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Abstract—Perfect Space-Time Block Codes (PSTBCs) achieve
full diversity, full rate, nonvanishing constant minimum de-
terminant, uniform average transmitted energy per antenna,
and good shaping. However, the high decoding complexity is a
critical issue for practice. When the Channel State Information
(CSI) is available at both the transmitter and the receiver,
Singular Value Decomposition (SVD) is commonly applied for
a Multiple-Input Multiple-Output (MIMO) system to enhance
the throughput or the performance. In this paper, two novel
techniques, Perfect Coded Multiple Beamforming (PCMB) and
Bit-Interleaved Coded Multiple Beamforming with Perfect Cod-
ing (BICMB-PC), are proposed, employing both PSTBCs and
SVD with and without channel coding, respectively. With CSI
at the transmitter (CSIT), the decoding complexity of PCMB is
substantially reduced compared to a MIMO system employing
PSTBC, providing a new prospect of CSIT. Especially, because of
the special property of the generation matrices, PCMB provides
much lower decoding complexity than the state-of-the-art SVD-
based uncoded technique in dimensions 2 and 4. Similarly,
the decoding complexity of BICMB-PC is much lower than
the state-of-the-art SVD-based coded technique in these two
dimensions, and the complexity gain is greater than the uncoded
case. Moreover, these aforementioned complexity reductions are
achieved with only negligible or modest loss in performance.

Index Terms—MIMO, SVD, perfect space-time block codes,
golden code, BICMB, constellation precoding, diversity, decoding
complexity.

I. INTRODUCTION

N a Multiple-Input Multiple-Output (MIMO) system, when
Ithe Channel State Information (CSI) is available at the
transmitter as well as the receiver, beamforming techniques,
which exploit Singular Value Decomposition (SVD), are ap-
plied to achieve spatial multiplexing! and thereby increase the
data rate, or to enhance performance [3]. Nevertheless, spatial
multiplexing without channel coding results in the loss of the
full diversity order [4]. To overcome the diversity degrada-
tion, Bit-Interleaved Coded Multiple Beamforming (BICMB)
interleaving the bit codeword through the multiple subchannels
with different diversity orders was proposed [5], [6]. BICMB
can achieve full diversity as long as the code rate K. and
the number of employed subchannels S satisfy the condition
R.S <1 [7], [8]. Moreover, by employing the constellation
precoding technique, full diversity and full multiplexing can be
achieved simultaneously for both uncoded and convolutional
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UIn this paper, the term “spatial multiplexing" is used to describe the number
of spatial subchannels, as in [1]. Note that the term is different from “spatial
multiplexing gain" defined in [2].

coded SVD systems with the trade-off of a higher decoding
complexity [9], [10], [11], [12]. Specifically, in the uncoded
case, full diversity requires that all streams are precoded,
i.e., Fully Precoded Multiple Beamforming (FPMB). On the
other hand, for the convolutional coded SVD systems without
the condition R.S < 1, other than full precoding, i.e., Bit-
Interleaved Coded Multiple Beamforming with Full Precoding
(BICMB-FP), partial precoding, i.e., Bit-Interleaved Coded
Multiple Beamforming with Partial Precoding (BICMB-PP),
could also achieve both full diversity and full multiplexing
with the properly designed combination of the convolutional
code, the bit interleaver, and the constellation precoder.

In MIMO systems, space-time coding can be employed
to offer spatial diversity [3]. In [13], Perfect Space-Time
Block Codes (PSTBCs) were introduced for dimensions 2,
3, 4, and 6. PSTBCs have the properties of full rate, full
diversity, uniform average transmitted energy per antenna,
good shaping of the constellation, and nonvanishing constant
minimum determinant for increasing spectral efficiency which
offers high coding gain. In [14], PSTBCs were generalized
to any dimension. However, it was proved in [15] that par-
ticular PSTBCs, yielding increased coding gain, only exist in
dimensions 2, 3, 4, and 6. Due to the advantages of PSTBCs,
the Golden Code (GC), which is the best known PSTBC for
MIMO systems with two transmit and two receive antennas
[16], [17], has been incorporated into the 802.16e Worldwide
Interoperability for Microwave Access (WiMAX) standard
[18].

Despite these advantages, the high decoding complexity of
PSTBCs, especially for large dimensions, is a critical issue
for practical employments. For the PSTBC of dimension D €
{2,3,4,6}, since each codeword employs D? information
symbols from an M-QAM or M-HEX [19] constellation,
MP* points are calculated by exhaustive search to achieve the
Maximum Likelihood (ML) decoding. Therefore, the decoding
complexity is proportional to MP”, denoted by O(MP*).
Sphere Decoding (SD) is an alternative for ML with reduced
complexity [20]. While SD reduces the average decoding
complexity, the worst-case complexity is still O(MP 2). Sev-
eral techniques have been proposed to reduce the decoding
complexity of PSTBCs. In [21], an approach based on the con-
ditional ML was applied to obtain essentially ML performance
with the worst-case complexity of O(MP(P~1) In [22], [23],
[24], the worst-case complexity of PSTBCs was reduced to
O(M(P=0:5)D=0.5) without performance degradation. In [25],
a decoding technique applying the Diophantine approximation
was presented for GC with the complexity of O(M?) and
the trade-off of 2dB performance loss. In [26], [27], [28],
suboptimal decoders for PSTBCs were discussed.

