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Reduced Complexity Sphere Decoding via a
Reordered Lattice Representation

Luay Azzam, Student Member, IEEE, and Ender Ayanoglu, Fellow, IEEE

Abstract—In this letter, we propose a reordering of the channel
representation for Sphere Decoding (SD) where the real and
imaginary parts of each jointly detected symbol are decoded
independently. Making use of the proposed structure along with a
scalar quantization technique, we reduce the decoding complexity
substantially. We show that this approach achieves 85% reduction
in the overall complexity compared to the conventional SD for a
2× 2 system, and 92% reduction for the 4× 4 and 6× 6 cases
at low SNR values, and almost 50% at high SNR, thus relaxing
the requirements for hardware implementation.

Index Terms—Maximum-likelihood detection, multiple-input
multiple-output channels, sphere decoding.

I. INTRODUCTION

CONSIDER a MIMO system with N transmit and M
receive antennas. The received signal is given by

𝑦 = 𝐻𝑠+ 𝑣 (1)

where 𝑦 ∈ ℂM is an M-dimensional received complex vector,
𝐻 ∈ ℂMxN is the channel matrix, 𝑠 ∈ ℂN is an N-
dimensional transmitted complex vector whose entries have
real and imaginary parts that are integers, 𝑣 ∈ ℂM is the
i.i.d. complex additive white Gaussian noise (AWGN) vector
with zero-mean and covariance matrix 𝜎2𝐼 . Usually, the
elements of the vector 𝑠 are constrained to a finite set Ω
where Ω ⊂ ℤ

2𝑁 , e.g., Ω = {−3,−1, 1, 3}2𝑁 for 16-QAM
(quadrature amplitude modulation) where ℤ and ℂ denote the
sets of integers and complex numbers, respectively.

Assuming that the receiver has perfect knowledge of the
channel H, different algorithms have been implemented to
separate the data streams corresponding to N transmit antennas
[1], [2], [3]. Among these algorithms, Maximum Likelihood
Decoding (MLD) is the optimum one. However, in MIMO
systems, the MLD problem becomes more complicated as
the constellation size is larger [4]. Sphere decoding [5], on
the other hand, or the Viterbo-Boutros algorithm [6], reduces
the computational complexity for the class of computationally
hard combinatorial problems that arise in MLD [7], [8].

In this letter we improve the SD complexity efficiency
by reducing the number of arithmetic operations (mainly the
number of multiplications) required by the SD algorithm.
The reduction of the number of arithmetic operations is
accomplished by introducing a simple and proper lattice
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representation, and adopting a technique similar to the well-
known 𝐾-best algorithm [9] with some modifications, as well
as incorporating rounding at a certain level of the SD search
which significantly reduces the number of nodes to be visited
throughout the search process. The validity of this lattice
representation is proved for any matrix size by using the
QR decomposition and the Gram-Schmidt orthogonalization
procedure which distinguishes it from similar work in the lit-
erature [10], [11]. In addition, rounding to the nearest neighbor
or quantization is employed that maintains near optimal perfor-
mance while significantly reducing the complexity even when
used for spatial multiplexing systems having four or more
transmit antennas. This results in a simpler system that does
not compromise performance, unlike similar previous work in
the literature. Finally, it is important to mention that searching
the lattice points using this formulation can be performed in
parallel, since the proposed structure enables decoding the real
and imaginary parts of each symbol independently and at the
same time.

