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Computational Complexity of
Decoding Orthogonal Space-Time Block Codes
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Abstract—The computational complexity of optimum decoding
for an orthogonal space-time block code Gy satisfying GGy =
c(ZkK:1 |sx|?)In where c is a positive integer is quantified. Four
equivalent techniques of optimum decoding which have the same
computational complexity are specified. Modifications to the basic
formulation in special cases are calculated and illustrated by
means of examples. This paper corrects and extends [2],[3], and
unifies them with the results from the literature. In addition, a
number of results from the literature are extended to the case
c> 1.

Index Terms—OSTBC, maximum likelihood decoding, quadra-
ture amplitude modulation (QAM), decoding QAM, square
QAM.

I. INTRODUCTION

N [4], an optimum Maximum Likelihood metric is intro-

duced for Orthogonal Space-Time Block Codes (OSTBCs).
A general description of this metric and specific forms for a
number of space-time codes can be found in [5]. This metric
is complicated and, in a straightforward implementation, its
computational complexity would depend on the size of the
signal constellation. By a close inspection, it can be observed
that it can actually be simplified and made independent of
the constellation size. Alternatively, the Maximum Likelihood
formulation can be made differently and the simplified metric
can be obtained via different formulations [6],[7]. In [2],[3],
yet another formulation is provided. Although it is stated
in [2],[3] that the formulation depends on the size of the
signal constellation as O(\/f) for square Quadrature Ampli-
tude Modulation (QAM) with L signal points, in reality the
detection can be performed using conventional quantization
operation, independently of L. Therefore the computational
complexity figures should be updated. However, the technique
proposed in [2],[3], when properly implemented, happens to
be one of the optimum decoding techniques for the decoding
of OSTBC:s. In this paper, we will unify all of the approaches
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cited above and calculate the computational complexity of
the optimum decoding of an OSTBC. We will begin our
discussion within the framework of [2],[3].

Consider the decoding of an OSTBC with N transmit and
M receive antennas, and an interval of 7' symbols during
which the channel is constant. The received signal is given
by

Y=GgyvH+V 1)

where ¥ = [yZ |7x s is the received signal matrix of size
T x M and whose entry y] is the signal received at antenna
jattimet, t=1,2,....7,5=1,2...,M; V = [v!]rxpm is
the noise matrix, and Gy = [gi]rx N is the transmitted signal
matrix whose entry g¢ is the signal transmitted at antenna i
at time ¢, ¢ = 1,2,..., N. The matrix H = [h; j]nxn is the
channel coefficient matrix of size N x M whose entry h; ;
is the channel coefficient from transmit antenna ¢ to receive
antenna j. The entries of the matrices H and V are indepen-
dent, zero-mean, and circularly symmetric complex Gaussian
random variables. Gy is an OSTBC with complex symbols
sk k=1,2,..., K and therefore GEGn = ¢(30_, |sx|?) In
where c is a positive integer and Iy is the identity matrix of
size N.

II. A REAL-VALUED REPRESENTATION

Arrange the matrices Y, H, and V, each in one column
vector by stacking their columns on top of one another

y = vee(Y)=(yl,..,y1)", @
h = vec(H)= (h1,17-~-7hN,M)T7 €)
= vec(V) = (vf,...,00)T. )
Then one can write
y = Gnh+ o 5)

where G ~ = In @G, with ® denoting the Kronecker matrix
multiplication. In [2],[3], a real-valued representation of (1)
is obtained by decomposing the M7T'-dimensional complex
problem defined by (5) to a 2M7T-dimensional real-valued
problem and by applying the real-valued lattice representation
defined in [8] to obtain

j=Hzx+v (6)
where
g = (Re(yt),Im(y}),...,Re(yd), Im@yd)T, (7
z = (Re(s1),Im(s1),...,Re(sk),Im(sg))",  (8)
o = (Re(vi),Im(v}),...,Re(vy"),Im(vf)". (9
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The real-valued fading coefficients of H are defined using
the complex fading coefficients h;; from transmit antenna
¢ to receive antenna j as ho; 121N = Re(h;, ;) and
h2i+2(j—1)N = Im(hm) for 7 = 1,27. . .7N and ] =
1,2,..., M. Since Gy is an orthogonal matrix and due to
the real-valued representation of the system using (6), it can
be observed that the columns h; of H are orthogonal to each
other and their inner products with themselves are a constant

(21.[3]

H'H = ol (10)
By multiplying (6) by H” on the left, we have
J=o0x+70 (11)

where § = H”'y, and © = H7§ is a zero-mean random vector.
Due to (10), v has independent and identically distributed
Gaussian members. The Maximum Likelihood solution is
found by minimizing