In this paper, two novel techniques are proposed. The first
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technique, Perfect Coded Multiple Beamforming (PCMB),
combines PSTBCs with multiple beamforming and achieves
full diversity, full multiplexing, and full rate simultaneously,
in a similar fashion to a MIMO system employing PSTBC and
FPMB. With the knowledge of CSI at the transmitter (CSIT),
the threaded structure of the PSTBC could be separated
at the receiver, and the decoding complexity of PCMB is
thereby substantially reduced compared to a MIMO system
employing PSTBC and similar to FPMB. This result offers
a new prospect of CSIT since it is mostly used to enhance
either the performance or the throughput of a MIMO system.
Especially, because of the special property of the generation
matrices in dimensions 2 and 4, the real and the imaginary
parts of the received signal can be decoded separately, and
therefore PCMB provides much lower decoding complexity
than FPMB in these two dimensions. For instance, the worst-
case decoding complexity of a MIMO system employing
GC, FPMB of dimension 2, and Golden Coded Multiple
Beamforming (GCMB), which is the PCMB of dimension 2,
are O(M?°), O(M), and O(v/M) respectively. On the other
hand, the second technique, Bit-Interleaved Coded Multiple
Beamforming with Perfect Coding (BICMB-PC) transmits
bit-interleaved codewords of PSTBC through the multiple
subchannels. BICMB-PC achieves full diversity and full mul-
tiplexing simultaneously, in a similar fashion to BICMB-
FP. Because the real and imaginary parts of the received
signal can be separated, and only the part corresponding to
the coded bit is required to calculate one bit metric for the
Viterbi decoder in dimensions 2 and 4, which also results from
the special property of the generation matrices, BICMB-PC
achieves much lower decoding complexity than BICMB-FP,
and the complexity reduction from BICMB-FP to BICMB-PC
is greater than the reduction from FPMB to PCMB in these
two dimensions. For instance, the worst-case complexity for
acquiring one bit metric of BICMB-FP of dimension 2 and Bit-
Interleaved Coded Multiple Beamforming with Golden Coding
(BICMB-GC), which is the BICMB-PC of dimension 2, are
O(M) and O(v/M) respectively. Since the precoded part of
BICMB-PP could be considered as a smaller dimensional
BICMB-FP, BICMB-PC of dimensions 2 and 4 could be
applied to replace the precoded part and reduce the complexity
for BICMB-PP. Furthermore, these aforementioned complex-
ity reductions achieved by PCMB and BICMB-PC only cause
negligible or modest loss in performance.

The remainder of this paper is organized as follows: In
Section II, the descriptions of PCMB and BICMB-PC are
given. In Section III and IV, the diversity analysis and de-
coding technique of PCMB and BICMB-PC in dimension 2
are first presented, and then generalized to larger dimensions,
respectively. In Section V, performance comparisons of differ-
ent techniques are carried out. Finally, a conclusion is provided
in Section VI

Notations: Bold lower (upper) case letters denote vectors
(matrices). The notation diag[by,...,bp] denotes a diagonal
matrix with diagonal entries by, ...,bp. The notations (-)
and S(-) denote the real and imaginary parts of a complex
number, respectively. The superscripts (), (-)7, (-)*, and
(-) stand for the conjugate transpose, transpose, complex
conjugate, and binary complement, respectively. The notation
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Fig. 1. Structure of (a) PCMB, (b) BICMB-PC, (c) CPMB (FPMB when
P = S), and (d) BICMB-CP (BICMB-FP when P = S).

[-] denotes the ceiling function that maps a real number to
the next largest integer. The notations Rt and C stand for
the set of positive real numbers and the complex numbers,
respectively.

II. SYSTEM MODEL
A. PCMB

Fig. 1(a) represents the structure of PCMB. The information
bit sequence is first mapped by Gray encoding and modulated
by M-QAM or M-HEX. Then, D? consecutive complex-
valued scalar symbols are encoded into one PSTBC codeword,
where D € {2,3,4,6} is the system dimension. Hence, the
PSTBC codeword Z is constructed as

D
Z = Zdiag(cxv)EH, (1)

v=1

where G is an D x D unitary generation matrix, x,, is an D x 1
vector whose elements are the vth D input scalar symbols, and

[0 1 0 0]
00 1 :
E: : 5
0 cov vee e 1
Lg 0 -+ 0 0]
with
i) D =214,
g= ezgla D= )
—e%’ _D:

The specific G matrix for different dimensions can be found
in [13], [16].
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The MIMO channel H € CY~*¥¢ is assumed to be
quasi-static, Rayleigh, and flat fading, and known by both
the transmitter and the receiver, where N, and N; denote
the number of receive and transmit antennas respectively.
The beamforming vectors are determined by the SVD of the
MIMO channel, i.e., H = UAVH where U and V are unitary
matrices, and A is a diagonal matrix whose sth diagonal
element, A, € RY, is a singular value of H in decreasing
order. When S < min{N;, N,.} streams are transmitted at the
same time, the first S vectors of U and V are chosen to be
used as beamforming matrices at the receiver and the transmit-
ter, respectively. For a MIMO system employing PSTBC in
dimension D, D? information symbols are transmitted through
D time slots. In the case of PCMB, to achieve the same rate
as a MIMO system employing PSTBC, the number of streams
is S where N; =N, =5 =D €{2,3,4,6}.

The received signal is

Y =UYHVZ + N =AZ+ N, ()

where Y is a D x D complex-valued matrix, and N is the
D x D complex-valued additive white Gaussian noise matrix
whose elements have zero mean and variance Ny = D/SNR.
The channel matrix H is complex Gaussian with zero mean
and unit variance. The total transmitted power is scaled as D
in order to make the received Signal-to-Noise Ratio (SNR)
SNR. Note that in the case of a MIMO system employing
PSTBC, the received signal is simply Y = HZ + N. With the
knowledge of CSIT, the channel matrix H is now replaced by
the diagonal matrix A in (2).

Let x denote the signal set of the modulation scheme and
define x(,.) as the (u,v)th symbol in X = [x1,...,Xp]
where u,v € {1,---,D}. Define the one-to-one mapping
from X to Z as Z = M{X}. Therefore, the ML decoding
of (2) is obtained by

min
T (u,v) EX, VU

X = arg Y — AM{X}||*. 3)

B. BICMB-PC

The structure of BICMB-PC is presented in Fig. 1(b).
First, the convolutional encoder of code rate R., possibly
combined with a perforation matrix for a high rate punctured
code [29], generates the bit codeword ¢ from the information
bits. A random bit-interleaver is then applied to generate the
interleaved bit sequence, which is then modulated by M-QAM
or M-HEX and mapped by Gray encoding. Eventually, D?
consecutive complex-valued scalar symbols are encoded into
one PSTBC codeword as (1).

