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Abstract—Beamforming techniques that employ Singular
Value Decomposition (SVD) are commonly used in Multi-Input
Multi-Output (MIMO) wireless communication systems. In the
absence of channel coding, when a single symbol is transmitted,
these systems achieve the full diversity order provided by the
channel; whereas when multiple symbols are simultaneously
transmitted, this property is lost. When channel coding is
employed, full diversity order can be achieved. For example,
when Bit-Interleaved Coded Modulation (BICM) is combined
with this technique, full diversity order of 𝑵𝑴 in an 𝑴 × 𝑵
MIMO channel transmitting 𝑺 parallel streams is possible,
provided a condition on 𝑺 and the BICM convolutional code
rate is satisfied. In this paper, we present constellation precoded
multiple beamforming which can achieve the full diversity order
both with BICM-coded and uncoded SVD systems. We provide
an analytical proof of this property. To reduce the computational
complexity of Maximum Likelihood (ML) decoding in this
system, we employ Sphere Decoding (SD). We report an SD
technique that reduces the computational complexity beyond
commonly used approaches to SD. This technique achieves sev-
eral orders of magnitude reduction in computational complexity
not only with respect to conventional ML decoding but also, with
respect to conventional SD.

Index Terms—MIMO systems, SVD, BICMB, constellation
precoding, sphere decoding.

I. INTRODUCTION

WHEN the perfect channel state information is available
at the transmitter, beamforming is employed to achieve

spatial multiplexing and thereby increase the data rate, or to
enhance the performance of a Multiple-Input Multiple-Output
(MIMO) system [1]. The beamforming vectors are designed in
[2], [3] for various design criteria, and can be obtained by the
Singular Value Decomposition (SVD), leading to a channel-
diagonalizing structure optimum in minimizing the average Bit
Error Rate (BER) [3]. Uncoded Single Beamforming (SB),
which carries only one symbol at a time, was shown to
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achieve the full diversity order of 𝑁𝑀 where 𝑁 and 𝑀
are the number of transmit and receive antennas, respectively
[4], [5]. However, the diversity order of uncoded multiple
beamforming, which increases the throughput by sending
multiple symbols at a time, is (𝑁 − 𝑆 + 1)(𝑀 − 𝑆 + 1)
where the symbols are transmitted on the subchannels with
the largest 𝑆 singular values, losing the full diversity order
over flat fading channel [4], [5].

It is known that an SVD subchannel with larger singular
value provides larger diversity gain [5]. Under the simultane-
ous parallel transmission of the symbols on the diagonalized
subchannels, the performance at high Signal-to-Noise Ratio
(SNR) is dominated by the subchannel with the smallest sin-
gular value. To overcome the degradation of the diversity or-
der of multiple beamforming, Bit-Interleaved Coded Multiple
Beamforming (BICMB) was proposed [6], [7]. This scheme
interleaves the codewords through the multiple subchannels
with different singular value, resulting in better diversity order.
BICMB can achieve the full diversity order offered by the
channel as long as the code rate 𝑅𝑐 and the number of
employed subchannels 𝑆 satisfy the condition 𝑅𝑐𝑆 ≤ 1 [8].

In this paper, we present a multiple beamforming technique
that achieves the full diversity order in both coded and
uncoded systems. This technique employs the constellation
precoding scheme [9], [10], [11], [12], [13], which is used
for space-time or space-frequency block codes to increase the
system data rate without losing the full diversity order. We
show via a Pairwise Error Probability (PEP) analysis that Fully
Precoded Multiple Beamforming (FPMB) with Maximum
Likelihood Decoding (MLD) achieves the full diversity order
even in the absence of any channel coding. We also present
the diversity analysis of Bit-Interleaved Coded Multiple Beam-
forming with Constellation Precoding (BICMB-CP), which
adds the constellation precoding stage to BICMB. We show
that the addition of the constellation precoder to BICMB,
whose code rate 𝑅𝑐 is larger than 1/𝑆, provides the full
diversity when the subchannels for the precoded symbols are
properly chosen. Simulation results are shown to confirm the
analysis.

Multiple beamforming without constellation precoding sep-
arates the MIMO channel into independent parallel subchan-
nels, enabling symbol-by-symbol detection on each subchan-
nel. Since the precoder at the transmitter no longer allows
for the parallel independent detection of the symbols on each
subchannel, the complexity of MLD for precoded symbols,
which provides optimal performance, increases exponentially
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with the number of possible constellation points of the
modulation scheme and the dimension of the constellation
precoder. The complexity increase makes the receiver with
MLD unsuitable for practical purposes [14]. On the other
hand, Sphere Decoding (SD) was proposed as an alternative
for MLD that provides optimal performance with reduced
computational complexity [15].

Several complexity reduction techniques for SD have been
proposed. In [16] and [17], attention is drawn to the initial
radius selection strategy, since an inappropriate initial radius
can result in either a large number of lattice points to be
searched, or a number of restarted searches with increased
initial radius. In [18] and [19], the complexity is reduced by
making a proper choice to update the sphere radius. Other
methods, such as the 𝐾-best lattice decoder [20], [21], and a
combination of SD and 𝐾-best decoder [22], can significantly
reduce the complexity of low SNR at the cost of BER
performance.

In this paper, we propose an SD algorithm which effi-
ciently improves the complexity of constellation precoded
multiple beamforming over flat fading channels by reducing
the average number of multiplications required to obtain the
optimal solution. This complexity reduction is accomplished
by precalculating the multiplications at the beginning of de-
coding, and recycling them later for the repetitive calculations.
The reduction is achieved further by the help of the lattice
representation of our previous work presented in [23], which
introduces orthogonality between the real and imaginary parts
of every detected symbol. Based on Zero-Forcing Decision
Feedback Equalization (ZF-DFE), the proposed SD algorithm
includes a method to determine the initial radius, reducing
the average number of real multiplications needed to acquire
one precoded bit metric for BICMB-CP. With simulation
results, we show that conventional SD reduces the complexity
substantially compared with the exhaustive search, and the
complexity can be further reduced effectively by our proposed
SD. The complexity reduction becomes larger as the constel-
lation precoder dimension and the constellation size become
larger.

The rest of this paper is organized as follows. The descrip-
tion of uncoded and coded multiple beamforming combined
with constellation precoding is given in Section II. Sections III
and IV present the diversity analysis of the MIMO schemes
through the calculation of the upper bound to PEP. The com-
putational complexity reduction sphere detection algorithm
is discussed in Section V. Simulation results supporting the
analysis are shown in Section VI. We discuss possibilities for
a simplified decoder in Section VII. Finally, we end the paper
with our conclusion in Section VIII.

Notation: Bold lower (upper) case letters denote vectors
(matrices). diag[B1, ⋅ ⋅ ⋅ ,B𝑃 ] stands for a block diagonal
matrix with matrices B1, ⋅ ⋅ ⋅ ,B𝑃 , and diag[𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑃 ] is a
diagonal matrix with diagonal entries 𝑏1, ⋅ ⋅ ⋅ , 𝑏𝑃 . ℜ(⋅) and
ℑ(⋅) denote the real and imaginary part of a complex number,
respectively. The superscripts (⋅)𝐻 , (⋅)𝑇 , (⋅)∗, (̄⋅) stand for
conjugate transpose, transpose, complex conjugate, binary
complement, respectively, and ∀ denotes for-all. ⌈⋅⌉ is the
ceiling function that maps a real number to the next largest
integer. ℝ+ and ℂ stand for the set of positive real numbers

(a) Uncoded Multiple beamforming with constellation precoding.

