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Diversity Analysis of
Bit-Interleaved Coded Multiple Beamforming

Hong Ju Park and Ender Ayanoglu, Fellow, IEEE

Abstract—In this paper, diversity analysis of bit-interleaved
coded multiple beamforming (BICMB) is extended to the case
of general spatial interleavers, removing a condition on their
previously known design criteria. We provide a method to get
diversity order, simplifying the calculation of pairwise error
probability (PEP). By using the Singleton bound, we also show
the maximum achievable diversity for given code rate and the
number of subchannels.

Index Terms—Bit-interleaved coded modulation (BICM), sin-
gular value decomposition (SVD), multi-input multi-output
(MIMO), Wishart matrices, convolutional codes.

I. INTRODUCTION

HEN the channel information is perfectly available
Wat the transmitter, beamforming is an attractive tech-
nique to enhance the performance of a multi-input multi-
output (MIMO) system [1]. The beamforming matrices can
be obtained by singular value decomposition (SVD) which
is optimal in terms of minimizing the average bit error
rate (BER) [2]. Single beamforming, which carries only one
symbol at a time, was shown to achieve the full diversity
order of NM where N is the number of transmit antennas
and M is the number of receive antennas [3], [4]. However,
multiple beamforming, which increases the throughput by
sending multiple symbols at a time, loses the full diversity
order over flat fading channels. To achieve the full diversity
order in multiple beamforming, the authors in [5] introduced
BICMB, combining bit-interleaved coded modulation (BICM)
and multiple beamforming. Design criteria for interleaving the
coded sequence were provided [5], [6].

In this paper, we demonstrate a method to determine
whether a given BICMB system satisfies the design criteria by
adapting Viterbi’s transfer function as in finding weight spectra
of the convolutional code. A similar method appears in the
literature on the performance analysis of single-input single-
output (SISO) coded systems over block fading channels
[71, [8]. However, we apply Viterbi’s approach to the bit-
interleaved coded MIMO systems. Through this method, we
verify the previous known result that the BICMB system with
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the 1/2-rate convolutional encoder, a simple interleaver, and
the soft-input Viterbi decoder achieves the full diversity order
when it is used in a 2 X 2 system with 2 streams. In addition,
we will present diversity analysis for specific BICMB systems
which do not meet the design criteria by quantifying the error
patterns via the adapted transfer function.

BICMB consists of parallel channels whose squared co-
efficients have the pdf of the eigenvalues of the uncorrelated
central Wishart matrices! generated by MIMO fading channel.
The parallel channel structure in [8], [10], [11], and [12],
which provides performance analysis of the SISO coded
system over a block fading channel, is the same as that of
the equivalent channel model of BICMB, except that the
coefficients of the parallel channels are assumed to be iden-
tically independent Rician or Rayleigh distributed. Contrary
to diversity analysis for the SISO coded system in [10] and
[12], PEP calculation of BICMB requires a marginal pdf of a
subset of the ordered eigenvalues of the uncorrelated central
Wishart matrices. Although the closed form expression of the
marginal pdf is already shown in [13], it is not useful in
diversity analysis for two reasons. First, it is in the form of
a product of integrals to be calculated (what is stated as a
tensor operator). Second, the integrals to be calculated result
in a large number of recursive integral expressions. We will
calculate this marginal pdf using the joint pdf available in
the literature. In fact, we start with a similar set of recursive
integral expressions, and simplify them to calculate our simple
bound.

Based on the diversity analysis, the maximum achievable
diversity order is analyzed for given code rate and the number
of subchannels. For this purpose, we use a technique similar
to that used in [10] and [12]. Diversity order is determined by
a parameter that is inherited from the BICMB configuration.
Through the Singleton bound, we show the relation between
this parameter, code rate, and the number of subchannels. We
note that the authors of [14] recently calculated this bound by
applying the Matryoshka block fading channel model defined
in [15] to a system equivalent to BICMB. Finally, the design
rule of a spatial interleaver to get the maximum achievable
diversity order is proposed.