Hence, the kth PSTBC codeword Zj, is constructed as

D
Zy, = diag(Gx,,)E"", (4)
v=1
where x, ;, is an D x 1 vector whose elements are the vth D
input modulated scalar symbols to construct the kth PSTBC
codeword.
The received signal corresponding to the kth PSTBC code-
word is

Y = AZy + Ny, ©)
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where Y, Zy, and N, are the received symbol matrix, the
PSTBC codeword, and the noise matrix corresponding to the
kth PSTBC codeword, respectively.

The location of the coded bit ¢ within the PSTBC code-
word sequence is denoted as k' — (k, (m,n),j), where k,
(m,n), and j are the index of the PSTBC codewords, the
symbol position in Xy = [X1 k, ..., Xp k], and the bit position
on the label of the scalar symbol x(,, )1, respectively. As
defined in Section II-A, x denotes the signal set of the
modulation scheme. Let x; denote a subset of y whose labels
have b € {0, 1} in the jth bit position. By using the location
information and the input-output relation in (5), the receiver
calculates the ML bit metrics for ¢, = b as

F(m’n)7j(Yk, Ck/) = min ) ||Yk - AM{X}H2’ (6)

Xenly

(m,n),j
k!

where 7¢ is defined as

nlgml’n)d = {X C T (uw)=(m,n) € Xiv andx(um)#(m,n) € X}

Finally, the ML decoder, which uses the soft-input Viterbi
decoding [30] to find a codeword with the minimum sum
weight, makes decisions according to the rule given by [31]
as

& — ; (m,n),j ,
¢ =arg mcln;l" (Y, crr)- @)

I11. PCMB
In this section, the diversity and decoding complexity analy-
ses of GCMB, which is PCMB of dimension 2, are first inves-
tigated in Section III-A and Section III-B, respectively. Then,
they are generalized to larger dimensions in Section III-C.
More discussion is provided in Section III-D.

A. Diversity Analysis

For ML decoding, the instantaneous Pairwise Error Prob-
ability (PEP) between the transmitted codeword X and the
detected codeword X is represented as

Pr (x S X H) — Pr (||Y “AZ|2> Y - AZ|? | H)
— Pr (ez ||A(Z—Z)|\2|H), )

where Z = M{X} and € = Tr{—(Z—Z)"A"N-N"A(Z—
Z)}. Since € is a zero mean Gaussian random variable with
variance 2Ny ||A(Z — Z)||?, (8) is given by the @ function as

IA(Z — 2)|2

5Ny €))

Pr(X—>X|H)=Q

By using the upper bound on the () function Q(x) < %6_12/2,
the average PEP can be upper bounded as

Pr(X%X):E[Pr(X—QAHH)}

< 5| Lexp (_Mﬂ o)

2 4N
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Let gl' with u € {1,2} denote the uth row of G. Then,
equation (1) can be rewritten as

g1 X1 gl X2 ' )
Zgg X2 g2 X1
Therefore,
)\1ng1 )\1ng2
AZ = | . . 12
L/\ngTXQ Azngxl (12)
Then,
D D
IAZ|]? = Tr{Z"AYAZ} =) A2 lglx*  (13)
u=1 v=1

where D = 2 for the purposes of (13)-(16) in this subsection.
As will be discussed later, (13)-(16) are actually valid for
larger values of D as well. Let X; and X2 denote the detected
symbol vectors. By replacing x; and x2 in (13) by x3 — X3
and x5 — X9, (10) is then rewritten as

<_2

. b 1P A2
< U= Uty
Pr (X—>X) <E eyl | ERRNCE

where

o — %)%

5)

Pu = Z|gu

The upper bound in (14) can be further bounded by em-
ploying a theorem from [32] which is given below.

Theorem. Consider the largest S < min(Ny, N,.) eigen-
values s of the uncorrelated central N, x N; Wishart
matrix that are sorted in decreasing order, and a weight
vector p = [p1,---,ps]T with non-negative real elements.
In the high SNR regime, an upper bound for the expression
Elexp(—v Zle Pslts)], which is used in the diversity anal-
ysis of a number of MIMO systems, is

exp ( gl Z psus>

where ~y is SNR, ( is a constant, ppy, = min,, o {pi}iszl,
and § is the index to the first non-zero element in the weight
vector.

(Np—6+1)(Ny—5+1)

<( pmm'}/)

Proof: See [32]. |
Based on the aforementioned theorem, full diversity is
achieved if and only if § = 1, which is equivalent to p; > 0.
Note that p; > 0 in (15) because all elements in gi are
nonzero [16], and therefore § = 1. By applying the Theorem
to (14), an upper bound of PEP is

Pr (X = X) <¢ (%SNR)

—N,N,
(16)

Since N; = N, = D = 2 in this case, GCMB achieves the
full diversity order of 4.
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B. Decoding

Equation (12) shows that each element of AZ is only related
to x; or x5. Consequently, the elements of AZ can be divided
into two groups, and the first and second groups contain
elements related to x; and xo, respectively. The input-output
relation in (2) then is decomposed into two equations as

Algfxl ] |:n(1 1) ]
= —|— ’ N
yi= [ } [/\zngxl n(2,2)

1,
ve . (17)
7y = | Y00 ) _ | Mg xe R

e X283 X2 N |
Let fll = [n(l’l), n(272)]T and flz = [n(1,2)7 n(z_’l)]T, then (17)
can be further rewritten as

= AGx; + ny,
X1 1 (18)

S’g = @AGXz + flg,

o= 1]

The input-output relation of (18) implies that the threaded
structure of the codeword in (1) is now separated with the
knowledge of CSIT, and therefore x; and x5 can be decoded
independently.