(b) Bit-interleaved coded multiple beamforming with constellation precoding.

Fig. 1. Structure of constellation precoded multiple beamforming. Matrices
Ũ and Ṽ consist of the first 𝑆 vectors of U and V in the SVD decomposition
H = UΛVH.

and the complex numbers, respectively. 𝑑𝑚𝑖𝑛 is the minimum
Euclidean distance between two points in a constellation.

II. SYSTEM MODEL

A. Uncoded Multiple Beamforming with Constellation Pre-
coding

Uncoded Multiple Beamforming with Constellation Precod-
ing (UMB-CP) transforms modulated symbols to precoded
symbols via a precoding matrix as depicted in Fig. 1(a).
The 𝑆 × 1 symbol vector x, where 𝑆 ≤ min(𝑁,𝑀), is
precoded by a square matrix Θ. We assume that the elements
of x belong to a signal set 𝜒 ⊂ ℂ of size ∣𝜒∣ = 2𝑚,
such as 2𝑚-QAM, where 𝑚 is the number of input bits to
the Gray encoder. The permutation matrix T reorders the
precoded 𝑃 symbols and non-precoded 𝑆 − 𝑃 symbols to
be transmitted on the predefined subchannels created by the
SVD of the MIMO channel. Let us define 𝜼 = [𝜂1 ⋅ ⋅ ⋅ 𝜂𝑃 ]
as a vector whose element 𝜂𝑝 is the index of the subchannel
on which the precoded symbols are transmitted, and ordered
increasingly such that 𝜂𝑝 < 𝜂𝑞 for 𝑝 < 𝑞. In the same way,
𝝎 =

[
𝜔1 ⋅ ⋅ ⋅ 𝜔(𝑆−𝑃 )

]
is defined as an increasingly ordered

vector whose elements are the indices of the subchannels
which carry the non-precoded symbols.

The serial-to-parallel converter organizes the symbol vector

x as x = [x𝑇𝜼
...x𝑇𝝎]

𝑇 = [𝑥𝜂1 ⋅ ⋅ ⋅ 𝑥𝜂𝑃
... 𝑥𝜔1 ⋅ ⋅ ⋅ 𝑥𝜔(𝑆−𝑃 )

]𝑇 ,
where x𝜼 and x𝝎 consist of the modulated entries to be
transmitted on the subchannels specified in 𝜼 and 𝝎, respec-

tively. The 𝑆 × 1 detected symbol vector y = [y𝑇𝑝
...y𝑇𝑛 ]

𝑇 =

[𝑦1 ⋅ ⋅ ⋅ 𝑦𝑃
... 𝑦𝑃+1 ⋅ ⋅ ⋅ 𝑦𝑆 ]𝑇 at the receiver is written as

y = ΓΘx + n (1)

where Γ is a block diagonal matrix, Γ = diag[Γ𝑝, Γ𝑛],
with diagonal matrices defined as Γ𝑝 = diag[𝜆𝜂1 , ⋅ ⋅ ⋅ , 𝜆𝜂𝑃 ],
Γ𝑛 = diag[𝜆𝜔1 , ⋅ ⋅ ⋅ , 𝜆𝜔(𝑆−𝑃 )

] and 𝜆𝑠 ∈ ℝ+ is the sth singular

value of H, in decreasing order. The vector n = [n𝑇
𝑝

...n𝑇
𝑛 ]

𝑇

is additive white Gaussian noise with zero mean and variance
𝑁0 = 𝑁/𝑆𝑁𝑅. The matrix H is complex Gaussian with zero
mean and unit variance, and to make the received signal-to-
noise ratio 𝑆𝑁𝑅, the total transmitted power is scaled as 𝑁 .
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The matrix Θ is a block diagonal matrix Θ =
diag[Θ̃, I𝑆−𝑃 ] and Θ̃ is a 𝑃 × 𝑃 constellation precoding
matrix that precodes the first 𝑃 modulated symbols of the
vector x. Then, the input-output relation in (1) is decomposed
into two equations as

y𝑝 = Γ𝑝Θ̃x𝜼 + n𝑝

y𝑛 = Γ𝑛x𝝎 + n𝑛.
(2)

When all of the 𝑆 modulated symbols are precoded (𝑃 = 𝑆),
we call the resulting system Fully Precoded Multiple Beam-
forming (FPMB), otherwise, we call it Partially Precoded
Multiple Beamforming (PPMB). Partial precoding can result
in reduced complexity and therefore can be desirable. As will
be illustrated in the sequel, uncoded PPMB does not achieve
the full diversity order provided by the MIMO channel, but
when combined with BICM (BICMB-PP), it can achieve this
performance with less complexity than FPMB combined with
BICM (BICMB-FP).

MLD of the detected symbol x̂ = [x̂𝑇𝜼
... x̂𝑇𝝎]

𝑇 =

[𝑥̂𝜂1 ⋅ ⋅ ⋅ 𝑥𝜂𝑃
...𝑥𝜔1 ⋅ ⋅ ⋅ 𝑥𝜔(𝑆−𝑃 )

]𝑇 is given by

x̂ = arg min
x∈𝜒𝑆

∥y − ΓΘx∥2 (3)

where 𝜒𝑆 represents the 𝑆-dimensional product space based
on 𝜒. For PPMB, the symbol can be detected in a parallel
fashion as

x̂𝜼 = arg min
x∈𝜒𝑃

∥∥∥y𝑝 − Γ𝑝Θ̃x
∥∥∥2 (4)

for the precoded symbol, and

𝑥𝑙 = argmin
𝑥∈𝜒 ∣𝑦𝑙 − 𝜆𝑙̃𝑥∣2 (5)

for the non-precoded symbol where 𝑙̃ is the corresponding
index transformed by T.

B. Bit-Interleaved Coded Multiple Beamforming with Constel-
lation Precoding

Fig. 1(b) represents the structure of Bit-Interleaved
Coded Multiple Beamforming with Constellation Precoding
(BICMB-CP). First, the convolutional encoder with code rate
𝑅𝑐 = 𝑘𝑐/𝑛𝑐, possibly combined with a perforation matrix for
a high rate punctured code, generates the codeword c from the
information bits. Then, the spatial interleaver 𝜋𝑠 distributes
the coded bits into 𝑆 streams, each of which is interleaved
by an independent bit-wise interleaver 𝜋𝑡. The interleaved
bits are mapped by Gray encoding onto the symbol sequence
X = [x1 ⋅ ⋅ ⋅ x𝐾 ], where x𝑘 is an 𝑆 × 1 symbol vector at the
𝑘𝑡ℎ time instant. Each entry of x𝑘 belongs to a signal set 𝜒.

The symbol vector x𝑘 is multiplied by the 𝑆 × 𝑆 precoder
Θ. When all of the 𝑆 modulated entries are precoded (𝑃 = 𝑆),
we call the resulting system Bit-Interleaved Coded Multiple
Beamforming with Full Precoding (BICMB-FP), otherwise,
we call it Bit-Interleaved Coded Multiple Beamforming with
Partial Precoding (BICMB-PP). The precoded symbol vector
is transmitted on the MIMO channel described in Section II-A.