II. PROBLEM DEFINITION AND THE CONVENTIONAL

SPHERE DECODER

Assuming 𝐻 is known at the receiver, the MLD solution of
(1) is given by

𝑠 = arg min
𝑠∈Ω𝑁

∣∣𝑦 −𝐻𝑠∣∣2. (2)

Solving (2) becomes complicated for large constellations and
large 𝑁 . Therefore, instead of searching the whole space
defined by all combinations drawn by the set Ω, SD solves
this problem by searching only over those lattice points or
combinations that lie inside a sphere centered around the
received vector 𝑦 and of radius 𝑑 [5], [12], [13]. Introducing
this constraint on (2) changes the problem to

𝑠 = arg min
𝑠∈Ω𝑁

∣∣𝑦 −𝐻𝑠∣∣2 < 𝑑2. (3)

A frequently used solution for the QAM-modulated complex
signal model given in (3) is to decompose the 𝑁 -dimensional
problem into a 2𝑁 -dimensional real-valued problem, which
then can be written as[ ℜ{𝑦}

ℑ{𝑦}
]
=

[ ℜ{𝐻} −ℑ{𝐻}
ℑ{𝐻} ℜ{𝐻}

] [ ℜ{𝑠}
ℑ{𝑠}

]
+

[ ℜ{𝑣}
ℑ{𝑣}

]

(4)
where ℜ{𝑦} and ℑ{𝑦} denote the real and imaginary parts
of 𝑦, respectively. Assuming 𝑁 = 𝑀 in the sequel, and
introducing the QR decomposition of 𝐻 , where R is an upper
triangular matrix, and the matrix Q is unitary, (3) can be
written as

𝑠 = arg min
𝑠∈Ω2𝑁

∣∣𝑦 −𝑅𝑠∣∣2 < 𝑑2 (5)
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Fig. 1. Tree search example for a 16-QAM showing sphere radius, tree
levels and detection layers.

where 𝑦 = 𝑄𝐻𝑦. Let R=[𝑟𝑖,𝑗 ]2Nx2N and note that R is upper
triangular. Now to solve (5), SD algorithm constructs a tree
as shown in Figure 1, where the branches coming out of
each node correspond to the elements drawn by the set Ω.
It then executes the decoding process starting from the last
layer (𝑙 = 2𝑁 ) which matches the first level in the tree,
calculating the partial weight ∣ℑ{𝑦𝑁}− 𝑟2𝑁,2𝑁ℑ{𝑠𝑁}∣2, and
working its way down the tree in a similar way to the
successive interference cancelation technique, until decoding
the first layer by calculating the corresponding partial weight
∣ℜ{𝑦1} − 𝑟1,1ℜ{𝑠1}+ ...+ℜ{𝑦𝑁}− 𝑟1,𝑁ℜ{𝑠𝑁}+ℑ{𝑦1}−
𝑟1,𝑁+1ℑ{𝑠1}+ ...+ ℑ{𝑦𝑁} − 𝑟1,2𝑁ℑ{𝑠𝑁}∣2.

The weight of any node in the tree is the summation of
the partial weight of that node and the weight of its parent
node. If that weight exceeds the square of the sphere radius
d2, the algorithm prunes the corresponding branch, declaring
it as an improbable way to a candidate solution. In other
words, all branches that lead to a solution that is outside the
sphere are pruned at some level of the tree. These branches are
shown as dashed lines in Figure 1. Whenever a valid lattice
point at the last level of the tree is found within the sphere,
the square of the sphere radius d2 is set to the newly found
point weight, thus reducing the search space for finding other
candidate solutions. Finally, the leaf with the lowest weight is
the survivor one, and the path along the tree from the root to
that leaf represents the estimated solution.

To this end, it is important to emphasize the fact that
the complexity of this algorithm, although much lower than
MLD, is still exponential at low SNR. We aim to reduce that
complexity as will be shown subsequently.

