 1 ∀e, f ∈ g, g ∈ S. (33)

The origination, flow, and termination of the primary path (xe)
and the secondary path (ye) are determined by equation (32),
where s and d are the source and destination nodes of the
new connection, respectively. The link disjointness between
the primary and secondary paths is satisfied by inequality (33).

A. Cost Adjustment Example

In Fig. 12(a), there are two unidirectional links between
each node and the numbers next to them are their costs. As an
example, we have a coding group that is shown in Fig. 12(b).
There are two source nodes S1 and S2 and one destination
node D. The signals transmitted from S1 and S2 are a and
b respectively. The third path also carries the coded version
of these signals to the destination node. The dashed lines
show links that are incorporated in the coding group. Assume
that we have a new connection request from any arbitrary
node (except node 3) to node 3. We want to calculate the
required spare capacity to add this connection to the coding
group. When we run the ILP formulation, there will be two
different topologies in terms of the costs of the links. The
topology for the primary path differs from the topology for
the secondary path depending on the existing coding group.
The topology for the primary path in both non-systematic and
systematic coding are the same. However, the topology for the
protection path depends on the coding scenario. We consider
the existing coding group shown in Fig. 12(b). Consider rules
1-3 described earlier. This fact is visualized in Fig. 12(c)
and Fig. 12(d) for the primary and secondary paths of non-
systematic coding, respectively. Following rule 1, in Fig. 12(c),
the links which carry the signals in the existing coding group
are removed from the network. Following rule 2, in Fig. 12(d),
the links which belong to the existing coding groups have zero
cost. On the other hand, the cost of the links for the secondary
path of systematic coding is depicted in Fig. 12(e) following
the modified rule 2. Only the links belonging to secondary
paths of the existing coding group have zero cost. Rest of the
links in that coding group are removed. The links which are
not associated with the coding group have the same regular
cost for both of the paths as shown in Fig. 12(c), 12(d), and
12(e).

B. Limited Capacity Case

We assumed that there is no limit on the capacity of the
links. Therefore, any new demand can be routed and protected.
In the opposite case, some of the new demands may not have
sufficient capacity over the trail of their candidate paths. In
limited capacity case, the links which have zero capacity are
removed from the network that is input to the ILP formulation.
If a new demand cannot be routed and protected within the
existing topology, then it is blocked.
C. Connection Teardown

We assume that connections leave the network after a
duration. The teardown process of these leaving connections
are

• First, the connection is dropped from its coding group
and the topology of that coding group is updated. This
is done by subtracting the links which purely carry the
signal of interest from that coding group topology. The
links that carry the coded version of this signal are kept
in the coding group topology.

• In the second step, the received matrix of the coding
group is updated by excluding the signal associated with
the leaving connection.

• In the last step, the capacity of the links that are sub-
tracted from the respective coding group are increased
by 1. It should be noted that the last step is required
only if the capacity of the links are limited.

D. Dynamic Provisioning Results

In this section, the performance of the ILP-based dynamic
provisioning algorithm is compared against a p-cycle protec-
tion algorithm given in [27], the optimal 1+1 APS algorithm,
and an ILP-based algorithm for diverse routing given in [28],
which is another form of SPP. Both systematic and non-
systematic coding are employed. Unlike the simulation setup
in [15], the capacities of links are not limited. We present the
simulation results on test networks consisting of worst-case
restoration time and total capacity required to route and protect
connections. The same NSFNET and Smallnet networks are
used for simulations. In [27], the Most-Free-Routing algorithm
is chosen for p-cycle protection among similar techniques due
to its superior performance. In the simulations, connection
demands are provisioned randomly one-by-one from a finite
traffic demand matrix, without any future information about
the connection demands. The traffic matrices are the same
as in the pre-provisioning simulations. The objective is to
minimize total capacity without changing the paths of the
existing connection demands. The recovery time formulations
of the techniques are the same as the case in static pre-
provisioning.