15— o3 (12)

or equivalently
lo™"5 = =3 (13)

over all combinations of z € Q2X. As a result, the joint
detection problem of an OSTBC decouples into K symbol
detection problems

o™ (Jak—1, Yok) — (T2k—1,21)||3 (14)

one per symbol (zax—1,%2k) € 02, where k = 1,2,..., K.
Further, assuming that the signal constellation is separable as
02 where Q = {£1,43...,4+(2L — 1)}, and L is an integer,
the Maximum Likelihood decoding problem can be further
simplified to

min |z — &x|? (15)
T, €N
where we denoted
& =0 'y, k=1,2,...,2K, (16)

which is a standard operation in conventional Quadrature
Amplitude Modulation (QAM). In the sequel, we will compute
the decoding complexity up to this quantization operation.

The decoding operation consists of the multiplication

y=H"y, (17)

the calculation of

o= FTh, (18)

the inversion of o, and the multiplications in (16).

In what follows, we will show that when GGy =
c(zliil |sk|?)In where c is a positive integer, then o =
c|H||?. The development will lead to the four equivalent
optimal decoding techniques discussed in the next section.

Let 5, = Re[sg] and 5; = Im[sg]. Form two vectors, 5 and
S, consisting of S and s, respectively

5=(51,50,...,5)%, 5=1(51,50,...,55)T, (19)

and form a vector s’ that is the concatenation of 5 and 3

s’ = (57,507, (20)

)

By rearranging the right hand side of (5), we can write

y=Fs +v=F,5+F,5+v (21)

where F' = [F, F;] is an MT x 2K complex matrix and
F, and F, are MT x K complex matrices whose entries
consist of (linear combinations of) channel coefficients h; ;.
In [6], it was shown that when GZ Gy = (30 [sx]?)In,
then Re[FH F| = | H||*I. Tt is straightforward to extend this
result so that when GGy = ¢(3 1, |s|?)In, then

Re[FHF) = c||H|*I (22)
where c is a positive integer. Let
y=Rely], §=Imly, ©=Rel], @=Imf], (23
and _ -
F, =Re[F,], F,=1Im[F,], o4
Fy, =Re[F,)], F, =Im[F).
Now define
(3] w3 4] L) e
so that we can write
y =F's' + (26)

which is actually the same expression as (6) except the vectors
and matrices have their rows and columns permuted.

It can be shown that (22) implies

F'TF = ¢|H|I. (27)

Let Py and Ps be 2MT x2MT and 2K x 2K, respectively,
permutation matrices such that

5 =Py, (28)

It follows that PT P, = P,PT = I and PYP, = P,PT =I.
We now have

x = P,s’.

y=Py(F's' +v)=P,F'Pl'z+ Py = Hx +v. (29)
Therefore,
H = P,F'Pr (30)
which implies
H"H = P,F'"P]P,F'P] = c|H|]I. (31

As a result, o = || H||?.

III. FOUR EQUIVALENT OPTIMUM DECODING
TECHNIQUES FOR OSTBCs

For an OSTBC Gy satisfying G Gn = c(3p; |si]|?) In
where c is a positive integer, the Maximum Likelihood solu-
tion is formulated in four equivalent ways with equal squared
norm values

IY = GnH|? = ly = Fs'||> = |ly = F's'|I* = |y — Hz|*.

(32)
There are four solutions, all equal. The first solution is
obtained by expanding ||Y —Gy H||? and is given by eq. (7.4.2)
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of [6] when ¢ = 1!. When ¢ > 1, it should be altered as

5k = ! Re{Tr(HTAZY)} —i - Im{Tr(H” B'Y)}]

c[H[?
(33)
for k=1,2,..., K, where A; and By, are the matrices in the
linear representation of Gy in terms of 55 and sj as

K K
On = Z§kz4k +18x By = Zsk/ik + s} B,
k=1 k=1
1 =+-1, Ay = Ak + Bk, and By = Ak — Bk [6]. Once
{4} | are calculated, the decoding problem can be solved
by

(34)

min |5, — Im[3;]|? (35

5LEQ
once for each k£ = 1,2,..., K. Similarly to (15), this is a
standard quantization problem in QAM.

The second solution is obtained by expanding the second
expression in (32) and is given by

o _ Re[F'y]
H[?