II. BICMB OVERVIEW

The code rate R. = k./n. convolutional encoder, possibly
combined with a perforation matrix for a high rate punctured

A central Wishart matrix is the Hermitian matrix AAH where the entry
of the matrix A is complex Gaussian with zero mean so that E[A] = 0.
The Wishart matrix AAH is called uncorrelated if the common covariance
matrix, defined as C = F [asaf ]Vs, where as is the sth column vector of
A, satisfies C =1 [9].
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Fig. 1. Equivalent system model of BICMB.

code, generates the codeword c from the information vector.
Then, the spatial interleaver distributes the coded bits into
S sequences, each of which is interleaved by a bit-wise
interleaver. The interleaved sequences are mapped by Gray
encoding onto the symbol sequences. A symbol belongs to a
signal set x C C of size |x| = 2™, such as 2"™-QAM, where
m is the number of input bits to the Gray encoder.

The MIMO channel H € CM*¥ is assumed to be quasi-
static, Rayleigh, and flat fading, and perfectly known to both
the transmitter and the receiver. In this channel model, we
assume that the channel coefficients remain constant for the
L symbol duration. The beamforming vectors are determined
by the singular value decomposition of the MIMO channel,
i.e.,, H=UAVH where U and V are unitary matrices, and
A is a diagonal matrix whose sth diagonal element, A\, € RT,
is a singular value of H in decreasing order. When S symbols
are transmitted at the same time, then the first S vectors of U
and V are chosen to be used as beamforming matrices at the
receiver and the transmitter, respectively.

On each s*" subchannel at the k" time instant, we get

s = )\syk7s + Nk, s (1)

where 7y, 5, Yy, s are the detected and the transmitted symbol,
respectively. The term ny s is additive white Gaussian noise
with zero mean and variance N9 = N/SNR, and H is
complex Gaussian with zero mean and unit variance. To make
the received signal-to-noise ratio SN R, the total transmitted
power is scaled as N. The equivalent system model is shown
in Fig. 12.

The location of the I" coded bit ¢; within the detected
symbols is stored in a table | — (k,s,4), where k, s, and
i are time instant, subchannel, and bit position on a label,
respectively. Let x{ C x where b € {0,1} in the i'" bit
position. By using the information in the table and the input-
output relation in (1), the receiver calculates the ML bit
metrics as

Y (rgs, ) = min |rs — Asyl* 2)
YEXL

€l

>The temporal interleavers in Fig. 1 are needed due to BICM, and the
spatial interleaver due to spatial multiplexing. Conceptually, the spatial and
the temporal interleavers in this figure can be combined to generate a single,
more complicated interleaver. However, the explicit separation of spatial and
temporal interleavers in Fig. 1 is more in line with the analysis in this paper
and previous papers on the subject.
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Finally, the ML decoder makes decisions according to the rule

¢ = argméinZ’yi(rkvs,él). 3)
l

III. o-SPECTRA

The BER of a BICMB system is upper bounded by the
summations of each PEP for all of the error events on the
trellis [5], [6]. Therefore, the calculation of PEP for each
error event is needed to analyze the diversity order of a given
BICMB system. If the interleaver is properly designed such
that the consecutive long coded bits are mapped onto distinct
symbols, the PEP between the two codewords ¢ and ¢ with
Hamming distance dy is upper bounded as [5]

P(c—¢&)=E[P(c— ¢H)

m.zn Z 0[3)‘2

Sep | ——— @

<E
= 4N0

where d,,,;» is the minimum Euclidean distance in the con-
stellation and «, denotes the number of times the st" sub-
channel is used corresponding to dg bits under consideration,
satisfying ZS 15 = dg. Since PEP is affected by the
summation of the products between «; and singular values
as is seen in (4), it is important to calculate the a-vector,
which we define as [« - - - ag], for each error path to have an
insight into the diversity order behavior of a particular BICMB
implementation.

It has been shown in [5], [6] that for a single-carrier BICMB
system, if the interleaver is designed such that, for all error
paths of interest with Hamming distance dy to the all-zeros
path,

1) the consecutive coded bits are mapped over different

symbols,

2) ag>1forl1 <s< 58S,
then the BICMB system achieves full diversity. In this paper,
we will analyze cases where the sufficient condition oy > 1
may not be satisfied, i.e., as = 0 for some s = 1,2,---,S
is possible. In order to carry out this analysis, as well as to
get an insight into the system behavior in [5], [6], one needs
a method to calculate the values of a; of an error path at
Hamming distance dz to the all-zeros path.