As in UMB-CP, the spatial interleaver arranges the

symbol vector x𝑘 as x𝑘 = [x𝑇𝑘,𝜼
...x𝑇𝑘,𝝎]

𝑇 = [𝑥𝑘,𝜂1

⋅ ⋅ ⋅ 𝑥𝑘,𝜂𝑃
...𝑥𝑘,𝜔1 ⋅ ⋅ ⋅ 𝑥𝑘,𝜔(𝑆−𝑃 )

]𝑇 . The 𝑆 × 1 detected

symbol vector r𝑘 = [(r𝑝𝑘)
𝑇

... (r𝑛𝑘 )
𝑇 ]𝑇 = [𝑟𝑘,1 ⋅ ⋅ ⋅

𝑟𝑘,𝑃
... 𝑟𝑘,𝑃+1 ⋅ ⋅ ⋅ 𝑟𝑘,𝑆 ]𝑇 at the 𝑘𝑡ℎ time instant is

r𝑘 = ΓΘx𝑘 + n𝑘 (6)

where n𝑘 = [(n𝑝
𝑘)

𝑇
... (n𝑛

𝑘 )
𝑇 ]𝑇 is an additive white Gaussian

noise vector.
The location of the coded bit 𝑐𝑘′ within the symbol se-

quence X is known as 𝑘′ → (𝑘, 𝑙, 𝑖), where 𝑘, 𝑙, and 𝑖 are
the time instant in X, the symbol position in x𝑘, and the bit
position on the label 𝑥𝑘,𝑙, respectively. Let 𝜒𝑖𝑏 denote a subset
of 𝜒 whose labels have 𝑏 ∈ {0, 1} in the 𝑖𝑡ℎ bit position. By
using the location information and the input-output relation in
(6), the receiver calculates the maximum likelihood bit metrics
for the coded bit 𝑐𝑘′ as

𝛾𝑙,𝑖(r𝑘, 𝑐𝑘′) = min
x∈𝜉𝑙,𝑖𝑐

𝑘′
∥r𝑘 − ΓΘx∥2 (7)

where 𝜉𝑙,𝑖𝑐𝑘′ is a subset of 𝜒𝑆 , defined as

𝜉𝑙,𝑖𝑏 = {x = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑆 ]𝑇 : 𝑥𝑠∣𝑠=𝑙 ∈ 𝜒𝑖𝑏, and 𝑥𝑠∣𝑠∕=𝑙 ∈ 𝜒}.
In particular, based on the decomposition of (6) similar to (4)
and (5), the bit metrics, equivalent to (7) for partial precoding,
are

𝛾𝑙,𝑖(r𝑘, 𝑐𝑘′) =

⎧⎨
⎩

min
x∈𝜓𝑙,𝑖

𝑐
𝑘′
∥r𝑝𝑘 − Γ𝑝Θ̃x∥2, if 1 ≤ 𝑙 ≤ 𝑃

min
𝑥∈𝜒𝑖

𝑐
𝑘′
∣𝑟𝑘,𝑙 − 𝜆𝑙̃𝑥∣2, if 𝑃 + 1 ≤ 𝑙 ≤ 𝑆

(8)

where 𝜓𝑙,𝑖
𝑏 is a subset of 𝜒𝑃 , defined as

𝜓𝑙,𝑖
𝑏 = {x = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑃 ]𝑇 : 𝑥𝑠∣𝑠=𝑙 ∈ 𝜒𝑖𝑏, and 𝑥𝑠∣𝑠∕=𝑙 ∈ 𝜒},

and 𝑙 is an entry in 𝝎, corresponding to the subchannel mapped
by T. Finally, MLD makes decisions according to the rule

ĉ = argmin
c̃

∑
𝑘′
𝛾𝑙,𝑖(r𝑘, 𝑐𝑘′). (9)

III. DIVERSITY ANALYSIS : UMB-CP

A. Fully Precoded Multiple Beamforming

Based on the MLD in (3), the upper bound to the instanta-
neous PEP between the transmitted symbol x and the detected
symbol x̂ is calculated as

Pr (x → x̂ ∣ H) = Pr
(
∥y − ΓΘx∥2 ≥ ∥y − ΓΘx̂∥2 ∣ H

)

≤ 1

2
exp

(
−∥ΓΘ(x − x̂)∥2

4𝑁0

)
. (10)

Let d = [𝑑1 ⋅ ⋅ ⋅ 𝑑𝑆 ]𝑇 = Θ(x − x̂). Then, for FPMB, the
average PEP becomes

Pr (x → x̂) ≤ 𝐸

⎡
⎢⎢⎣12 exp

⎛
⎜⎜⎝−

𝑆∑
𝑠=1

𝜆2𝑠∣𝑑𝑠∣2

4𝑁0

⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (11)
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In [8], we showed that equations in the form of (11) have
a closed form upper bound expression. We provide a formal
statement below.

Theorem 1: Consider the 𝑆 ≤ min(𝑁,𝑀) ordered eigen-
values 𝜇1 > ⋅ ⋅ ⋅ > 𝜇𝑆 of the uncorrelated central Wishart
matrix1 [24], and a weight vector 𝝓 = [𝜙1 ⋅ ⋅ ⋅ 𝜙𝑆 ]𝑇 with non-
negative real elements. In the high signal-to-noise ratio regime,
an upper bound for the expression 𝐸[exp(−𝛾∑𝑆

𝑠=1 𝜙𝑠𝜇𝑠)]
which is used in the diversity analysis of a number of MIMO
systems is

𝐸

[
exp

(
−𝛾

𝑆∑
𝑠=1

𝜙𝑠𝜇𝑠

)]
≤ 𝜁 (𝜙𝑚𝑖𝑛𝛾)

−(𝑁−𝛿+1)(𝑀−𝛿+1)

where 𝛾 is signal-to-noise ratio, 𝜁 is a constant, 𝜙𝑚𝑖𝑛 =
min𝜙𝑖 ∕=0{𝜙𝑖}𝑆𝑖=1, and 𝛿 is the index indicating the first nonzero
element in the weight vector.

Proof: See [8].
Applying Theorem 1 to (11), we get the upper bound to PEP
as

Pr (x → x̂) ≤ 𝜁

(
𝑑𝑚𝑖𝑛

4𝑁
𝑆𝑁𝑅

)−(𝑁−𝛿+1)(𝑀−𝛿+1)

(12)

where 𝜁 is a constant, 𝑑𝑚𝑖𝑛 = min{∣𝑑1∣2, ⋅ ⋅ ⋅ , ∣𝑑𝑆 ∣2}, and 𝛿
is an index indicating the first nonzero element of the vector[∣𝑑1∣2 ⋅ ⋅ ⋅ ∣𝑑𝑆 ∣2

]
. Therefore, FPMB achieves the full diversity

order if 𝛿 from any distinct pair is equal to 1, which implies
that ∣𝑑1∣2 = ∣𝜽𝑇1 (x − x̂)∣2 > 0 for any distinct pair, where
𝜽𝑇1 is the first row vector of Θ. Several methods to build the
precoding matrix are described in [25] and [26].

B. Partially Precoded Multiple Beamforming

Generalizing (10) for PPMB, we get an upper bound to PEP
as

Pr (x → x̂) ≤ 𝐸

[
1

2
exp

(
− 𝜅

4𝑁0

)]
(13)

where

𝜅 =
𝑃∑
𝑠=1

𝜆2𝜂𝑠 ∣𝑑𝑠∣2 +
𝑆−𝑃∑
𝑠=1

𝜆2𝜔𝑠
∣𝑥𝜔𝑠 − 𝑥̂𝜔𝑠 ∣2 (14)

and 𝑑𝑠 is the 𝑠𝑡ℎ element of a vector d̃ = Θ̃(x𝜼 − x̂𝜼). Let us
assume that the constellation precoding matrix Θ̃ meets the
condition of FPMB to achieve the full diversity order. Since
the expression (13) with (14) has a closed form expression
similar to (12) as described in FPMB, the 𝛿 value needs to be
obtained from a composite vector with the elements as ∣𝑑𝑠∣2
and ∣𝑥𝜔𝑠 − 𝑥̂𝜔𝑠 ∣2, to observe the diversity behavior of a given
pairwise error. In addition, a different pair can lead to different
diversity behavior. Therefore, we need to get the maximum 𝛿
out of all the possible pairwise errors to decide the diversity
order of a given PPMB system.