III. PROPOSED ALGORITHM

The lattice representation given in (4) imposes a major
restriction on the tree search algorithm. Specifically, the search
has to be executed serially from one level to another on the
tree. This can be made clearer by writing the partial metric
weight formula as

𝑤𝑙(𝑥
(𝑙)) = 𝑤𝑙+1(𝑥

(𝑙+1)) + ∣𝑦𝑙 −
2𝑁∑
𝑘=𝑙

𝑟𝑙,𝑘𝑥𝑘∣2 (6)

with 𝑙 = 2𝑁, 2𝑁 − 1, . . . , 1, 𝑤2𝑁+1(𝑥
(2𝑁+1)) = 0 and

where {𝑥1, 𝑥2, ..., 𝑥𝑁}, {𝑥𝑁+1, 𝑥𝑁+2, ..., 𝑥2𝑁} are the real
and imaginary parts of {𝑠1, 𝑠2, ..., 𝑠𝑁} respectively, see Figure
1. According to this representation, it is impossible, for
instance, to calculate

∑2𝑁
𝑘=𝑙 𝑟𝑙,𝑘𝑥𝑘 in (6) for a node that lies

at level (𝑙 = 2𝑁 − 1) without assigning an estimate for 𝑥2N.
This approach results in two related drawbacks. First, the
decoding of any 𝑥l requires an estimate value for all preceding
𝑥𝑗 for 𝑗 = 𝑙 + 1, ..., 2𝑁 . Secondly, there is no room for
parallel computations since the structure of the tree search
is sequential.

The main contribution in this letter is that we relax the
tree search structure making it more flexible for parallelism,
and at the same time reducing the number of computations
required at each node by making the decoding of every
two adjacent levels in the tree totally independent of each
other. This is achieved using the important observation that
results from applying the QR decomposition to the proposed
lattice representation. We further reduce the complexity by
keeping the best 𝐾 symbols which have lowest weights in a
way similar to the well-known 𝐾-best technique, but with a
number of differences that are to be discussed subsequently.
We propose the new algorithm in detail in the following
subsections.

A. Proposed Lattice Representation

We start by reshaping the channel matrix representation
given in (4) in the following form

𝐻̃=

⎡
⎢⎢⎢⎢⎣

ℜ(𝐻1,1) −ℑ(𝐻1,1) ⋅ ⋅ ⋅ ℜ(𝐻1,𝑁 ) −ℑ(𝐻1,𝑁)
ℑ(𝐻1,1) ℜ(𝐻1,1) ⋅ ⋅ ⋅ ℑ(𝐻1,𝑁 ) ℜ(𝐻1,𝑁 )

...
...

. . .
...

...
ℜ(𝐻𝑁,1) −ℑ(𝐻𝑁,1) ⋅ ⋅ ⋅ ℜ(𝐻𝑁,𝑁 ) −ℑ(𝐻𝑁,𝑁)
ℑ(𝐻𝑁,1) ℜ(𝐻𝑁,1) ⋅ ⋅ ⋅ ℑ(𝐻𝑁,𝑁 ) ℜ(𝐻𝑁,𝑁 )

⎤
⎥⎥⎥⎥⎦

(7)

where 𝐻𝑚,𝑛 is the i.i.d. complex path gain from transmit
antenna 𝑛 to receive antenna 𝑚. By careful observation of the
columns of 𝐻̃ starting from the left hand side, and defining
each pair of columns as one set, we note that the columns
in each set are orthogonal, a property that has a substantial
effect on the structure of the problem. Using this channel
representation changes the order of detection of the transmitted
symbols from

𝑠 =
[ ℜ(𝑠1) ⋅ ⋅ ⋅ ℜ(𝑠𝑁 ) ℑ(𝑠1) ⋅ ⋅ ⋅ ℑ(𝑠𝑁 )

]𝑇
(8)

to the following order

𝑠 =
[ ℜ(𝑠1) ℑ(𝑠1) ⋅ ⋅ ⋅ ℜ(𝑠𝑁 ) ℑ(𝑠𝑁 )

]𝑇
. (9)

This means that the first and second levels of the search tree
(see Figure (1)) correspond to the real and imaginary parts of
𝑠𝑁 , unlike conventional SD, where these levels correspond
to the imaginary parts of 𝑠𝑁 and 𝑠𝑁−1, respectively. This
structure becomes advantageous after applying the QR decom-
position to 𝐻̃. This is formalized in the following theorem.