By using the QR decomposition of AG = QR, where R is
an upper triangular matrix, and the matrix Q is unitary, (18)
is rewritten as

y1=Q"y1 = Rx1 + Qi = Rxy + 1y,

= Q®y, = Rxy + Q¥ ®" 1y = Rxy + 1o

Indeed, each relation of (19) has the same form as FPMB
presented in [9], [11], [12], which is the state-of-the-art
full-diversity full-multiplexing SVD-based uncoded technique.
FPMB is the special case of Constellation Precoded Multiple
Beamforming (CPMB) whose system model is presented in
Fig. 1(c), when the number of precoded symbol streams equals
to the number of employed subchannels. In Fig. 1(c), ®p
is the constellation precoding matrix to precode P symbol
streams, and T is a permutation matrix to select precoded sub-
channels. In [33], [34], a reduced complexity SD is introduced.
The technique takes advantage of a special real lattice rep-
resentation, which introduces orthogonality between the real
and imaginary parts of each symbol, thus enables employing
rounding (or quantization) for the last two layers of the SD.
When the dimension is 2 x 2, it achieves ML performance with
the worst-case decoding complexity of O(M). This technique
can be employed to decode both GCMB and 2 x 2 FPMB,
since their input-output relations can be written in the same
form as (19).

Furthermore, lower decoding complexity can be achieved
for GCMB because of the special property of the G matrix.
The G matrix for dimension 2 is given by [16] as

1 [1+ifa—i
NG {1 +ia - z} ’

= 1_7\/5 Let f, denote the vth column

where

19)

G =

(20)

1 [/\1(1+i5) Al(a—i)}
)\2(14‘2@[) )\Q(ﬂ—l) ’
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where v € {1,2}. The nonzero elements of the diagonal
matrix R are calculated as

T(1,1) = Hlea

b B (=BG )

T sIET @1)
lef2

T'(Q’Q) = fg — Wfl .

Note that R is a complex-valued matrix in general when the
QR decomposition is applied to a complex-valued matrix.
However, based on (21), the R matrix is real-valued for
GCMB, which is due to the special property of the G matrix.
Hence, the real and imaginary parts of (19) can be decoded
separately. Consequently, (19) can be decomposed further as

R{yu} = RR{x.} + R{n.},
3{yu} = RO{xu} + S{nu},

with v € {1,2}. To decode each part of (22), a two-level
real-valued SD can be employed plus applying the rounding
procedure for the last layer. As a result, the worst-case
decoding complexity of GCMB is O(v/M).

Previously, the ML decoding of GC was shown to have the
worst-case complexity of O(M?2%) [22], [23], [24]. However,
the above analysis proves that this complexity can be reduced
substantially to only O(+/M) by applying GCMB when CSIT
is known. Furthermore, the complexity of GCMB is lower than
FPMB as well. The worst-case decoding complexity of 2 x 2
FPMB with the decoding technique presented in [33], [34] is
O(M) as mentioned above.

(22)

C. PCMB

For PCMB of dimension D € {3,4,6}, it can be proved
that they all achieve the full diversity order of D?, which
is generalized from (13)-(16) because they are still valid for
larger D.

For the decoding of PCMB in dimension D € {3,4,6},
similarly to GCMB, the elements of AZ are related to only
one of the x,, thus can be divided into D groups, where the
vth group contains elements related to x,,. The received signal

is then divided into D parts, which can be represented as
Yo = ®,AGx, + n,, (23)

where ®,, = diag(¢y,1,- - -
whose elements satisfy

1, 1<k<D+1-uv,
(bvk:

, ®v,p) is a diagonal unitary matrix

g, D+2—v<k<D.

By using the QR decomposition of AG = QR, and moving
®,Q to the left hand, (23) is rewritten as

¥o = Q7®"y, = Rx, + Q”®n, = Rx, + f,. (24)

For the dimension of 4, the R matrix in (24) is real-
valued, which can be proved in a similar way to GCMB in
Section III-A. See the Appendix for the proof. Consequently,
the real part and the imaginary part of x, can be decoded
separately as (22) with v € {1,...,4}. Real-valued SD with
the last layer rounded can be employed, and the worst-case
decoding complexity of PCMB is then O(M?!-%). Regarding
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TABLE I
WORST-CASE COMPLEXITY

D=2 D=3 D=4 D=6

PC O(M2.5) O(MS) O(MlS.S) O(M35)
FPMB O(M) O(M?) O(M3) O(MP)
PCMB OWM) | O(M?) | OMT5) | O(MD)
BICMB-FP O(M) O(M?) O(M?3) O(M?)
BICMB-PC | O(VM) | O(M?) | oM*3) | OM?)

a MIMO system employing PSTBC, the worst-case decoding
complexity is O(M*3-?) by using the technique presented in
[24]. For FPMB, ML decoding can be achieved by using
SD based on the real lattice representation in [33], [34],
plus quantization of the last two layers, and the worst-case
complexity is then O(M?3).

Unfortunately, for the D = 3 (6) dimension case, the
R matrix is complex-valued. Therefore, the real and the
imaginary parts of x,, cannot be decoded separately, unlike the
case of D = 2,4. Moreover, since the M-HEX modulation is
employed, which cannot be separated as two independent one-
dimensional modulations as in M-QAM, a complex-valued
SD, instead of a real-valued SD, with an efficient implemen-
tation of a slicer [24] is applied. The worst-case decoding
complexity of PCMB is then O(M?) (O(M?)). In the case of
a MIMO system employing PSTBC, the worst-case decoding
complexity is O(M?®) (O(M?3%)) [24]. For FPMB, the worst-
case decoding complexity is O(M?) (O(M?)), which is
similar to PCMB.

D. Discussion

Table I summarizes the worst-case complexity of a MIMO
system employing PSTBC which is denoted by PC, FPMB,
and PCMB for different dimensions to decode one received
symbol vector.