All of the distinct pairs of x and x̂ are divided into three
groups in terms of x𝜼 , x̂𝜼 , x𝝎 , and x̂𝝎 . The first group

1A central Wishart matrix is the Hermitian matrix AA𝐻 where the entry
of the matrix A is complex Gaussian with zero mean so that 𝐸[A] = 0.
The Wishart matrix AA𝐻 is called uncorrelated if the common covariance
matrix, defined as C = 𝐸[a𝑠a𝐻

𝑠 ]∀𝑠, where a𝑠 is the 𝑠𝑡ℎ column vector of
A, satisfies C = I.

TABLE I
DIVERSITY ORDER (𝑂𝑑𝑖𝑣 ) OF 4× 4, 𝑆 = 4 PARTIALLY PRECODED

MULTIPLE BEAMFORMING SYSTEM

𝑃 𝜼 𝝎 𝜂1 𝜔(𝑆−𝑃 ) 𝛿𝑚𝑎𝑥 𝑂𝑑𝑖𝑣

2

[1 2] [3 4] 1 4 4 1
[1 3] [2 4] 1 4 4 1
[1 4] [2 3] 1 3 3 4
[2 3] [1 4] 2 4 4 1
[2 4] [1 3] 2 3 3 4
[3 4] [1 2] 3 2 3 4

3

[1 2 3] [4] 1 4 4 1
[1 2 4] [3] 1 3 3 4
[1 3 4] [2] 1 2 2 9
[2 3 4] [1] 2 1 2 9

includes the pairs that have x𝜼 = x̂𝜼 but x𝝎 ∕= x̂𝝎 , and the
second group comprises the pairs satisfying x𝜼 ∕= x̂𝜼 but
x𝝎 = x̂𝝎 . Finally, the last group consists of the pairs for
which x𝜼 ∕= x̂𝜼 and x𝝎 ∕= x̂𝝎 . We will present the method
to calculate the maximum 𝛿 for each group, and to find 𝛿𝑚𝑎𝑥

from the groups.

Since the vector d̃ is a zero vector for the first group, the
first summation of 𝜅 in (14) is zero, resulting in 𝛿 being equal
to the minimum of 𝝎. By considering all of the possible
pairs, we easily see that 𝜔1 ≤ 𝛿 ≤ 𝜔(𝑆−𝑃 ). Therefore, the
maximum value is 𝛿1 = 𝜔(𝑆−𝑃 ) which corresponds to the
pair satisfying 𝑥𝑠 = 𝑥̂𝑠 for all 𝑠 except 𝑠 = 𝜔(𝑆−𝑃 ). For
any pair in the second group, the term with the first singular
value survives in 𝜅, according to the inherited property of the
constellation precoding matrix, i.e., ∣𝑑1∣2 > 0. However, the
second summation in 𝜅 disappears since x𝝎 = x̂𝝎 . Therefore,
the maximum value of this group is 𝛿2 = 𝜂1. Now, for the
third group, both summations in 𝜅 exist. Then, 𝛿 is chosen
to be the smaller value between the minimum of 𝝎 and 𝜂1.
In the same manner as was already given in the analysis of
the first group, the maximum of the minimum of 𝝎 is found
to be 𝜔(𝑆−𝑃 ). Therefore, the maximum 𝛿 for this group is
𝛿3 = max{𝜂1, 𝜔(𝑆−𝑃 )}. Finally, 𝛿𝑚𝑎𝑥 is decided as

𝛿𝑚𝑎𝑥 = max{𝛿1, 𝛿2, 𝛿3} = max
(
𝜂1, 𝜔(𝑆−𝑃 )

)
. (15)

Example: We provide the diversity analysis of the 4×4 PPMB
system with 𝑆 = 4 and 𝑃 = 2. In this example, we assume
that the precoded symbols are transmitted on the subchannel 1
and 3 while the non-precoded symbols are transmitted on the
subchannel 2 and 4. Then, this configuration gives 𝜼 = [1 3],
and 𝝎 = [2 4]. By following the result in (15), 𝛿𝑚𝑎𝑥 is equal
to max (1, 4) = 4, leading to the diversity order of 1. The
pairwise errors, satisfying 𝑥1 = 𝑥̂1, 𝑥2 = 𝑥̂2, 𝑥3 = 𝑥̂3, but
𝑥4 ∕= 𝑥̂4, inflict loss on the diversity order of this system.
Table I summarizes the diversity order analysis for all of the
possible combinations of the 4 × 4 PPMB system. We will
provide simulation results that verify this analysis in Section
VI, specifically in Fig. 4.
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IV. DIVERSITY ANALYSIS : BICMB-CP

A. BICMB with Full Precoding

We assume that the 𝑑𝐻 coded bits are interleaved such that
they are placed in distinct symbols, where 𝑑𝐻 denotes the
Hamming distance between the transmitted codeword c and
the decoded codeword ĉ. Since the bit metrics in (7) are the
same for the same coded bits between the pairwise errors, the
original PEP is replaced by

Pr (c → ĉ∣H) = Pr

⎛
⎝∑

𝑘,𝑑𝐻

min
x∈𝜉𝑙,𝑖𝑐

𝑘′
∥r𝑘 − ΓΘx∥2 ≥

∑
𝑘,𝑑𝐻

min
x∈𝜉𝑙,𝑖𝑐

𝑘′

∥r𝑘 − ΓΘx∥2
⎞
⎠ (16)

where the summation is restricted to the symbols correspond-
ing to the different 𝑑𝐻 coded bits.

This expression can be upper bounded and then the average
PEP can be calculated as [27]

Pr(c → ĉ) ≤ 𝐸

⎡
⎢⎢⎢⎣exp

⎛
⎜⎜⎜⎝−

𝑆∑
𝑠=1

𝜆2𝑠
∑
𝑘,𝑑𝐻

∣𝑑𝑘,𝑠∣2

4𝑁0

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ (17)

where 𝑑𝑘,𝑠 is the 𝑠𝑡ℎ entry of the vector d𝑘 = Θ(x𝑘 − x̂𝑘),
x̂𝑘 is

x̂𝑘 = arg min
x∈𝜉𝑙,𝑖𝑐

𝑘′

∥r𝑘 − ΓΘx∥2, (18)

and 𝑐𝑘′ is the complement of 𝑐𝑘′ in binary codes.
According to Theorem 1, we can evaluate the diversity order

of a given system by calculating the weight vector whose
𝑠𝑡ℎ element is

∑
𝑘,𝑑𝐻

∣𝑑𝑘,𝑠∣2. In particular, if the constellation
precoder is designed such that

∣𝑑𝑘,1∣2 = ∣𝜽𝑇1 (x𝑘 − x̂k)∣2 > 0, ∀(x𝑘, x̂𝑘) (19)

where 𝜽𝑇1 is the first row vector of the precoding matrix Θ,
we see that

∑
𝑘,𝑑𝐻

∣𝑑𝑘,1∣2 > 0, resulting in the full diversity
order of 𝑁𝑀 . Therefore, (19) is a sufficient condition for the
full diversity order of BICMB-FP.