Theorem 1: Applying QR decomposition to the channel
matrix 𝐻̃ which has the aforementioned orthogonal properties
among its columns produces an upper triangular matrix 𝑅
whose elements 𝑟𝑘,𝑘+1 are all zero for 𝑘 = 1, 3, ..., 2𝑁 − 1.
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Proof: Let

𝐻̃ =
[

h̃1 h̃2 ⋅ ⋅ ⋅ h̃2N

]
(10)

where h̃k is the 𝑘th column of H̃. Recalling the Gram-Schmidt
algorithm, we define u1 = h̃1, and then uk = h̃k−

∑𝑘−1
𝑗=1 𝜙uj h̃k

for 𝑘 = 2, 3, ..., 2𝑁 , where 𝜙uj h̃k is the projection of h̃k onto
uj defined by

𝜙uj h̃k =
⟨h̃k, ũj⟩
⟨ũj, ũj⟩ ũj. (11)

We also define ek = uk
∥uk∥ for 𝑘 = 1, 2, . . . , 2𝑁 , and rewrite

the column vectors of the channel matrix 𝐻̃ in the equations
form as
h̃1 = e1∥u1∥
h̃2 = 𝜙u1 h̃2 + e2∥u2∥
...
h̃k =

∑𝑘−1
𝑗=1 𝜙uj h̃k + ek∥uk∥.

Now, writing 𝑄 =
[
e1 e2 e3 ⋅ ⋅ ⋅ en

]
, we have these

equations in the matrix form as

𝑄

⎡
⎢⎢⎢⎣

∥u1∥ ⟨e1, h̃2⟩ ⋅ ⋅ ⋅ ⟨e1, h̃n⟩
0 ∥u2∥ ⋅ ⋅ ⋅ ⟨e2, h̃n⟩
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ ∥un∥

⎤
⎥⎥⎥⎦ . (12)

Obviously, the matrix 𝑄 is unitary, and the matrix on the
right is the upper triangular 𝑅 matrix of the QR decompo-
sition. Now our task is to show that the terms ⟨ek, h̃k+1⟩ are
zero for 𝑘 = 1, 3, . . . , 2𝑁 − 1. Three observations conclude
the proof.

First, since h̃k and h̃k+1 are orthogonal for 𝑘 =
1, 3, . . . , 2𝑁 − 1, then 𝜙uk h̃k+1 = 𝜙uk+1 h̃k = 0 for same 𝑘.

Second, the projection of um for 𝑚 = 1, 3, . . . , 𝑘−2 on the
columns h̃k and h̃k+1 is equal to the projection of um+1 on the
columns h̃k+1 and -h̃k, respectively. To formalize this

⟨um, h̃k⟩ = ⟨um+1, h̃k+1⟩
and,

⟨um, h̃k+1⟩ = −⟨um+1, h̃k⟩
for 𝑘 = 1, 3, . . . , 2𝑁−1 and 𝑚 = 1, 3, . . . , 𝑘−2. This property
becomes obvious by using the first observation and revisiting
the special structure of (7).

Third, making use of the first two observations, and noting
that ∣∣h̃k∣∣=∣∣h̃k+1∣∣ for 𝑘 = 1, 3, . . . , 2𝑁 − 1, it can be easily

shown that ∣∣uk∣∣=∣∣uk+1∣∣ for same 𝑘. Then,

⟨ek, h̃k+1⟩ =⟨ uk

∥uk∥ , h̃k+1⟩

=
1

∥u𝑘∥⟨h̃k −
𝑘−1∑
𝑗=1

𝜙uj h̃k, h̃k+1⟩

=
1

∥u𝑘∥ (⟨h̃k, h̃k+1⟩ − ⟨h̃k,u1⟩⟨u1, h̃k+1⟩
⟨u1,u1⟩ −

⟨h̃k,u2⟩⟨u2, h̃k+1⟩
⟨u2,u2⟩ − ⋅ ⋅ ⋅ −

⟨h̃k,uk-2⟩⟨uk-2, h̃k+1⟩
⟨uk-1,uk-1⟩ − ⟨h̃k,uk-1⟩⟨uk-1, h̃k+1⟩

⟨uk-2,uk-2⟩ )