The comparative results in terms of worst-case restoration
time and total capacity are presented in Table VI and Ta-
ble VII. Evaluation of the simulation results of the dynamic
provisioning confirms that the restoration time and capacity
efficiency analysis of different techniques do not change much
with the design algorithm and the nature of traffic. It is because
the nature of these techniques is preserved in both static and
dynamic provisioning. Therefore, both versions of diversity
coding are faster than p-cycle protection and diverse routing
in dynamic provisioning by three orders of magnitude. The
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Fig. 12. (a) The topology of the network associated with the regular link costs, (b) An existing coding group, (c) The network seen by the primary path,
(d) The network seen by the secondary path in non-systematic coding, (e) The network seen by the secondary path in systematic coding.

TABLE VI
SIMULATION RESULTS OF SMALLNET NETWORK

Smallnet Network, 10 nodes, 22 spans

Scheme TC
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
N-S. Div. Cod. 85800 2× F + 2×M + S + T (60μs)
S. Div. Cod. 88500 F +M + S (30μs)
1 + 1 APS 103700 F + S (20μs)
SPP 75500 4.59 5.09 9.09 14.09
p-cycle 70900 5.11 5.61 9.61 14.61

requirement of feedforward signaling when both primary and
protection paths are coded marginally increases the restoration
time of nonsystematic diversity coding compared to the case
of systematic coding. On the other hand, both versions of
diversity coding are more capacity efficient than 1 + 1 APS.
Both versions of diversity coding have slightly lower capac-
ity efficiency than diverse routing and p-cycle protection in
both networks. However, the difference in terms of capacity
efficiency may become negligible compared to the speed
advantage of diversity coding for the network designers in
pursuit of higher restoration speed without strict restrictions
on the fiber capacity. It is observed that increased coding
flexibility in non-systematic diversity coding creates a bigger
advantage in highly connected networks than the relatively
sparse networks.

IV. CONCLUSION

This paper presents optimal design algorithms of diversity
coding for pre-provisioning and dynamic provisioning against
single link failures. The adopted diversity coding technique
has two variations, employing non-systematic and systematic
coding, respectively. Only the connections with the same des-
tination node are encoded together in both of the variations of
diversity coding. We were able to achieve sub-ms restoration

TABLE VII
SIMULATION RESULTS OF NSFNET NETWORK

NSFNET Network, 14 nodes, 21 spans

Scheme TC
RT for different X values (ms)

0.5ms 1ms 5ms 10ms
N-S. Div. Cod. 1704855 2× F + 2×M + S + T (60μs)
S. Div. Cod. 1754460 F +M + S (30μs)
1 + 1 APS 1881880 F + S (20μs)
SPP 1580040 52.61 53.11 57.11 62.11
p-cycle 1609055 76.21 76.71 80.71 85.71

time with this scheme. In dynamic provisioning, optimality of
the design algorithm is supported with a set of assumptions.

We developed a novel MIP formulation that routes and
protects a set of static traffic demands optimally. The sig-
nificance of this algorithm is lower complexity compared to
the similar techniques in the literature. The MIP formulation
forms the coding groups, first. Then, it creates a primary tree
structure for each coding group which serves as the primary
paths of the connections in that coding group. The primary
tree is accompanied by a link-disjoint protection tree which
replaces the protection paths in that coding group. The coding
operations in the protection tree require no extra variable. As
a result, the new formulation proves to be simpler in terms of
the number of integer variables and constraints. Evaluation of
the simulation results indicate that both versions of diversity
coding can achieve sub-ms restoration time. Diversity coding
is much faster than the other techniques except 1 + 1 APS
in each scenario. On the other hand, SPP and the p-cycle
protection are more capacity efficient than diversity coding for
these scenarios. However, it offers a desirable tradeoff where
one can achieve a speed gain of more than hundred times
with less than 26% extra capacity over SPP and the p-cycle
protection.

In the second part of the paper, an ILP-based dynamic
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provisioning algorithm is developed for dynamic traffic. New
connections are routed and protected one-by-one by using both
versions of diversity coding. The design algorithm is both
optimal and fast enough to provision the quickly changing
traffic. The idea behind the algorithm is to add new connec-
tion demands to the existing suitable coding groups without
impairing the integrity of the existing connections. A new
demand is added to the coding group which requires the
lowest extra capacity. The evaluations of the simulation results
are consistent with the results in static pre-provisioning. Both
versions of diversity coding are still significantly faster than
p-cycle protection and diverse routing. However, the capacity
efficiency of diversity coding gets closer to those of p-cycle
protection and diverse routing compared to the static traffic
scenario.
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