B. BICMB with Partial Precoding

The average PEP can be calculated as [27]

Pr (c → ĉ) ≤ 𝐸

[
1

2
exp

(
− 𝜎

4𝑁0

)]
. (20)

In this expression,

𝜎 =
𝑃∑
𝑟=1

𝜆2𝜂𝑟

∑
𝑘,𝑑𝑝

𝐻

∣𝑑𝑘,𝑟∣2 + 𝑑2𝑚𝑖𝑛

𝑆−𝑃∑
𝑟=1

𝜆2𝜔𝑟
𝛼𝜔𝑟 (21)

where 𝑑𝑘,𝑟 is the 𝑟𝑡ℎ entry of the vector d̂𝑘 =
Θ̃ (x𝑘,𝜼 − x̂𝑘,𝜼), and 𝛼𝑠 is the number of times the 𝑠𝑡ℎ sub-
channel is used corresponding to 𝑑𝑛𝐻 bits under consideration.

To determine the diversity order from 𝜎, we need to find
the index indicating the first nonzero element in an ordered
composite vector which consists of

∑
𝑘,𝑑𝑝

𝐻
∣𝑑𝑘,𝑟∣2 and 𝛼𝜔𝑟

as in Theorem 1. If 𝑑𝑝𝐻 = 0, the first summation part of 𝜎
vanishes. In this case, the first index is

𝛿 = min{𝑠 : 𝛼𝑠 > 0 for 𝑠 ∈ {𝜔1, ⋅ ⋅ ⋅ , 𝜔(𝑆−𝑃 )}}. (22)

In the other case of 𝑑𝑝𝐻 > 0, we see that x𝑘,𝜼 and x̂𝑘,𝜼
are obviously different for the same reason as in the previous
section. If the constellation precoder satisfies the sufficient
condition of (19), the term with 𝜆2𝜂1 always exists in 𝜎. By
considering the second term of 𝜎, we get 𝛿 for the case of
𝑑𝑝𝐻 > 0

𝛿 =

{
min(𝜂1, 𝛿

′) if 𝛿′ exists,
𝜂1 otherwise.

(23)

where 𝛿′, if it exists, is obtained in the same way as (22).
If, in search of 𝛿′, no 𝑠 satisfying the right hand side of (22)
exists, we state 𝛿′ does not exist and set 𝛿 = 𝜂1, as in (23).
Example: In this example, we employ 4-state 1/2-rate con-
volutional code with generator polynomials (5, 7) in octal
representation, in an 𝑁 = 𝑀 = 𝑆 = 3 system. Two types
of spatial interleavers are used to demonstrate the different
results of the diversity order. A generalized transfer function of
BICMB with the specific spatial interleaver and convolutional
code provides the 𝛼-vectors for all of the pairwise errors,
whose element indicates the number of times the stream is
used for the erroneous bits [8]. In particular, due to the fact
that 𝑑𝑝𝐻 =

∑𝑃
𝑟=1 𝛼𝜂𝑟 and 𝑑𝑛𝐻 =

∑𝑆−𝑃
𝑟=1 𝛼𝜔𝑟 where 𝛼𝑠 is the

𝑠𝑡ℎ element of the 𝛼-vector, the generalized transfer function
approach in [8] is also useful in the analysis of BICMB-PP.
Hence, we rewrite the transfer functions of the systems from
[8], where 𝑎, 𝑏, and 𝑐 are the symbolic representation of the
1𝑠𝑡, 2𝑛𝑑, 3𝑟𝑑 streams, respectively. The spatial interleaver used
in 𝒯1 is a simple rotating switch on 3 streams. For 𝒯2, the 𝑢𝑡ℎ

coded bit is interleaved into the stream 𝑠mod(𝑢−1,18)+1 where
𝑠1 = ⋅ ⋅ ⋅ = 𝑠6 = 1, 𝑠7 = ⋅ ⋅ ⋅ = 𝑠12 = 2, 𝑠13 = ⋅ ⋅ ⋅ = 𝑠18 =
3 and mod is the modulo operation. Each term represents an
𝛼-vector, and the powers of 𝑎, 𝑏, 𝑐 in this term indicate the
elements of the 𝛼-vector corresponding to that term.

𝒯1 = 𝑍5(𝑎2𝑏2𝑐+ 𝑎2𝑏𝑐2 + 𝑎𝑏2𝑐2)

+ 𝑍6(𝑎3𝑏2𝑐+ 𝑎2𝑏3𝑐+ 𝑎3𝑏𝑐2+

𝑎𝑏3𝑐2 + 𝑎2𝑏𝑐3 + 𝑎𝑏2𝑐3)

+ 𝑍7(2𝑎3𝑏3𝑐+ 2𝑎3𝑏2𝑐2 + 2𝑎2𝑏3𝑐2+

2𝑎3𝑏𝑐3 + 2𝑎2𝑏2𝑐3 + 2𝑎𝑏3𝑐3) (24)

+ 𝑍8(𝑎5𝑏3 + 𝑎4𝑏3𝑐+ 𝑎3𝑏4𝑐+ 2𝑎4𝑏2𝑐2+

3𝑎3𝑏3𝑐2 + 2𝑎2𝑏4𝑐2 + 𝑎4𝑏𝑐3 + 3𝑎3𝑏2𝑐3+

3𝑎2𝑏3𝑐3 + 𝑎𝑏4𝑐3 + 𝑏5𝑐3 + 𝑎3𝑏𝑐4+

2𝑎2𝑏2𝑐4 + 𝑎𝑏3𝑐4 + 𝑎3𝑐5) + ⋅ ⋅ ⋅

𝒯2 = 𝑍5(𝑎5 + 𝑎3𝑏2 + 𝑎2𝑏3+

𝑏5 + 𝑎3𝑐2 + 𝑏3𝑐2 + 𝑎2𝑐3 + 𝑏2𝑐3 + 𝑐5)

+ 𝑍6(𝑎4𝑏2 + 3𝑎3𝑏3 + 𝑎2𝑏4 + 𝑎4𝑐2 + 3𝑎2𝑏2𝑐2+

𝑏4𝑐2 + 3𝑎3𝑐3 + 3𝑏3𝑐3 + 𝑎2𝑐4 + 𝑏2𝑐4) (25)

+ 𝑍7(2𝑎4𝑏3 + 2𝑎3𝑏4 + 𝑎3𝑏3𝑐+ 7𝑎3𝑏2𝑐2+

7𝑎2𝑏3𝑐2 + 2𝑎4𝑐3 + 𝑎3𝑏𝑐3 + 7𝑎2𝑏2𝑐3+

𝑎𝑏3𝑐3 + 2𝑏4𝑐3 + 2𝑎3𝑐4 + 2𝑏3𝑐4) + ⋅ ⋅ ⋅
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Consider the case 𝜼 = [1 2]. We see that all of the 𝛼-
vectors of 𝒯1 have 𝑑𝑝𝐻 > 0. Since 𝜂1 = 1, 𝛿 equals
1 whether 𝛿′ exists or not. In fact, 𝛿′ does not exist for
the term 𝑍8𝑎5𝑏3. Therefore, the 𝒯1 BICMB-PP system with
𝜼 = [1 2] achieves the full diversity order while BICMB
without constellation precoding [8], or PPMB without Bit-
Interleaved Coded Modulation (BICM) loses the full diversity
order [25], [26]. For 𝒯2, the 𝛼-vector [0 0 5] gives 𝑑𝑝𝐻 = 0,
resulting in 𝛿 = 3. Therefore, the 𝒯2 BICMB-PP system with
𝜼 = [1 2] does not achieve the full diversity order.