(13)

Now, applying the above observations to (13), we get

⟨ek, h̃k+1⟩ = 1

∥u𝑘∥ (0−
⟨h̃k,u1⟩⟨u1, h̃k+1⟩

∥u1∥2 −
−⟨u1, h̃k+1⟩⟨h̃k,u1⟩

∥u1∥2 − ⋅ ⋅ ⋅−
⟨h̃k,uk-2⟩⟨uk-2, h̃k+1⟩

∥uk-1∥2 − −⟨uk-2, h̃k+1⟩⟨h̃k,uk-2⟩
∥uk-1∥2 )

=0.

This concludes the proof.
The locations of these zeros are very important since they

introduce orthogonality between the real and imaginary parts
of every detected symbol. In this context, the SD algorithm
executes in the following way. The partial metric weight
∣𝑦2𝑁 − 𝑟2𝑁,2𝑁 𝑥̂2𝑁 ∣2 for the 𝜇 nodes in the first level of
the tree is computed, where 𝜇 is the number of elements
in Ω (𝜇 equals 4 for the 16-QAM example shown in Figure
1). This metric is then checked against the specified sphere
radius 𝑑2. If the weight of any node is greater than the sphere
radius, then the corresponding branch is pruned. Otherwise,
the metric value is saved for the next step. At the same
time, another set of 𝜇 partial metric computations of the form
∣𝑦2𝑁−1−𝑟2𝑁−1,2𝑁−1𝑥̂2𝑁−1∣2 takes place at the second level,
since these two levels are independent as stated above. These
metrics are checked against 𝑑2 in a similar way to that carried
out in the first level. The weights of the survivor nodes from
both levels are summed up and the summation is checked
against the sphere constraint, ending up with a set of survivor
symbols 𝑠𝑁 . The estimation of the remaining 𝑁 − 1 symbols
is performed recursively in a similar way executing two levels
of the tree at a time.

To further reduce the complexity it is often useful to apply
some bounding techniques on the enumeration of the nodes
to be considered at the tree levels. This is done by recursively
defining upper and lower bounds on 𝑥𝑖 for 𝑖 = 2𝑁, 2𝑁 −
1, . . . , 1 where at most 𝜇 elements for each 𝑥𝑖 belong to
the interval defined by these bounds. This efficient technique
has been considered before in [8]. For a fair comparison, we
either incorporate this technique in conventional SD and our
proposed algorithm or dismiss it for both.

Finally, it is important to notice that the performance of the
proposed algorithm using the proposed lattice representation is
exactly the same as conventional SD, whereas the complexity
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is reduced significantly as will be shown.

B. Rounding to the Nearest Neighbor (Quantization)

The estimation of the symbols can be carried out recur-
sively by rounding (or quantizing) to the nearest constellation
element in Ω. This heuristic approach together with the term
quantization was used before for decoding layered space-time
codes (LST) [14]. However, applying rounding for detecting
all or most of the transmitted symbols would cause high
performance loss especially when 𝑁 is large (𝑁 ≥ 4). Note
that in the execution of the detection algorithm with rounding,
variables 𝑠2, 𝑠3, and 𝑠4 (for 𝑁 = 4) are determined using
MLD metric and only 𝑠1 is detected by rounding. As a result,
the performance degradation due to quantization with respect
to MLD is very small. On the other hand, due to the expanding
structure of SD search, computational complexity gains are
substantial. Therefore, a careful combination of the proposed
algorithm in the previous subsection, and the rounding tech-
nique proposed here will give substantially improved results
in terms of performance and complexity. The use of rounding
technique has a large impact on the reduction of the number
of arithmetic operations required at the receiver.