This is given in [4. eq. (7.4.20)] for ¢ = 1. The third solution

corresponds to the minimization of the third expression in (32)
and is given by

min |55, — Re[1][%,
3,EQ

(36)

F’ Ty/
=
The fourth solution is the one introduced in [2]. It is obtained
by minimizing the fourth expression in (32) and is given by

al

(37)

T T
p=2 dfiq_m (38)
Considering that
F, = [vec(A1H) --- vec(AxH)] (39)
Fy,=1[i-vec(B1H) - i-vec(BxH)) (40)

[4, eq. (7.1.7)], it can be verified that (33) and (36) are
equal. The equality of (36) and (37) follows from (23)-(25).
The equality of (37) and (38) follows from (28) and (30).
Therefore, equations (33), (36)-(38) yield the same result, and
when properly implemented, will have identical computational
complexity.

Although these four techniques are equivalent, a straight-
forward implementation of (33) or (36) can actually result in
larger complexity than (37) or (38). The proper implementa-
tion requires that in (33) or (36), the terms not needed due to
elimination by the Tr[ ], Re[ ], and Im[ ] operators are not
calculated.

Let’s now compare these techniques with the minimization
of the metric introduced in [4]. For a complex OSTBC, let

[41.[5]
=y ngnt

ten(k) j=1

he(y, 57 (k) (41)

where 7(k) is the set of rows of G in which s, appears, e;(k)

IThe notation in [5] and [6] is the transposed form of the one adopted in
this paper.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 4, APRIL 2011

expresses the column position of sy in the tth row, sgn, (k)
denotes the sign of sj in the tth row,

if sy is in the tth row of Gy,

B = M.
et(k). hst(k)j if s}, is in the tth row of Gy,
(42)
and
; J if 55 is in the tth row of G
ey = 1 Vi if s is in N 43
i (k) { ()" if st is in the tth row of Gy )
fork=1,2,..., K. A close inspection shows that 7, in (41)-

(43) is equal to the numerator of (33).
The metric to be minimized for s is given as [4],[5]

N M

> D Ihisl

i=1 j=1

— 1| |se] (44)

‘Sk — Tk|2 +

Implemented as it appears in (44), this metric has larger
complexity than the metrics for four equivalent techniques
described above. Furthermore, its complexity depends on the
constellation size L due to the presence of the factor |sy|?. It
can be simplified, however.

For minimization purposes, we can write (44) as

|5l — 2Re[sgr] + |r|® + el H %[k * — |si]?

2Re[s}r] 7% |2
=c|H|? <3k|2 - k + const. (45)
clH[*  |H[*
2
Tk
=c|H|? sk — ——=—| + const.
ol H|?

where the first equality follows from the fact that the third term
inside the paranthesis in (45) is independent of s;. Because of
our observation that 7, is the same as the numerator of (33),

we have
Tk

G = e
c|H]?

k=12,.. K (46)
and then this method becomes equivalent to our four equiv-
alent techniques. We would like to note that observations
equivalent to the expression in (33) were made in [9] and

[10].
IV. OpTIMUM DECODING COMPLEXITY OF OSTBCs

Since the four decoding techniques (33), (36)-(38) are
equivalent, we will calculate their computational complexity
by using one of them. This can be done most simply by using
(37) or (38). We will use (38) for this purpose.

First, assume ¢ = 1. Note H is a 2MT x 2K matrix.
The multiplication H”'y takes 2MT - 2K and calculation
of 0 = ||H||? takes 2M N real multiplications, its inverse
takes a real division, and o~ '% takes 2K real multiplications.
Similarly, the multiplication A"y takes 2K - (2MT — 1), and
calculation of o takes 2M N — 1 real additions. Letting Rp,
Ry and R4 be the number of real divisions, the number
of real multiplications, and the number of real additions,
the complexity of decoding the transmitted complex signal
(s1,82,...,8K) with the technique described in (17),(18), and
(16) is

C =1Rp,(4KMT + 2MN + 2K)Ryy,

(A4KMT +2MN — 2K — 1)Ra. 47
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Note that the complexity does not depend on the constellation
size L. If we take the complexity of a real division as
equivalent to 4 real multiplications as in [2],[3], then the
complexity is

C=(AKMT +2MN + 2K + 4)Ryy,

(AKMT +2MN — 2K —1)Ry4 (48)

which is smaller than the complexity specified in [2],[3] and
does not depend on L. In the rest of this paper, we will use
this assumption. The conversion from this form to that in (47)
can be made simply by adding a real division and reducing
the number of real multiplications by 4.

When ¢ > 1, the number of real multiplications to calculate
o increases by 1, however, in the examples it will be seen
that the complexity of the calculation of H” is reduced by
a factor of c.