As shown in Table I, the decoding complexity of PCMB
is substantially lower than PC. Actually, the problem of
high decoding complexity results from the threaded structure
of PSTBCs in (1). With the knowledge of CSIT, PCMB
successfully separates the threaded structure of PSTBCs at the
receiver, and thereby reduces the dimension of the decoding
problem from D? to D, as (19) and (24), which mainly results
in the complexity advantage of PCMB over PC. This result
provides a new prospect of CSIT, which could also be applied
to reduce the decoding complexity of a MIMO system, since
it is mostly applied to either increase the throughput or to
enhance performance previously.

Nevertheless, there are always tradeoffs among throughput,
reliability, and complexity for MIMO systems in general [2],
[3]. In fact, the nonvanishing constant minimum determinant
of PSTBCs, which offers high coding gain, is also derived
from the threaded structure. As a result, this property is no
longer valid for PCMB, which sacrifices the coding gain. The
coding gain loss is hard to quantify, but simulation results
in Section V-A show that only negligible or modest loss
is caused. Other than the nonvanishing constant minimum
determinant, other good properties of PSTBCs, i.e., full rate,
full diversity, uniform average transmitted energy per antenna,
and good shaping, are still valid for PCMB.
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In fact, since PSTBCs belong to the class of Threaded
Algebraic Space-Time (TAST) codes [35], and CSIT results in
separating the threaded structure at the receiver, the same idea
can be applied to reduce the decoding complexity of general
TAST codes as well. However, PCMB of dimensions 2 and
4 have a further advantage in terms of decoding complexity
due to the real-valued upper triangular R matrices in (19)
and (24), which leads to the separate decoding of the real and
the imaginary parts as (22). In other words, the D-dimensional
complex-valued decoding problem can be further decomposed
into two D-dimensional real-valued decoding problems as
(22). This advantage is related to the special property of the
generation matrices of PSTBCs in these two dimensions, and
thereby is not valid for general TAST codes.

Note that full diversity of PCMB results from the fact that
all elements of g{ are nonzero, the complexity advantages
of PCMB over PC is due to the knowledge of CSIT and the
threaded structure of PSTBCs, and the additional complexity
reduction of PCMB in dimension 2 and 4 is caused by
the real-valued R matrices. Since they are not related to
some good properties of PSTBCs such as uniform average
transmitted energy per antenna and good shaping, there may
exist other space-time block codes which can achieve the same
advantages of PCMB.

CSIT is assumed to be known for both PCMB and FPMB,
and both of them achieve full diversity and full multiplexing.
In dimensions 3 and 6, the decoding complexity of PCMB is
similar to FPMB. However, PCMB has significant decoding
complexity advantage in dimensions 2 and 4, due to their
real-valued R matrices, over FPMB, whose R matrices are
complex-valued. Similarly, since FPMB is designed to achieve
high array gains [9], while PCMB does not concentrate on
this aspect, tradeoffs between complexity and array gain might
exist. The array gain is hard to quantify, but simulation results
in Section V-A show that only negligible or modest loss is
caused by PCMB compared to FPMB.

IV. BICMB-PC

In this section, the diversity and decoding complexity
analyses of BICMB-GC, which is BICMB-PC of dimension
2, are first carried out in Section IV-A and Section IV-B,
respectively. Then, they are generalized to larger dimensions
in Section IV-C. More discussion is provided in IV-D.

A. Diversity Analysis

Based on the bit metrics in (6), the instantaneous PEP of
BICMB-GC between the transmitted bit codeword ¢ and the
decoded bit codeword ¢ is

Pr(c—e¢|H)=Pr (Z min ||[Yy — AM{X}|]? >

k' Xenck/

> min HYk—AI\\/JI{X}||2|H ,
k! Xe 77

(25)

where ¢y and ¢ are the coded bit of ¢ and ¢, respectively.
Let dg denote the Hamming distance between ¢ and €. Since
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the bit metrics corresponding to the same coded bits between
the pairwise errors are the same, (25) is rewritten as

Pric—¢&|H)=Pr| >  min [[Yy— AM{X}|* >

K .dg Xenck/

> min HYk—AM{X}||2|H ,
k' dy K€M,

(26)

where Ek,’ dir stands for the summation of the dpy values
corresponding to the different coded bits between the bit
codewords. R
Define X, and X, as
X, =arg min |Y; — AM{X}|?,
Xenz,,

27)

X, =arg min |Y; — AM{X}|>.

e’]c

It is easily found that Xk is different from Xk since the sets
that () belong to are disjoint, as can be seen from the
definition of n’ e . In the same manner, it is clear that X}, is
different from Xk With Z; = M{Xk} and Zj, = M{Xk}
(26) is rewritten as

Pric—¢&|H)=Pr| Y |[Yi—AZ*>
k' dg
DYk — AZy? (28)
k., dm

Based on the fact that ||Y;, — AZy||? > || Y — AZ|% and
the relation in (5), equation (28) is upper bounded by

Pric & |H) <Pr| Y [[Yi—AZ|*>
k', dm

> Yk — AZ?

K dm

=Prle> Y |AZ—Zo)|* ]|, (29

K, dg
where € = Zk/ [ (Zk — Zk)HAHNk — NHA(Zk —
Z)]. Since € is a zero-mean Gaussian random variable with

variance 2No >y 4. 1A (Zx — Z1,)||%, the average PEP can
be upper bounded in a similar fashion to (9) and (10) as

Pr(c—>¢& =E[Pr(c—¢|H)]
s A(Zy — Z3)))?
Loy [ S 102 - 2017\ ]
4Ny
(30)
According to (13), (30) is rewritten as
D 2
1 u= Au 4 u,
Pr(c—¢)<FE —exp( 2wt 4%:’dek 1,
(31)
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where
D

Puk = Y |80 (Xuk = Fu i),

v=1

(32)

and D = 2 for the purposes of (31)-(33) in this subsection. As
will be discussed later, (31)-(33) are actually valid for larger
values of D as well.

Applying the theorem presented in Section III-A to (31),
0 = 1 because p1 > 0 in (32). Therefore, an upper bound
of PEP is
D —N,.N;

min , ks J =
{Ek Jdgr Puk } 1SNR

4D

Pr(c—¢)<(¢ <
(33)

Since N; = N,, = D = 2 in this case, BICMB-GC achieves
the full diversity order of 4.