In order to make up for the performance loss caused
by rounding, we introduce an adaptive 𝐾-best technique in
the middle levels of the tree. This results in near optimal
performance (< 1 dB loss) and keeps the decoding complexity
substantially below that required for conventional SD.

C. Adaptive 𝐾-BEST

The 𝐾-best algorithm (equivalent to the M-algorithm [15])
is a breadth-first search approach that has been widely used
in the VLSI implementation of lattice decoders [16]-[21]. In
𝐾-best we only expand 𝐾 nodes which have the smallest
accumulated partial weights at each level in the tree search.
Here we propose similar approach but with the following
differences

∙ The value of 𝐾 becomes smaller as we further traverse
down the tree.

∙ The best 𝐾 criterion is invoked every two levels in the
tree search unlike conventional 𝐾-best where it is in-
voked every level. This gives better performance results.

Finally, it is worth mentioning that the value of 𝐾 is
chosen according to the modulation scheme and the number of
antennas used. Suggested values are given in the next section
and the corresponding simulation results are provided.

IV. SIMULATION RESULTS

We consider 2 × 2, 4 × 4, and 6× 6 cases using 16-QAM
and 64-QAM modulation schemes. In all simulations we use
(𝑑2 = 2𝜎2𝑁 [22]) as the initial radius value (the radius choice
problem has been widely treated in the literature, e.g., [6],
[22], [23] and the references therein). Adaptive 𝐾-best is
invoked only for 𝑁 = 𝑀 = 4 and 𝑁 = 𝑀 = 6. The
proposed lattice representation is considered and quantization
is applied at the very low levels of the tree. For instance, for
𝑁 = 6 the tree has 12 levels (see Figure 1) and rounding
is applied only at the last four levels. Moreover, on the tree
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Fig. 2. BER vs SNR per bit for the proposed and conventional SD over a
2× 2, 4× 4, and 6× 6 MIMO flat fading channel using 16-QAM.
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Fig. 3. BER vs SNR per bit for the proposed and conventional SD over a
2× 2, 4× 4, and 6× 6 MIMO flat fading channel using 64-QAM.

levels that correspond to the detection of 𝑠6, 𝑠5, and 𝑠4, we
invoke adaptive 𝐾-best at every two levels with values 16, 8,
and 4 for 16-QAM and 32, 32, and 16 for 64-QAM.

Figure 2 and Figure 3 show the performance of the proposed
algorithm versus conventional SD for 2× 2, 4× 4, and 6× 6
systems using 16-QAM and 64-QAM modulation schemes,
respectively. We observe that both algorithms have exactly
the same performance for 2× 2 and < 1 dB performance loss
in the proposed for 4 × 4 and 6 × 6. This loss is due to the
adoption of the 𝐾-best algorithm and the rounding process
used.

A complexity comparison is given in Figure 4 and Figure
5. The complexity is measured in terms of the number of
real multiplications required to jointly decode 𝑁 transmitted
symbols. Similar curves with same percentage of reductions
in the complexity are obtained when we consider the number
of real additions. Compared to conventional SD, the proposed
algorithm reduces the complexity by 85% for a 2× 2 system
and 92% (95%) for 4×4 (6×6) at low SNR, and 45% (50%)
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Fig. 4. Number of real multiplications vs SNR per bit for the proposed and
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Fig. 5. Number of real multiplications vs SNR per bit for the proposed and
conventional SD over a 2 × 2, 4 × 4, and 6 × 6 MIMO flat fading channel
using 64-QAM.

for the same case at high SNR values.