The a-vectors can be found by the generalized transfer
function which is suggested in [7], [8], [16], and [17]. Using
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this method, we illustrate the a-vectors from the generalized
transfer functions of a 4-state 1/2-rate convolutional code with
generator polynomials (5, 7) in octal notation, combined with
several different spatial interleavers in (5), (6), and (7). The
spatial interleaver used in T; and T9 is a simple rotating
switch on 2 and 3 subchannels, respectively. For T3, the it"
coded bit is de-multiplexed into subchannel sp,0q(i—1,18)+1
Wher681= ~=86=1,87=~-~ = 518
= 3 and mod is the modulo operation. Throughout the transfer
functions, the power of Z in each term of this series indicates
the Hamming distance dg associated with an error path, and
the powers of a, b, c¢ indicate how may times a particular
subchannel has an errored bit in that path. The variables a, b,
and c represent 15t 974 and 374 subchannel, respectively, in
a decreasing order of singular values from the channel matrix.

T, = Z°(a?b®) + Z5(a*b® + a®b*)
+ Z7(3a*b® 4 a?b°)
+ Z8(a®V? + 6ab* + a*b°) 5)
+ Z°(5a°b® 4 10a*b® + a2b7)
+ Z1%(a®b% 4 15a5* + 150105 + a?b®) +

=812=2,813:"'

Ty = Z°(a®b?c + a®bc? + ab*c?)
+ Z5(a®b?c + a?b3c + a*bc?+
ab®*c® + a*bc® + ab*c?)
+ Z7(2a%b%c + 2a®b?c? + 2a*b3 P+
2abc? 4 2a*b*c® + 2ab®c?) (6)
+ Z8(a®b® + a*bic + aPbrc 4 2002+
3a3b%c? + 2a%b*c? + a’bc® + 3aPb? 3+
3a’b%c® 4+ ab*c® + b°c® + adbct+
2a2b%ct + ab3ct + a®P) + - -

Ts = Z°(a® + a®b® + a®b+
VP +adc? + b3 + a’cd + b2+ )
+ Z5(a™p? + 3a3b® + a®b? + a'c? + 3a%V* P+
bre? 4+ 3a3c3 + 3b3¢ 4 act 4+ b c?) @)
+ Z7(2a*0® + 2a*b* + a®b3c + TaPb P+
762> + 2a*c® + a®be® + Ta?h A3+
ab®c® + 26 + 2a3c* 4 2b3ct) +
T, shows no term that lacks any of variables a and b, which
means the interleaver satisfies the full diversity order criterion,
as > 1 for s = 1, 2 [5], [6]. Most of the terms in T are
comprised of three variables, a, b, and c. However, three error
events with Hamming distance of 8 lack one variable, resulting
in the a-vectors as [530], [053], and [305]. In T3, many
terms missing one or two variables are observed. Especially,
vectors with as = 0 for two subchannels are found to be

[500], [050], and [005]. In Section IV, we present how these
vectors affect the diversity order of BICMB.

IV. DIVERSITY ANALYSIS

Through the transfer functions in Section III, we have
seen interleavers which do not guarantee the full diversity
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criteria. As stated previously, contrary to the assumption
in [5] that g > 1 for s = 1,2,---,5, we assume in
this paper that it is possible to have ay = 0 for some
s = 1,2,---,85. Let us define ay,min as the minimum «
among the nonzero «’s in the a-vector. Using the inequality
25:1 asA2 > Qpamin Zle’awéo A%, PEP in (4) is expressed
as

P(c—¢) <FE

—exp( WZ#MN @®)
where W = d?

2 inQnzmin/(4No), and ps is the squared
singular value of the s subhcannel (\?). In (8), py, is the k*"
element of a vector p = [p; - - px]T whose elements are the
indices corresponding to non-zero a, i.e., ap, # 0. Similarly,
s=[s1 - sy_x]T is defined as a vector whose elements
are the indices k such that o, = 0. Throughout this paper,
we use X and Y as X = max(N, M), and Y = min(N, M).
The vectors p and s are sorted in an increasing order. To
calculate (8), we need the marginal pdf of the K eigenvalues
by calculating the multiple integration over the domain Dg

f (Mpl7 PRI
/ / ,U/17 : 7,U/Y) d,U/Sy K d,usl (9)

The joint pdf of the ordered strictly positive eigenvalues of the
uncorrelated central Wishart matrices p (g1, -+, uy) in (9) is
available in the literature [18], [19] as

Huf‘ (0

j>i

7/1‘171( -

- Hj
p(/”'lf" 7/1'Y 6 =t (10)

Because we are interested in the exponent of W, the constant,
which appears in the literature, is ignored in (10) for brevity.