The same analysis for 𝜼 = [1 3] results in the diversity
order of 9, and [2 3] results in 4 for the transfer function
𝒯1. Similarly, both of [1 3] and [2 3] result in the diversity
of 4 for 𝒯2. As a consequence, we find that proper selection
of the subchannels for precoding, as well as the appropriate
pattern of the spatial interleaver, is important to achieve the
full diversity order of BICMB-PP. We will present simulation
results that verify this analysis in Section VI, in particular, in
Fig. 7.

V. REDUCED COMPUTATIONAL COMPLEXITY SPHERE

DETECTION

In this section, we will describe the reduced computa-
tional complexity sphere detection for constellation precoded
multiple beamforming with square QAM modulation. More
specifically, we propose the sphere detection technique to
reduce the number of multiplications without losing the perfor-
mance. Since detecting the transmitted non-precoded symbols
for UMB-CP in (5) and finding the bit metrics of non-
precoded symbols for BICMB-CP in (8) can be carried out
independently of the symbols on the other subchannels, we
focus on the precoded 𝑃 symbols.

Solving (4) for MLD is well-known to be NP-hard, given
that a full search over the entire lattice space is performed
[28]. SD, on the other hand, solves (4) by searching only
lattice points that lie inside a sphere of radius 𝜌 centering
around the received vector y𝑝. A frequently used solution for
the QAM-modulated complex signal model is to decompose
the 𝑃 -dimensional complex-valued problem (4) into a 2𝑃 -
dimensional real-valued problem, which is written as

ȳ =

[ℜ{y𝑝}
ℑ{y𝑝}

]
= F̄x̄+ n̄

=

[ℜ{F} −ℑ{F}
ℑ{F} ℜ{F}

] [ℜ{x𝜼}
ℑ{x𝜼}

]
+

[ℜ{n𝑝}
ℑ{n𝑝}

] (26)

where F = Γ𝑝Θ̃ [15], [28]. The QR decomposition of
the 2𝑃 × 2𝑃 real-valued channel matrix turns (4) into the
equivalent expression

x̂𝜼 = argmin
x∈Ψ

∥∥Q̄𝐻 ȳ − R̄x
∥∥2 (27)

where Q̄ and R̄ are the unitary matrix and the upper triangular
matrix from the QR decomposition of F̄ [15], [28]. Let Ω
denote the set of scalar symbols for one dimension of QAM,
e.g., Ω = {−3,−1, 1, 3} for 16-QAM, then Ψ denotes a subset
of Ω2𝑃 whose elements satisfy ∥Q̄𝐻 ȳ − R̄x∥2 < 𝜌2. The
initial radius 𝜌 should be chosen properly so that it is neither
too small nor too large. Too small an initial radius can result
in too many unsuccessful searches by restarting the search

and thus increasing the complexity, while too large an initial
radius can result in too many lattice points to be searched.

The SD algorithm can be viewed as a pruning algorithm on
a tree of depth 2𝑃 , whose branches correspond to elements
drawn from the set Ω [23], [28]. Conventional SD implements
a Depth-First Search (DFS) strategy in the tree which achieves
MLD performance. The complexity of SD is measured in
terms of the number of operations required per visited node
multiplied by the number of visited nodes throughout the
search algorithm [28]. The complexity can be reduced by
either reducing the number of nodes to be visited or the
number of operations to be carried out at each node or both.
In order to reduce the number of visited nodes, one can
either make a judicious choice of the initial radius to start the
algorithm, or execute a proper sphere radius update strategy.
The former strategy has been studied in [16] and [17], and the
latter one has been discussed in [18] and [19]. In this paper,
we propose methods to reduce the average number of real
multiplications, which are the most expensive operations in
terms of machine cycles required at each node for conventional
SD. A proper choice of the initial radius for BICMB-CP will
also be provided.

We start by writing the node weight as [23]

𝑤(x̄(𝑢)) = 𝑤(x̄(𝑢+1)) + 𝑤𝑝𝑤(x̄
(𝑢)) (28)

with 𝑢 = 2𝑃, 2𝑃 − 1, ⋅ ⋅ ⋅ , 1, 𝑤(x̄(2𝑃+1)) = 0, and
𝑤𝑝𝑤(x̄

(2𝑃+1)) = 0, where x̄(𝑢) denotes the partial vector
symbol at layer 𝑢. The partial weight 𝑤(x̄(𝑢)) is written as

𝑤𝑝𝑤(x̄
(𝑢)) = ∣𝑦𝑢 −

2𝑃∑
𝑣=𝑢

𝑅̄𝑢,𝑣𝑥𝑣∣2 (29)

where 𝑦𝑢 is the 𝑢𝑡ℎ element of Q̄𝐻 ȳ, 𝑅̄𝑢,𝑣 is the (𝑢, 𝑣)𝑡ℎ

element of R̄, and 𝑥̄𝑣 is the 𝑣𝑡ℎ element of x̄.

A. Precalculation of Multiplications

Note that for one channel realization, both R̄ and Ω are
independent of time. In other words, to decode different
received symbols for one channel realization, the only term
in (29) which depends on time is 𝑦𝑢. Consequently, a table 𝕋

can be constructed to store all terms of 𝑅̄𝑢,𝑣𝑥̄, where 𝑅̄𝑢,𝑣 ∕= 0
and 𝑥 ∈ Ω, before starting the tree search procedure. Equations
(28) and (29) imply that only one real multiplication is needed
by using 𝕋 instead of 2𝑃−𝑢+2 for each node to calculate the
node weight. As a result, the number of real multiplications
can be significantly reduced.

Taking the square QAM structure into consideration, Ω can
be divided into two smaller sets Ω1 with negative elements
and Ω2 with positive elements. Take 16-QAM for example,
Ω = {−3,−1, 1, 3}, then Ω1 = {−3,−1} and Ω2 = {1, 3}.
Any negative element in Ω1 has a positive element with the
same absolute value in Ω2. Consequently, in order to build 𝕋,
only terms of 𝑅̄𝑢,𝑣𝑥̄, where 𝑅̄𝑢,𝑣 ∕= 0 and 𝑥̄ ∈ Ω1, need to
be calculated and stored. Hence, the size of 𝕋 is

∣𝕋∣ = 𝑁𝑅∣Ω∣
2

(30)

where 𝑁𝑅 denotes the number of nonzero elements in matrix
R̄, and ∣Ω∣ denotes the size of Ω.
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Fig. 2. Tree structure for a 2× 2 FPMB system employing 4-QAM.

In order to build 𝕋, both the number of terms that need to
be stored and the number of real multiplications required are
∣𝕋∣. Since the channel is assumed to be flat fading, only one 𝕋

needs to be built in one burst. If the burst length is very long,
the computational complexity of building 𝕋 can be neglected.

B. Modified DFS Algorithm

The representation proposed in [23] replaces the conven-
tional representation of (26) with

y̌ = Gx̌+ ň (31)

where y̌, x̌, and ň consist of the real and imaginary parts of
the members of ȳ, x̄, and n̄, respectively, and G has the corre-
sponding real and imaginary parts of the members of F. The
structure of the lattice representation becomes advantageous
after applying the QR decomposition to G, i.e., G = QR.
Due to a special form of orthogonality between each pair of
columns, all elements 𝑅𝑢,𝑢+1 for 𝑢 = 1, 3, ⋅ ⋅ ⋅ , 2𝑃 − 1, in
the upper triangular matrix R become zero [23]. The locations
of these zeros introduce orthogonality between the real and
imaginary parts of every detected symbol, which can be taken
advantage of to reduce the computational complexity of SD.
We provide the following example to explain this.