The proposed lattice representation is a simple channel re-
ordering technique that leads to the aforementioned complex-
ity reduction. However, there are different ordering techniques
that were proposed in the literature [3], [12] and yield to
a reduced complexity SD as well. Therefore, we provide a
complexity comparison between the conventional SD, SD with
V-BLAST ZF-DFE ordering, SD with V-BLAST MMSE-DFE
ordering, and our proposed algorithm for a 4 × 4 system
employing 64-QAM . For a fair comparison, we determine
the admissible sets at each level of the tree by applying the
interval boundary conditions and considering only those points
that belong to these intervals, as explained in [8]. As a result,
we exclude the adoption of the adaptive 𝐾-best technique in
our proposed algorithm, and apply quantization (rounding) in
the last four levels of the tree.

The proposed algorithm provides a complexity gain of
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Fig. 6. Number of real multiplications vs SNR per bit for the conventional
SD, proposed SD, SD with ZF-DFE ordering, and SD with MMSE-DFE
ordering over a 4× 4 MIMO flat fading channel using 64-QAM.

> 90% at low SNR and > 35% at high SNR values
compared to SD with ZF-DFE ordering as shown in Figure 6.
Considering SD with MMSE-DFE ordering, we see that for
SNR values less than 5 dB, the proposed algorithm requires
a slightly higher complexity. This complexity loss is reversed
and becomes a gain reaching 50% at the intermediate values
of SNR. In Figure 6, we only consider the complexity of the
searching phase. The cost of the preprocessing phase depends
only on the channel 𝐻 . If the channel is constant for a long
time, then the complexity of the preprocessing is insignificant
compared to the overall complexity. However, if the channel
changes arbitrarily then the complexity of the preprocessing
may have a significant impact on the overall complexity [12].

To this end, it is to be noted that SD with ZF-DFE ordering
provides the optimal performance as the conventional SD,
whereas both SD with MMSE-DFE ordering and our proposed
algorithm have an insignificant performance degradation.

A. Sphere Decoder versus Schnorr-Euchner Decoder

In the preceding discussion, we referred to the Viterbo-
Boutros algorithm by SD. The Schnorr-Euchner (SE) algo-
rithm [22], [24], on the other hand, has the same principle as
SD, which is searching for the closest point inside a defined
sphere. However, they differ in the way they find this point.
In [22], it was shown that the complexity of SD and that of
SE are very close to each other with a little advance for SE
when the number of antennas is small. For a large number
of antennas, this situation is reversed and SD becomes faster.
In this work, we give a complexity comparison between both
enumerations using our proposed algorithm.

Following [12], the comparison is carried out considering
only the searching phase, noting that the complexity of the
preprocessing phase for SE is higher than that for SD [22]. In
Figure 7, we show the number of real multiplications required
to decode the transmitted symbols as a function of the number
of antennas at 20 dB for an uncoded system employing 16
QAM. Obviously, the complexity curves are very close to each
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Fig. 7. Number of real multiplications vs number of antennas required for
SE and SD at 20 dB considering an uncoded system with 16-QAM.

other for a number of antennas less than 9 with SE being a lit-
tle faster. For more than 9 antennas, SD becomes much faster
than SE. These results coincide with those obtained in [22]. As
a result, we conclude that using either of these enumerations
for conventional and proposed algorithms produces almost the
same complexity gains explained above.

Finally, it is important to emphasize the fact that the
proposed algorithm works for all square QAM modulation
schemes and achieves similar results as those obtained for 16-
QAM and 64-QAM.

V. CONCLUSIONS

In this letter, a general lattice representation via a simple
channel ordering for sphere decoding was proposed. Rounding
and adaptive 𝐾-best techniques are applied to enhance the
proposed structure. For 2 × 2 systems, the performance of
the proposed structure is the same as that for conventional
SD, while it has < 1 dB loss for 4 × 4 and 6 × 6 cases. A
complexity reduction of 80% is achieved for the 2 × 2 case,
and more than 50% for the 4× 4 and 6× 6 cases.
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