The evaluation of the marginal pdf is complicated due to
the multiple integration of the product of the polynomial and
the exponential function in (9), (10). The complexity mainly
comes from the fact that the elementary integration inside the
multiple integration, which is for y™e Ydy, generates a large
number of terms of the form z"e™* for large m. However,
if we remove the exponential function of the elementary
integration, the integration produces only one term, resulting
in a much simpler multiple integration. In addition, since
the eigenvalues of the Wishart matrix are positive and real,
e~ # <1 holds true for any <. This idea leads to a simple result
of the elementary integration as [ y™e ¥dy < #ﬂxmﬂ.

To apply the idea above to the calculation of the marginal
pdf, we introduce an upper bound to the joint pdf as

pA(.u“la"' MU“Y) =
K
¢(u17... 7’uy)67<ul+k§1'upk>
ifar=0 (11)
K
72#1) .
G, py)e K= if a; >0
where the polynomial 1}/1/ (#17 -Y,uy) is deﬁn2ed as
U, omy) = T w VT, (s — py)®. By

replacing p (i1, -+ ,jy) With p(ur-- - py) in (9), we
get the upper-bound to the marginal pdf in Theorem 1,
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emphasizing the smallest degree of the terms because it plays
an important role in determining the behavior of (8) in the
high signal-to-noise ratio regime.

Theorem 1: The marginal pdf f (pp,,---
bounded as

s Hpx) is upper

K
f(:upu"' 7IU’PK) < r(ﬂpw"' nupx)e kgl#pk
where 7 (fip,, -, py) 1S a multivariate polynomial whose
smallest degree is (N —Q + 1)(M — Q@+ 1) — K, and Q
is defined as an index indicating the first non-zero «, i.e.,
Q = p1.

Proof: See [17]. O

In the case of the single eigenvalue where K = 1, and
p1 = [, Theorem 1 states that the smallest degree of iy is
(N—=1+1)(M—1+1)—1. This generalizes the result of
the first order expansion in [4], [20] to calculate the marginal
pdf of the I*" eigenvalue.

We are now ready to calculate the expectation of (8) by

calculating
K
exp <_W Z N’Pk)]
k=1

_/.../Dpr(upl,-",ﬂpx)

K
7(1+W) kzl #Pk

E

12)

xe Apip g -+~ dpip,

where Dy, is the domain of integration. Note that 1 + W ~ W
for high signal-to-noise ratio. In addition, it can be easily
verified that the following equality of a specific term in the
polynomial for a domain co > v; > v9 > --- > vg > 0
holds true;

oo VK -1 s

1
// Y
0 0

where ( is a constant. Since the polynomial 7 (tp,, - - , tpr)
is the sum of a number of terms with different degrees, the
result of (12) is also the sum of the terms of W whose
exponent is the corresponding degree. For large W, it is easy
to see that the overall sum is dominated by the terms with
the smallest degree of W1, which results from the smallest
degree of 7 (pp,,- - , tpx ). Therefore, we conclude that (8)
is upper bounded by

K
exp (_qupk)] < nw—(N—Q+1)(M—Q+1) (14)
k=1

where 7 is a constant. Since BER is dominated by PEP with
the worst exponent term, the diversity order of a given BICMB
system is (N — Qumaz + 1) (M — Qumax + 1), where Qpqz is
defined as the maximum among (Q’s corresponding to all of
the error events.

K
—w > Vg
...V?(Ke k=1 dVK...dylz

()

w (13)

E

V. DIVERSITY ORDER BOUND

In this section, we show the diversity order bound by
employing the Singleton bound. Let us define dg (c, &) as
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the Euclidean distance between the mapped symbols of the
two codewords residing on the s subchannel, dg s(c, &) =
Zle |Yk,s — Un,s|*> where yy s and J s are the symbols on
the s subchannel at the time index k from the codewords
c and ¢, respectively. If ay is equal to zero, then all of
the coded bits on the s** subchannel of the two codewords
are the same. Since we assume that the consecutive bits are
mapped over different symbols, the symbols corresponding to
the same coded bits of the s* subchannel are also the same,
resulting in dg s(c,&) = 0. Then, the parameter ) can be
viewed as an index to the first non-zero element in a vector
[deai(c,€) dgalc,€) dg,s(c,€)]. In the case of a
pair of the codewords that has S — 1 non-zero dg s(c, €)’s, Q
can be 2 because of the vector type [0 X X -+ x], or 1 from
[0 X X -+« X],[Xx X0 X X o X], -+, [X X X+ x 0],
where X stands for non-zero value. In general, for a pair of the
codewords that has 0y non-zero dg s(c,€)’s, @ is bounded
as