B. Decoding

Similarly to (12), each element of AZj; for BICMB-GC
in (5) is related to only x;j or xoj. Consequently, the
elements of AZj; can be divided into two groups, and the
first and second groups contain elements related to x; ; and
Xg 1, respectively. The input-output relation in (5) is then
decomposed into two equations similarly to (18) as

Yie = AGXy , + 0y g,

. . (34)
Yo.r = PAGxg;, + 1y 1,

where y1., = [Yi1,1)% Y2,2).6] 7 Y20 = Y1200 Y2,0),6) L
1y, = [Na1yk N2yl s and o = [Ni12) 5 Nyl s
with Y(;, ) & and N, ) i denoting the (m,n)th element of
Y, and Ny, respectively.

By using the QR decomposition of AG = QR, (34) is
rewritten as
Vie=Q"y1r =Rxip + Qg = Rxyp + 0y,

Yo = Q
(35)

Then the ML bit metrics in (6) can be simplified as

F(m7n)’j(Yk, Ck’) = min_ Hym,k - RX||2’
mn,J

Cpt

(36)

where £/ is a subset of x”, defined as

&7 = (x= o -+

Indeed, the simplified ML bit metrics (36) have the same
form as BICMB-FP presented in [10], [11], [12], which
is the state-of-the-art full-diversity full-multiplexing SVD-
based coded technique. BICMB-FP is the special case of Bit-
Interleaved Coded Multiple Beamforming with Constellation
Precoding (BICMB-CP) whose system model is presented
in Fig. 1(d), when the number of precoded symbol streams
equals to the number of employed subchannels. To calculate
one ML bit metric, %M 2 constellation points are considered
by exhaustive search, and the complexity is thereby O(M?).
If SD presented in [33], [34] is employed, the worst-case
complexity for acquiring one ML bit metric is O(M) for both
BICMB-GC and 2 x 2 BICMB-FP.

zpl? gy € Xi and Zqx, € X}

Hag Hy HaHs _
PUyor = Rxop + Q7P N = RXop g + Nog.

1581

Moreover, similarly to the uncoded case, lower decoding
complexity can be achieved for BICMB-GC because the R
matrix in (36) is real-valued as proved in Section III-B. As
a result, the real and imaginary parts of y,,  in (36) can
be separated, and only the part corresponding to the coded
bit is required for calculating one bit metric of the Viterbi
decoder. Assume that square M-QAM is used, whose real
and imaginary parts are Gray coded separately as two /M-
PAM. Define R[¢;"7] and S[¢7/] as the signal sets of the real
and the imaginary axes of fé‘klﬂ, respectively. Therefore, the
ML bit metrics in (36) can be further simplified as

rmmd(Yy, ep) = min  ||R[Fmi] — RR[X]|%, (37)
R[x]eR(EL,]

if the bit position of ¢/ is on the real part, or

Tmmd (Y, op) = IS[Fm.k] — RSX]|?, (38)

min
S[xleS(ée,7]
if the bit position of ¢ is on the imaginary part. For (37) and
(38), the worst-case complexity of acquiring one bit metric is
only O(v/M) by using a real-valued SD with the last layer
rounded, which is much lower than O(M) of 2x2 BICMB-FP.

C. BICMB-PC

For BICMB-PC of dimension D € {3,4,6}, it can be
proved that they all achieve the full diversity order of D?,
which is generalized from (31)-(33) because they are still valid
for larger D.

For the decoding of BICMB-PC in dimension D € {3,4,6},
similarly to BICMB-GC, the elements of AZjy are related to
only one of the x, j, thereby can be divided into D groups,
where the vth group contains elements related to x, ;. Then
the received signal is divided into D parts, which can be
represented similarly to (23) as

yv,k = évAva,k + ﬁv,k- (39)

By using the QR decomposition of AG = QR, and moving
®,Q to the left hand, (39) is rewritten as

yv,k = QHéfyv,k = va,k + QH¢5[ﬁv,k = va,k + ﬁv,k-
(40)

Then the ML bit metrics in (6) can be simplified as (36).

In the case of D = 4, the R matrix in (36) is real-valued.
See the Appendix for the proof. As a result, the real and
imaginary parts of ¥, x in (36) can be separated, and only the
part corresponding to the coded bit is required for calculating
one bit metric of the Viterbi decoder. Assume that square M -
QAM is employed. Then, the ML bit metrics in (36) can be
further simplified as (37) if the bit location of ¢k is on the
real part, or (38) if the bit location of ¢y is on the imaginary
part. Therefore, the worst-case complexity for calculating one
bit metric is only O(M*!-3) by using a real-valued SD with
the last layer rounded. On the other hand, BICMB-FP has
the worst-case complexity of O(M?) by using a real-valued
SD based on the real lattice representation in [33], [34], plus
quantization of the last two layers.

For the dimension of 3 (6), the R matrix is complex-valued.
Therefore, the real and the imaginary parts of y,, » cannot be
separated, unlike the case of D = 2,4. Moreover, since the
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M-HEX modulation is used instead of M-QAM, a complex-
valued SD with an efficient implementation of a slicer [24] is
needed. The worst-case complexity of BICMB-PC to derive
one bit metric is then O(M?) (O(M?®)). For BICMB-FP, the
worst-case complexity is O(M?) (O(M?3)), which is similar
to BICMB-PC.

D. Discussion

The worst-case complexity of BICMB-PC and BICMB-FP
in different dimensions to calculate one bit metric is also
summarized in Table I. Note that they are actually the same
as PCMB and FPMB.