Consider a 2× 2 𝑆 = 2 FPMB system employing 4-QAM.
Then, SD constructs a tree with 2𝑃 = 4 levels, where the
branches coming out of each node represent the real values in
the set Ω = {−1, 1}. This tree is shown in Fig. 2.

Calculating partial node weights for the first level and the
second level are independent, same as the third level and the
fourth level, because of the additional zeros in the R matrix.
For instance, the partial weights of node 𝐴 and 𝐵 in Fig. 2
depend only on 𝑥̌3, and the partial weights of node 𝐶, 𝐷, 𝐸,
and 𝐹 depend on 𝑥̌4, 𝑥̌3, and 𝑥̌1 except 𝑥2. In other words,
the partial weights of node 𝐴 and 𝐵 are equal, and need to be
calculated once. Similarly, partial weights of node 𝐶 and 𝐷
can be used without an additional computation for the partial
weights of node 𝐸 and 𝐹 , respectively.

Because of this feature, the DFS strategy is modified in
the following way: for the 𝑢𝑡ℎ layer, where 𝑢 is an odd
number, partial weights of the nodes at the layer 𝑢 (called

children nodes) belonging to a node at the layer 𝑢+1 (called
a parent node) are stored, and are used as partial weights of
the nodes belonging to the same node at the layer 𝑢+2 (called
a grandparent node), but to the different parent nodes. In other
words, the weights of children nodes belonging to one of the
parent nodes are recycled by the children’s cousins.

By implementing the modified DFS algorithm, further com-
plexity reduction is achieved beyond the reduction due to the
precalculation table 𝕋 [27].

C. Initial Radius for BICMB-CP

The proposed SD algorithm for UMB-CP described in the
previous sections can also be applied to BICMB-CP. However,
a straightforward implementation of this algorithm can result
in unsuccessful searches for bit metrics which in turn results
in unnecessary complexity. To solve this problem, we used
an initial radius determined by the ZF-DFE algorithm. With
the initial radius acquired by the ZF-DFE algorithm, the
SD guarantees no unsuccessful search for the bit metrics. A
description of our technique can be found in [27].

D. General Signal Constellations

The square QAM constellation enables the separation of
real and imaginary parts of the received signals and results in
the simple structure discussed in the previous subsection. This
structure results in a substantial reduction in computational
complexity as will be illustrated in simulation results. The
basic technique is applicable to general constellations such as
non-square QAM and MPSK. In the case of non-square QAM,
the real and the imaginary parts need to be treated differently
depending on their signal set and mapping. For MPSK, the real
and imaginary parts cannot be treated separately, and the real-
valued SD is not applicable. The computational complexity
reduction can be applied to a complex-valued SD. For both
non-square QAM and MPSK, the resulting computational
complexity will be less than conventional SD, but more than
for square QAM.

VI. SIMULATION RESULTS

A. UMB-CP

To illustrate the analysis of the diversity order in Section III,
we now present simulation results over a number of different
system configurations. Fig. 3 shows BER performance for SB
and FPMB. The curves with the legend FPMB are generated
by the precoding matrices that outperform the others in [25],
[26]. All of the FPMB systems employ 4-QAM modulation,
and the system data rate for SB and FPMB is set to 4, 8
bits/channel use for a 2×2 and a 4×4 system, respectively. All
of the FPMB systems are shown to achieve the full diversity
order since each slope is parallel to the corresponding SB
system, known to achieve the full diversity order of 𝑁𝑀 . We
note that a larger number of singular values leads to a bigger
array gain [25].

Simulation results to support the diversity analysis of 4× 4
𝑆 = 4 PPMB in Table I are provided in Fig. 4. We find that
the simulation results are the same as the diversity orders in
Table I.
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Fig. 3. BER vs. SNR comparison for 2× 2, 4× 4 SB and FPMB.
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To verify the reduced computational complexity with sphere
detection in Section V, we simulated 2 × 2 𝑆 = 2 and
4 × 4 𝑆 = 4 FPMB systems using 4-QAM and 64-QAM
with receivers employing the exhaustive search (EXH), the
conventional SD (CSD), and the proposed SD (PSD). In these
simulations, the initial radius is chosen to be 𝜌2 = 2𝑁0𝑃 , in-
side which at least one lattice point lies with a high probability
[18]. The average number of real multiplications for decoding
one transmitted vector symbol is calculated at different SNR.
Since the reductions in complexity are substantial, we will
express them as orders of magnitude (in approximate terms)
in the sequel. We will describe both sets of results, but due to
space limitations, provide plots only for 4×4. Fig. 5 shows the
simulation results of 4×4 𝑆 = 4 FPMB system. For 4-QAM,
the number of multiplications of CSD is reduced by 1.4 and
2.1 orders of magnitude at low and high SNR, respectively.
PSD reduces the complexity by 2.1 orders of magnitude at
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Fig. 5. Average number of real multiplications vs. SNR for the 4×4 FPMB
systems with 4-QAM and 64-QAM.

low SNR, and 2.4 at high SNR. The reduction becomes
larger as the constellation size increases in the 4 × 4 𝑆 = 4
FPMB system. For 64-QAM, the number of multiplications
of CSD decreases by 3.3 and 6.4 orders of magnitude at
low and high SNR, respectively. PSD gives a larger reduction
by 4.3 orders of magnitude at low SNR, and 7.0 at high
SNR. In the case of the 2 × 2 𝑆 = 2 FPMB system, for
4-QAM, a comparison with EXH shows that CSD reduces
the number of multiplications by approximately 0.6 and 0.8
orders of magnitude at low and high SNR, respectively, and
PSD reduces by approximately 1.0 and 1.1 order of magnitude
at low and high SNR, respectively. For 64-QAM, the reduction
in complexity increases: the number of multiplications of CSD
decreases by approximately 1.4 orders of magnitude at low
SNR, and 2.8 at high SNR, while that of PSD decreases
by 2.4 and 3.2 orders of magnitude at low and high SNR,
respectively. Simulation results clearly show that CSD reduces
the complexity substantially compared with EXH, and the
complexity can be further reduced effectively by our PSD.
The complexity reduction becomes larger as the constellation
precoder dimension or the constellation size becomes larger.

B. BICMB-CP

To verify the diversity analysis in Section IV, Fig. 6 depicts
the simulation results for 2× 2, 3× 3, and 4× 4 BICMB and
BICMB-FP with 64-state convolutional code punctured from
1/2-rate mother code with generator polynomials (133, 171)
in octal representation. In [8], we showed the maximum
achievable diversity order of BICMB with an 𝑅𝑐-rate con-
volutional code is (𝑁 − ⌈𝑆 ⋅ 𝑅𝑐⌉ + 1)(𝑀 − ⌈𝑆 ⋅ 𝑅𝑐⌉ + 1).
In this example, the maximum achievable diversity order of
the three BICMB systems is 1. However, Fig. 6 shows that
BICMB-FP achieves the full diversity order for any code rate.

Fig. 7 depicts the simulation results of BICMB-PP given
in the example of Section III-B. The diversity orders of the
BICMB systems, 𝒯1 and 𝒯2 are 4 and 1, respectively [8].
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Comparing the slopes of BICMB-PP with BICMB, we see
that the simulation results match the analysis in Section III-B.