Q<S—dg+1. (15)

If we consider the L symbols transmitted on each sub-
channel as a super-symbol over y%, then the transmitted
symbols for all the subchannels in a block can be viewed
as a vector of length S super-symbols. For convenience, we
call this vector of super-symbols as a symbol-wise codeword.
We now introduce a distance between ¢ and ¢, which we
call 0y, as the number of non-zero elements in the vector
[dei(c,€) dgalc,€) dg,s(c,€)]. This distance is
similar to the Hamming distance but it is between two non-
binary symbol-wise codewords. By using the Singleton bound
which is also applicable to non-binary codes, we can calculate
the minimum distance of the symbol-wise codewords in a way
similar to finding the minimum Hamming distance of binary
codes. Let us define M as the number of distinct symbol-
wise codewords. Then we see that M = 2mL5Fe from Fig.
l. Let k (0 < k < S —1) denote the integer value satisfying
omL(k=1) « A < 2mLE Since M > 2mL(Ek=1) | there neces-
sarily exist two symbol-wise codewords whose k — 1 elements
are the same. From the Singleton bound [21], the minimum
distance of these symbol-wise codewords 0 g mn is expressed
as O min < S — k + 1. Since 2mL5R: < omL(S=6m,min+1)
we get

OHmin < S —[S R +1 (16)

using the fact that 0 ., is an integer value.

For a given BICMB system with 0 ;n, it is true that
the distance dz between any pair of the codewords is always
larger than or equal to the minimum distance dg min. By
combining the inequalities of §y > d min and (15), we get
Ofmin <0 < S —Q+1, leading to Q@ < S — 6, min + L.
From this inequality, the maximum () is decided as

Qm.az =5- 6H,min + 1.

The inequality (16) and the equation (17) result in the inequal-
ity as Qmaxz > [S - R.]. Taking the result of the diversity
analysis in Section IV into account, we get the maximum
achievable diversity order as (N — [S - R.] + 1)(M — [S -
R.1+1).

17)
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Since we assumed in the previous description that there exist
a convolutional encoder and a spatial interleaver which satisfy
the relation Quaz =[S - R.], we will show the specific
design method of the interleaver from a given convolutional
encoder to ensure the relation. The following method is not
the unique solution to guarantee the maximum achievable
condition, but simple to state the concept. Consider a BICMB
system with S subchannels and the code rate R, = k./n.
convolutional code. Each of P = LC'M (n., S) coded bits is
distributed to the S streams in the order specified by the
interleaving pattern, where LCM(-) is the least common
multiple operation. Since each stream needs to be evenly
employed for a period, P/S coded bits are assigned on
each stream. To guarantee Qmax = [S - Rc], it is sufficient
to consider only the first branches that split from the zero
state in one period because of the repetition property of the
convolutional code. We incorporate the basic idea that once
the st stream is assigned to an error bit of the first branch,
all of the error events containing that branch give as; > 0,
resulting in @ < s. By extending this idea, we summarize the
assignment procedure as

1) the lowest available subchannel is assigned to the error
bit position of one of the first branches which have not
yet assigned to any subchannel,

2) the procedure 1) is repeated until all of the first branches
are assigned to one of the subchannels. If all of the first
branches are assigned to one of the subchannels, the
assignment procedure quits after the rest of subchannels
are assigned randomly to the unassigned bit positions,
subject to satisfying the rate condition on each subchan-
nel.

An example of the design method is provided in [17].

VI. SIMULATION RESULTS

To show the validity of the diversity order analysis in
Section IV using the parameter @.,,,4., BER against SNR are
derived through a Monte-Carlo simulation®. Fig. 2 shows BER
performances for the cases corresponding to T, T2, T3 in
(%), (6), and (7). The well-known reference curves achieving
the full diversity order of N M are drawn from the Alamouti
code for the 2 x 2 case and 1/2-rate orthogonal space-time
block code (OSTBC) for the 3 x 3 case [22]. From (5), Q.mnax
for T is found to be 1 because as; > 1 for s = 1,2 in all of
the a-vectors. In this case, as predicted by the analysis in [5],
[6], the diversity order equals 4. From the figure, we see that
BER curve for T is parallel to that of 2 x 2 Alamouti code.
Since Qmaz for T is 2 due to the vector [0 5 3], the calculated
diversity order is 4 in the case of M = N = S = 3. This is
verified by Fig. 2, losing the full diversity order 9. Although
the same number of subchannels and the same convolutional
code as for T are used, the different spatial interleaver from
that of T3, described in Section III for T3, gives no diversity
gain at all. The reason for this is that the vector [00 5] which
is observed from the transfer function in T3 makes Q. 3
resulting in the calculated diversity order of 1. This matches
the simulation result.