In what follows, we will calculate the exact complexity
values for four examples. See [4],[5] for explicit metrics of
the form (41)-(44) for these examples.

Example 1: Consider the Alamouti OSTBC with N = K =
T =2 and M =1 where

. S1 52
g2 - |: _SS 8:{ :| . (49)
The matrix H can be calculated as
hi —hy hy —hy
5 | ha hi  hy hs
B=10 h —m —h (50)
hy —hs —hy h

Note that the matrix H is orthogonal and all of its columns
have the same squared norm. One needs 16 real multiplications
to calculate § = H7g, 4 real multiplications to calculate
o = hThy, 4 real multiplications to calculate o', and 4 real
multiplications to calculate o~'7. There are 3 -4 = 12 real
additions to calculate 77 and 3 real additions to calculate
0. As a result, with this approach, decoding takes a total of
28 real multiplications and 15 real additions.

The complexity figures in (48) are 28 real multiplications
and 15 real additions, which hold exactly.

Example 2: Consider the OSTBC with M = 2, N = 3,
T =8, and K =4 given by [11]

S1 52 53
—S2 S1 —S54
—S3 S4 S1
—S84 —S83 52

51 52 53
—S3 S] =S
—s3  s; s8]
-5} —S3 8

For this Gy, one has G G3 = 2 (Zle |sk\2) Is. In [3], it

has been shown that the 32 x 8 real-valued channel matrix H

is
hi —hy hs —hs hs
ha hi hs hs hg hs 0 0

|
=
I
e}
o

h7 —hg hg —hip hi

H= 52
hs h7 hio hg hiz hix O 0 (52)
0 0 hiw hi2 —hg —hio —hy —hs
0 0 hiz —hit —hio he —hg hy]

where h;, i = 1,2,...,11 and h;, j = 2,4,...,12 are the
real and imaginary parts, respectively, of hyi1, ho1, h31,
hi,2, ha 2, hs 2. The matrix H7T is 8 x 32 where each row
has 8 zeros, while each of the remaining 24 symbols has
one of hy, ha, ..., hie, repeated twice. Let’s first ignore the
repetition of h; in a row. Then, the calculation of H ng takes
8 - 24 = 192 real multiplications. The calculation of o =
hThy =2 Z/lg2:1 h? takes 12 + 1 = 13 real multiplications, In
addition, one needs 4 real multiplications to calculate o1, and
8 real multiplications to calculate ¢~ '§. To calculate H”'g,
one needs 8 - 23 = 184 real additions, and to calculate o, one
needs 11 real additions. As a result, with this approach, one
needs a total of 217 real multiplications and 195 real additions
to decode.

For this example, (48) specifies 300 real multiplications and
279 real additiops. The reduction is due to the elements with
zero values in H.

It is important to make the observation that the repeated
values of h; in the columns of H, or equivalently hp 0
the rows of HY AkH or HH B,f , have a substantial impact
on complexity. Due to the repetition of h;, by grouping the
two values of g; that it multiplies, it takes 8 - 12 = 96
real multiplications to compute H”¢, not 8 - 24 = 192. The
summations for each row of HT§ will now be carried out in
two steps, first 12 pairs of additions per each h;, and then
after multiplication by h;, addition of 12 real numbers. This
takes 12 + 11 = 23 real additions, with no change from
the way the calculation was made without grouping. With
this change, the complexity of decoding becomes 121 real
multiplications and 195 real additions, a huge reduction from
300 real multiplications and 279 real additions.

Example 3: We will now consider the code G4 from [11].
The parameters for this code are N = K =4, M =1, and
T = 8. It is given as

S1 52 S3 S4
—S2 S1 —54 S3
—S3 S4 S1 —S2
—S4 —S83 52 S1

51 52 53 84

* * * *
—S2 51 —S54 83

* * * *
—S3 54 51 982
—s} —s3 s 8]

Similarly to G3 of Example 2, this code has the property that
GG, = Q(Zszl |sk|?)14. The H matrix is 16 x 8 and can
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be calculated as

Thi —ho hs —hs hs —hs hr hs

he hi hs hs he hs hs hr

hs —hgy —h1 hs hy —hsg —hs hg
H=|ha hs —hy =hi hg hr —he —hs| (54

hs he —h7 hg —hi —he hs hy

| he —hs —hg hr —hs h1  hs —hs
This matrix consists entirely of nonzero entries. Each entry
in a column equals +h; for some i € {1,2,...,8}, every h;

appearing twice in a column. Ignoring this repetition for now,
calculation of H7 takes 8 - 16 = 128 real multiplications.
Calculation of o takes 9 real multiplications, its inverse 4
real multiplications, and the calculation of 0_1117 takes 8 real
multiplications. Calculation of H”7j takes 8 - 15 = 120 real
additions, and calculation of o takes 7 real additions. As
a result, with this approach, to decode, one needs 149 real
multiplications and 127 real additions.