Similarly, CSIT is assumed to be known for both BICMB-
PC and BICMB-FP, and both of them achieve full diversity
and full multiplexing. In dimensions 3 and 6, the worst-case
complexity of BICMB-PC is similar to BICMB-FP. However,
the real-valued R matrices in (35) and (40) cause the com-
plexity advantages of BICMB-PC in dimensions 2 and 4 over
BICMB-FP, whose R matrices are complex-valued. In this
case, the D-dimensional complex-valued metric calculation
problem can be decomposed into only one D-dimensional
real-valued problem, instead of two D-dimensional real-valued
problems for the uncoded case, because only one of the real
and imaginary parts which corresponds to the coded bit needs
to be considered. Therefore, the real-valued R matrices benefit
BICMB-PC more than PCMB.

For the constellation precoding technique [9], [12], unlike
the uncoded case where only full precoding of FPMB can
achieve both full diversity and full multiplexing, partial pre-
coding of BICMB-PP for the coded case could also achieve
both of them [12]. Note that the precoded part of BICMB-
PP could be considered as a smaller dimensional BICMB-FP.
Therefore, BICMB-PC of dimensions 2 and 4 could be applied
to replace the precoded part of BICMB-PP and reduce its
decoding complexity.

V. RESULTS
A. PCMB

As presented Section III, PCMB in dimensions 2 and 4
has the most advantage in terms of decoding complexity.
Therefore. simulations are focused on these two dimensions.

Considering 2 x 2 systems, Fig. 2 shows BER-SNR perfor-
mance comparison of GCMB, FPMB, and a MIMO system
using GC, which is denoted by GC, for different modulation
schemes. The constellation precoder for FPMB is selected
as the best one introduced in [9]. Simulation results show
that GC, FPMB, and GCMB, with the worst-case decoding
complexity of O(M?5), O(M), and O(v/M), respectively,
achieve very close performance for all of 4-QAM, 16-QAM,
and 64-QAM. The performance differences among these three
are less than 1dB, and become smaller when the modulation
alphabet size increases. In fact, the performance loss men-
tioned in Section III-D is negligible in the 2 x 2 case.

In the case of 4 x 4 systems, Fig. 3 shows BER-SNR per-
formance comparison of PCMB, FPMB, PC, for 4-QAM and
16-QAM. The constellation precoder for FPMB is also chosen
as the best one in [9]. Simulation results show that PCMB
has approximately 3dB and 1dB performance degradations
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Fig. 2. BER vs. SNR of GC, FPMB, and GCMB for 2 x 2 systems.

compared to PC and FPMB, respectively, and the degradations
decrease as the modulation alphabet size increases. However,
the modest performance compromises of PCMB in the 4 x 4
case trade off with substantial reductions of the worst-case
decoding complexity for PC and FPMB from O(M'3-%) and
O(M?3) to only O(M?!5), respectively.

Obviously, the execution of SD with lower dimension has
less complexity, including the worst case and the average
case. Therefore, the worst-case decoding complexity is used
to roughly compare the complexity of PC, FPMB, and PCMB
in this paper above. In order to measure the average decoding
complexity and show the exact complexity comparisons, the
average number of real multiplications, which are the most
expensive operations in terms of machine cycles, for decoding
one transmitted vector symbol are calculated at different SNR
for PC, FPMB, and PCMB, respectively. In [36], [37], a
reduced complexity SD technique substantially decreasing
the average number of real multiplications was introduced,
which is employed in this paper. Fig. 4 and Fig. 5 show
the complexity comparisons of GCMB with GC and FPMB
respectively, for 2 x 2 MIMO systems using 64-QAM. The
complexity of GCMB is 99% and 48% lower than GC at
low and high SNR respectively, while it is 70% lower than
FPMB at low SNR and close to FPMB at high SNR. Fig. 6
shows the complexity comparisons for PCMB and PC for 4 x4
MIMO systems using 4-QAM. The complexity of PCMB is
2.7 and 1.7 orders of magnitude lower than PC at low and high
SNR respectively. Fig. 7 shows the complexity comparisons
for PCMB and FPMB for 4 x 4 MIMO systems using 16-
QAM. The complexity of PCMB is 85% lower than FPMB
at low SNR and close to FPMB at high SNR. Note that the
improvements will be much greater for larger alphabet size.

B. BICMB-PC

As presented Section IV, BICMB-PC in dimensions 2 and 4
has the most advantage in terms of complexity for calculating
bit metrics. Therefore. simulations are focused on these two
dimensions.
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Fig. 3. BER vs. SNR of PC, FPMB, and PCMB for 4 x 4 systems.

Average number of real multiplications
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Fig. 4. Average number of real multiplications vs. SNR of GC and GCMB
for 2 x 2 systems using 64-QAM.

Considering R, = 2/3, 2 x 2 systems, Fig. 8 shows BER-
SNR performance comparison of BICMB-PC and BICMB-
FP. The constellation precoder for BICMB-FP is selected as
the best one introduced in [9]. Simulation results show that
BICMB-FP and BICMB-PC, with the worst-case decoding
complexity of O(M) and O(v/M) to acquire one bit metric
respectively, achieve almost the same performance for all of
4-QAM, 16-QAM, and 64-QAM.

In the case of R, = 4/5, 4 x 4 systems, Fig. 9 shows BER-
SNR performance comparison of BICMB-PC and BICMB-
FP for 4-QAM and 16-QAM. The constellation precoder for
BICMB-FP is also chosen as the best one in [9]. Similarly,
simulation results show that BICMB-PC achieves almost the
same performance as BICMB-FP. Moreover, the worst-case
complexity of O(M?!-?) to get one bit metric for BICMB-PC
is much lower than that of O(M?3) for BICMB-FP.

In order to measure the average decoding complexity, the
average number of real multiplications for acquiring one bit
metric is calculated at different SNR for BICMB-FP and
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Fig. 5. Average number of real multiplications vs. SNR of FPMB and GCMB
for 2 x 2 systems using 64-QAM.
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Fig. 6. Average number of real multiplications vs. SNR of PC and PCMB
for 4 x 4 systems using 4-QAM.