3For a discussion on the use of BER to determine the diversity order of
BICMB, please refer to the text around equations (16)-(18) in [5].
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Fig. 2. Simulation results for a 4-state 1/2-rate convolutional code with

different spatial interleavers. 4-QAM is used for all of the curves.

TABLE 1
SEARCH RESULTS OF THE DOMINANT -VECTORS FOR 64-STATE
CONVOLUTIONAL CODES
| S | rate | dfree | dominant a-vectors | Qmaz |

1/2 10 [3 7] [4 6] [5 5] 1

2 12/3 6 [012] [0 14] [0 15] 2
3/4 5 [0 8] [0 10] [0 12] 2
1/3 15 [366][546] [46 6] 1

3 1/2 10 077 [086][097] 2
2/3 6 [045][06 3] 04 6] 2
3/4 5 [0013][0015] ][00 17] 3

Table I shows results of a computer search of the a-vectors
of BICMB with industry standard 64-state convolutional codes
and a simple rotating spatial interleaver. The generator poly-
nomials for rates 1/2 and 1/3 are (133, 171) and (133, 145,
175) in octal, respectively. For the high rate codes such as
2/3 and 3/4, the perforation matrices in [23] are used from
the 1/2-rate original code. Instead of displaying the whole
transfer functions, we present only three a-vectors among
such a number of dominant a-vectors that lead to @,,,4.. The
search results comply with the bound Qa: > [S - R.] as
was analyzed in Section V.

Fig. 3 shows the BER performance of the 2 x 2 .S = 2
BICMB system with the 64-state convolutional code and a
simple rotating spatial interleaver. The diversity orders of the
systems with punctured codes are 1 because both Q.. values
corresponding to the codes shown in Table I are 2, while the
system with the 1/2-rate convolutional code, whose Qqz 1S
equal to 1, achieves the full diversity order of 4.

As shown in Fig. 4, for a 3 x 3 system with 3 streams, only
1/3-rate convolutional code achieves the full diversity order
of 9 since other codes have Q4. of larger than 1 as given in
Table I. The analytically calculated diversity orders by using
Qmaz in Table T are 4, 4, 1 for 1/2, 2/3, 3/4 respectively,
which are easily verified from Fig. 4.
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> Odiversity=4 Bl
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SNRin dB

Fig. 3. Simulation results for the 2 x 2 case where 16-QAM is used for all
of the curves.

BER

—6—S=3 R=1/3
——S=3 R=1/2 ||
—8—S=3 R=2/3
—+— S=3 R=3/4

=4

A Odiversity_

B Odiversity=4
9

< odiversity=

20 25 30 35 40
SNRin dB

Fig. 4. Simulation results for 3 x 3 case where 16-QAM is used for all of
the curves.

VII. CONCLUSION

In this paper, we investigated the diversity order of BICMB
when the interleaver does not meet the previously introduced
design criteria. By using the generalized transfer function
method, the a-vectors that do not meet the full diversity
order criteria are quantified. Then, the diversity behavior
corresponding to the a-vectors was analyzed through PEP
calculation. We presented a method to get an upper bound to
the marginal pdf of the eigenvalues by simplifying the multiple
integration. As a result, the exponent of PEP between two
codewords is (N — Q + 1)(M — Q + 1) where @ is an index
indicating the first non-zero element in the a-vector. Since
BER is dominated by PEP with the smallest exponent, the
diversity order is (N — Quaz + 1)(M — Quaz + 1), where
Qmaz 18 the maximum among Q’s corresponding to all of
the a-vectors. We provided the simulation results that verify
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the analysis. We also showed that ()4, is lower bounded
by the product of the code rate and the number of streams,
leading to the maximum achievable diversity order equal to
(N—=T[S-R;]4+1)(M —T[S-R.]+1). Finally, we proposed the
design rule of the spatial interleaver to guarantee the maximum
achievable diversity order.
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