For this example, equation (48) specifies 156 real multipli-
cations and 135 real additions. The reduction is due to the fact
that one row of H” has each h; appearing twice. This reduces
the number of multiplications and summations to calculate o
by about a factor of 2.

However, because each h; appears twice in every row of
HT, the number of multiplications can actually be reduced
substantially. As discussed in Example 2, we can reduce
the number of multiplications to calculate H”'yj by grouping
the two multipliers of each h; by summing them prior to
multiplication by h;, ¢ = 1,2,...,8. As seen in Example
2, this does not alter the number of real additions. With
this simple change, the number of real multiplications to
decode becomes 85 and the number of real additions to decode
remains at 127.

Example 4: 1t is instructive to consider the code Hs given
in [11] with N = 3, K = 3, T' = 4 which we will consider
for M =1 where

S1 52 53/\/5

—s3 s3 53/V/2
s5/V2  s5/V2  (—s1— 8]+ 52— 55)/2
s5/V2 —s5/V2  (s24 85+ 51— 57)/2

For this code, HiH; = (Zizl |sk|?)I5 is satisfied. In this
case, the matrix H can be calculated as

Hs= (55)

hl —hg h3 —h4
ho hy ha hs
hs  hy —h1 —ho
. _ hy —hs  —hs hy
H1—4 - —h5 0 0 _h6 ) (56)

—he 0 0 hs
0 he hs 0
0 —hs hs 0
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hs/ V2 —he/V?2
he/\/2 hs/\/2
h5/ﬁ —hﬁ/\/\@
N YN hs ) v/2
Hooo = v myiva (mtnyva | P
(ha +ha)/V2  —(h1 + h3)/V2
(hh = h3)/vV2  (ha —ha)/V2
| (he = ha)/V2  (=hi+h3)/V2 |

where due to space limitations we showed the first four
columns of H as H;_4 and the last two columns of H as
}VI5,6. It can be verified that every column h; of H has
the property that h'h; = o = ||H|?> = Y0_, h} for
1=1,2,...,6. In this case, the number of real multiplications
to calculate H”'g requires more caution than the previous
examples. For the first four rows of HT, this number is 6
real multiplications per row. For the last two rows, due to
combining, e.g., 1 and hs in (hy+h3)/V/2 in the fifth element
of hs, and the commonality of h5 and hg for the first and third,
and second and fourth, respectively, elements of 715, and one
single multiplier 1/ /2 for the whole column, the number of
real multiplications needed is 7. As a result, calculation of
H"j takes 38 real multiplications. Calculation of o takes
6 real multiplications. One needs 4 real multiplications to
calculate o1, and 6 real multiplications to calculate o~ '%.
First four rows of H”¢ require 5 real additions each. Last
two rows of Hjj require 4+ 7 = 11 real additions each. This
is a total of 42 real additions to calculate H”. Calculation
of o requires 5 real additions. Overall, with this approach one
needs 54 real multiplications and 47 real additions to decode.

For this example, (48) specifies 66 real multiplications and
49 real additions. The reduction is due to the presence of the
zero entries in H. On the other hand, the presence of the factor
1/ V/2 in the last two rows of HT adds two real multiplications
to the total number of real multiplications.

V. CONCLUSION

Equation (47) yields the computational complexity of de-
coding an OSTBC when its H matrix consists only of nonzero
entries in the form of h; when ¢ = 1. It should be updated
as specified in the paragraph following (48) when ¢ > 1. The
presence of zero values within H reduces the computational
complexity. In the examples its effect has been a reduction in
the number of real multiplications to calculate H”§j by a factor
equal to the ratio of the rows of Ay and By, that consist only
of zero values to the total number of all rows in Ay and By,
for k = 1,2..., K, with a similar reduction in the number
of real additions to calculate H7g. With the modifications
outlined above, (47) specifies the computational complexity of
decoding the majority of OSTBCs. In some cases, the contents
of the H matrix can have linear combinations of h; values,
which result in minor changes in computational complexity as
specified by this formulation, as shown in Example 4. Finally,
note that L = 2 is a special case where the signal belongs
to one of the four quadrants, calculation of and division by
c|H||? are not needed and the computational complexity will
be correspondingly lower.
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