To verify the proposed sphere decoding technique in this
case for BICMB-FP, we simulated 2 × 2 𝑆 = 2, 64-state
𝑅𝑐 = 2/3 BICMB-FP systems, and 4 × 4 𝑆 = 4, 64-
state 𝑅𝑐 = 4/5 BICMB-FP systems using 4-QAM and 64-
QAM modulation with Gray mapping. The average number of
real multiplications for acquiring one bit metric is calculated
with receivers employing EXH, CSD, and PSD. Initial radii
for both of CSD and PSD are determined by the ZF-DFE
algorithm. As in the previous subsection, we will describe
both sets of results, but provide plots only for 4 × 4. Fig.
8 shows the number of multiplications of CSD for 4-QAM
decreases by 1.3 and 1.5 orders of magnitude at low and
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Fig. 8. Average number of real multiplications vs. SNR for the 4 × 4
BICMB-FP systems with 4-QAM and 64-QAM.

high SNR, respectively. PSD gives bigger reductions by 2.1
orders of magnitude at low SNR, and 2.3 at high SNR. For
the 64-QAM case, reductions between EXH and CSD by 3.2
and 4.4 orders of magnitude are observed at low and high
SNR, respectively, while larger reductions by 4.2 and 5.4 are
achieved by PSD. In the case of the 2×2 BICMB-FP system,
we observe that the number of multiplications of CSD for
4-QAM is reduced by 0.4 and 0.5 orders of magnitude at
low and high SNR, respectively. PSD yields bigger reductions
by 1.0 and 1.1 orders of magnitude at low and high SNR,
respectively. In the case of 64-QAM, reductions between CSD
and EXH are 1.5 and 2.1 orders of magnitude at low and
high SNR, respectively, while larger reductions of 2.4 and
2.9 are achieved by PSD. Similarly to the uncoded case,
the complexity reduction becomes larger as the constellation
precoder dimension or the constellation size becomes larger.
One important property of our decoding technique needs to
be emphasized: the substantial complexity reduction achieved
causes no performance degradation.

VII. FURTHER REDUCTION IN DECODER COMPLEXITY

Our goal in this paper has been to show that the BICMB
structure with precoding can achieve the maximum spatial
multiplexing together with the maximum diversity order of-
fered by the MIMO channel. We have shown that this is
possible via the MLD. To simplify the complexity of MLD we
have shown that by using SD, one can reduce the complexity
of MLD by several orders of magnitude. We note that the
expected complexity of SD has been studied in detail in the
literature. In [15], it has been shown that although SD can
be efficient for some SNR and problems of moderate size,
its complexity actually grows as an exponential function of
the problem size. Although we have shown that a substantial
complexity reduction is achievable via SD, in the sequel we
will discuss recent developments in the literature that can help
reduce the complexity even further.
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Fig. 9. BER comparison of FPMB with SD, MMSE, and ZF decoders and
16-QAM.
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Fig. 10. BER comparison of BICMB-CP with SD, MMSE, and ZF decoders
and 16-QAM.

Simple decoders such as Minimum Mean Squared Error
(MMSE) or Zero-Forcing (ZF) will not be able to capture the
diversity order or the performance of SD. As examples, Fig. 9
depicts the performance of FPMB and Fig. 10 depicts the
performance of BICMB-CP versus MMSE and ZF decoding.

Within the last few years, a large number of approaches
that attack the complexity of decoding in MIMO systems
have been published. These can be classified roughly into
three categories. The first category consists of techniques that
reduce the complexity of SD. For example, the approach in
[29] is based on searching a partitioned symbol vector space
rather than that spanned by the whole symbol vector. This is
equivalent to carrying out the search in a reduced dimension
space. There is an inevitable performance loss due to this

approach but this loss is compensated by a more sophisticated
tree search and the recomputation of a set of symbols ignored
in the reduced dimension search. Simulations for large 𝑁×𝑁
MIMO systems at high SNR show nearly constant complexity
over a wide range of BER values with performance limited
to 1 dB of MLD. Complexity reductions with respect to
SD are modest when compared with the order-of-magnitude
reductions with SD against MLD. In [30], a fixed-complexity
SD is introduced. It is proven that this decoder achieves the
same diversity order , and at high SNR, same performance
as MLD. However, the technique is specified for uncoded
MIMO systems. A number of other techniques for reducing
the complexity of SD exist. Examples are Schnorr-Euchner
enumeration, e.g., [31], [32], radius adaptive or increasing
radii SD, e.g., [33], [34].

A second group of approaches employ tree search tech-
niques different than SD for low-complexity MIMO decoding,
and can have practical interest. In [35], an augmented channel
matrix approach that reduces the lattice search is introduced.
It has been proven that this approach provides the maximum
receive diversity offered by the MIMO channel. Simulation
results show that for large 𝑁×𝑁 , the system outperforms an-
other well-known lattice reduction technique, Lenstra-Lenstra-
Lovasz (LLL) algorithm followed by successive interference
cancellation with a slight increase in complexity. In [36], an
approach from error correction coding, the Chase algorithm,
has been adopted for MIMO detection. Some complexity
reduction with a slight degradation in performance is possible
by using this technique. However, it has been shown in [29]
that further complexity reduction than [36] is possible by the
technique in [29]. We count the approach of adopting sequen-
tial decoding algorithms to MIMO decoding in this second
category. Sequential decoding algorithms, such as the Fano
and the stack algorithms were used to decode convolutional
codes prior to the discovery of the Viterbi algorithm. For
example, [37] and [38] adapt the stack algorithm to MIMO
decoding, [39] parallelizes the stack algorithm for MIMO, and
[40] proposes a multistack algorithm for soft MIMO decoding.
Another group of techniques employ randomized tree search.
These are known as Monte Carlo Tree Search [41] or Markov
Chain Monte Carlo [42], [43] techniques.

A third group of algorithms uses a variety of techniques
to achieve MIMO decoding with a reduction in complexity,
trading off performance in many cases. For example, [44]
uses an approach of first MMSE decoding and then choosing
among a small number of candidates via a reliability metric.
This approach achieves the same performance as MLD with
about 28% (not orders of magnitude) reduction in complexity.
Reference [45] employs simplifications in bit constellation
mapping in QAM, with complexity reductions reported up
to one degree of magnitude for 64-QAM. Some researchers
employed a variety of mathematical programming techniques
for MIMO decoding. For example [46] employed linear and
mixed integer linear programming with the 𝐿1 norm, and [47]
used semi-definite programming.

Examples of different approaches to MLD can be increased.
However, after a close examination of these approaches, it
can be stated that the orders of magnitude reduction by SD
over MLD as well as our particular approach over SD remain
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substantial. While an alternative to the approach described in
the previous section in terms of performance and complexity
is not immediately clear, some of the proposed techniques
can be employed to provide additional complexity reductions,
albeit unlikely to be by orders of magnitude. Examples of
such techniques are [29], possibly a version of [30] for coded
systems, and [45].

VIII. CONCLUSION

In this paper, we proposed constellation precoded multiple
beamforming which achieves the full diversity order in both of
the uncoded and coded MIMO multiple beamforming systems
when the channel information is perfectly available at the
transmitter as well as the receiver, at different levels of spatial
multiplexing, including the maximum (min(𝑁,𝑀)) provided
by the 𝑁 ×𝑀 channel. Diversity analysis was given in both
of the multiple beamforming schemes through the calculation
of pairwise error probability. We provided examples of calcu-
lating the diversity orders of various multiple beamforming
systems and simulation results supporting the analysis. A
sphere detection algorithm which improves the complexity
was proposed so that constellation precoded multiple beam-
forming can be considered as a practical implementation
for MIMO systems requiring high throughput with the full
diversity order. The proposed SD algorithm in this paper can
be applied to any MIMO system.
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