BICMB-PC. In [38], an efficient reduced complexity decoding
technique was introduced for BICMB-FP, which is applied in
this paper. For fair comparisons, a similar decoding technique
is employed to BICMB-PC. Fig. 10 shows the complexity
comparisons for BICMB-PC and BICMB-FP for 2 x 2 MIMO
systems using 64-QAM. The complexity of BICMB-PC is
86% and 70% lower than BICMB-FP at low and high SNR
respectively. Fig. 11 shows the complexity comparisons for
BICMB-PC and BICMB-FP for 4 x 4 MIMO systems using
16-QAM. The complexity of BICMB-PC is 1.7 and 1.3 orders
of magnitude lower than BICMB-FP at low and high SNR
respectively. Note that the number of improvements will be
much greater for larger alphabet size.

C. Discussion

As presented above, both PCMB and BICMB-PC have
advantage in decoding complexity. However, both of them
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Fig. 7. Average number of real multiplications vs. SNR for FPMB and
PCMB for 4 x 4 systems using 16-QAM.
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Fig. 8. BER vs. SNR of BICMB-FP and BICMB-GC for R. = 2/3, 2 x 2
systems.

require the knowledge of CSIT, which is usually partial and
imperfect in practice due to the bandwidth limitation and
the channel estimation errors, respectively. Recently, limited
CSIT feedback techniques have been introduced to achieve a
performance close to the perfect CSIT case for both uncoded
and coded SVD-based beamforming systems [39], [40], [41],
[42]. For these techniques, a codebook of precoding matrices
is known both at the transmitter and receiver. The receiver
selects the precoding matrix that satisfies a desired criterion,
and only the index of the precoding matrix is sent back to
the transmitter. In practice, similar techniques can be applied
to PCMB and BICMB-PC. On the other hand, the perfor-
mance of SVD-based MIMO systems was investigated with
the channel estimation errors in [43]. It was shown that the
performance of SVD-based MIMO systems is sensitive to the
channel estimation errors. Nevertheless, space-time coding is
in fact a way to improve the performance of the beamforming
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Fig. 10. Average number of real multiplications vs. SNR of BICMB-FP and
BICMB-GC for R. = 2/3, 2 X 2 systems using 64-QAM.

technique with imperfect feedback. The reason is that the
spatial diversity of space-time coding, which is independent of
CSIT, becomes dominant when the quality of CSI is low, and
most performance gains come from the spatial diversity [3].
Note that both PCMB and BICMB-PC belong to that category.

In this paper, the antenna configuration of N; = N, = S =
D is considered for both PCMB and BICMB-PC to make
the number of transmit and receive antennas equal to PSTBC.
In fact, other antenna configurations are also valid as long
as D = S < min{N;, N, }. More antennas result in greater
singular values of subchannels used to transmit PSTBC, which
leads to performance increase. Similarly, when the chan-
nel is frequency-selective instead of flat fading, Orthogonal
Frequency Division Multiplexing (OFDM) can be applied
to increase the diversity of coded SVD-based beamforming
technique [5], which results in performance enhancement as
well.
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Fig. 11. Average number of real multiplications vs. SNR of BICMB-FP and
BICMB-PC for R. = 4/5, 4 x 4 systems using 16-QAM.

VI. CONCLUSION

In this paper, two novel techniques, PCMB and BICMB-
PC, are presented. PCMB and BICMB-PC combine PSTBCs
with uncoded and coded multiple beamforming, respectively.
As a result, PCMB achieves full diversity, full multiplexing,
and full rate at the same time. The main advantage of PCMB
compared to PC and FPMB is that it provides significantly
lower decoding complexity than PC and FPMB, respectively,
in dimensions 2 and 4. Although the complexity gains result
in performance loss, it is negligible for dimension 2 and
modest in dimension 4. Similarly, BICMB-PC achieves both
full diversity and full multiplexing, and its BER performance
is almost the same as BICMB-FP. The advantage of BICMB-
PC is that it offers much lower decoding complexity than
BICMB-FP in dimensions 2 and 4. Therefore, BICMB-PC
can be applied to replace the precoded part of BICMB-PP to
reduce the decoding complexity. The performance investiga-
tion for limited feedback and frequency selective channels are
considered as future work.
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APPENDIX
PROOF OF REAL-VALUED R MATRIX FOR PCMB IN
DIMENSION 4

The generation matrix G for PSTBC in dimension 4 can
be found in [13]. Let f, denote the vth column of AG, and
let f,,., denote the uth element of f, with u,v € {1,...,4},
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then
1
w1 = —=Au[1+i(=3+62)],
fur = 7= [1+( )]
1
f72 \/ﬁ [ Z( )] al
! O + 63 1446, — 6%)] “v
u:—)\u_3u+u+_+ u — Yu)l
f73 \/ﬁ [( ) Z(
1
wa = —Au[(—1 =30, + 602 +63) +1],
f,4 \/ﬁ [( u u) Z]
where

61 = 2cos(4mw/15),
03 = 2 cos(16m/15),

02 = 2 cos(27/15),
04 = 2 cos(87/15).
Note that 02 — 03 — 462 + 460, +1 =0 for u € {1,...,4}
[13].

The nonzero elements of the diagonal matrix R are calcu-
lated as

ey = I,
6 3, (—1+50, — 03)
r — _ |
(1,2) (1] 15|y
(1,3) Hle 15Hf1|| ,
T(1.4 :fzf{fl :Zizl(_4_39u+293+93)
I TS ,
fHf,
r =, — -1 7
(2,2) 2 BE 1
r _ £if, _ Zi:l(—3—80u 4262 4+ 268) @2)
(2,3) [|£2]] 56| ’
| el 15]|£2| :
fo3 fo3
r = || — 1 5 7
(3,3) STIREY T TR
T(3,4) = fi'fs _ Syl (—1 4560, —63)
(3,4) Hf3H 15||f3” R
fo4 fo4 fo4
T = ||f, — L £, _ 2 e _ 5 el
R B PYCR N YR [ R

Based on (42), the R matrix is real-valued for PCMB in
dimension 4, which is due to the special property of the G
matrix.
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