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Abstract—This paper addresses the performance of bit-
interleaved coded multiple beamforming (BICMB) [1], [2] with
imperfect knowledge of beamforming vectors. Most studies for
limited-rate channel state information at the transmitter (CSIT)
assume that the precoding matrix has an invariance property
under an arbitrary unitary transform. In BICMB, this property
does not hold. On the other hand, the optimum precoder and
detector for BICMB are invariant under a diagonal unitary
transform. In order to design a limited-rate CSIT system for
BICMB, we propose a new distortion measure optimum under
this invariance. Based on this new distortion measure, we
introduce a new set of centroids and employ the generalized
Lloyd algorithm for codebook design. We provide simulation
results demonstrating the performance improvement achieved
with the proposed distortion measure and the codebook design
for various receivers with linear detectors. We show that although
these receivers have the same performance for perfect CSIT, their
performance varies under imperfect CSIT.

Index Terms—Beamforming, Bit-interleaved coded modula-
tion, diversity, spatial multiplexing, limited feedback, BICMB.

I. INTRODUCTION

IT is well-known that multiple-input multiple-output
(MIMO) systems enhance the throughput of wireless sys-

tems, with an increase in reliability and spectral efficiency
[3], [4], [5]. While the advantages of MIMO architectures are
attainable when only the receiver side knows the channel, the
potential gains can be further improved when the transmitter
has some knowledge of the channel, which is known as
channel state information at the transmitter (CSIT). CSIT can
be used to improve diversity order or array gain of a MIMO
wireless system. In this work, we are interested in multi-
stream precoding to achieve MIMO spatial multiplexing. In
this paper “spatial multiplexing order” refers to the number of
multiple symbols transmitted, as in [6]. This term is different
than “spatial multiplexing gain” defined in [7]. Throughout the
paper, we will employ the terminology single beamforming
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and multiple beamforming to refer to single- and multi-stream
precoding, respectively [8], [9].

Precoders based on perfect CSIT are designed in [10],
[11], [12] for many different design criteria. The majority
of the designs include the channel eigenvectors which are
obtained through the singular value decomposition (SVD) of
the channel. It is well-known that it may not be practical to
have perfect CSIT. In this paper, we will design a system
with limited CSIT when the channel obeys the standard block
fading (quasi-static) model. In this model, the channel may
change from block to block, but remains constant during the
transmission of a block. This model is commonly used in the
design and simulation of broadband wireless systems.

Recently, limited CSIT feedback techniques have been
introduced to achieve a performance close to the perfect CSIT
case. In these, a codebook of precoding matrices is known
both at the transmitter and receiver. The receiver selects the
precoding matrix that satisfies a desired criterion, and only the
index of the precoding matrix is sent back to the transmitter.
Initial work on limited feedback systems concentrated on sin-
gle beamforming where a single symbol is transmitted along
a quantized version of the optimal beamforming direction.
Authors of [13] analyzed single beamforming in a multi-input
single-output (MISO) setting where they designed codebooks
via the generalized Lloyd algorithm. The relationship between
codebook design for quantized single beamforming and Grass-
mannian line packing was observed in [14], [15] for i.i.d.
Rayleigh fading channels. This connection enabled the authors
in [14], [15] to leverage the work already carried out for
optimal line packing in the mathematics literature. Authors in
[16] proposed a systematic way of designing good codebooks
for single beamforming inspired from [17]. Rate-distortion
theory tools were used in [18] to analyze single beamforming
performance when the generalized Lloyd algorithm is used.
Random vector quantization (RVQ) technique, where a ran-
dom codebook is generated for each channel realization, was
used to analyze single beamforming in an asymptotic scenario
[19]. Later, results were generalized to multiple beamform-
ing [20], [21]. The results in [20] showed that there is a
relation between codebook design for multiple beamforming
and Grassmannian subspace packing. However the results in
[20] are specific to uncoded multiple beamforming. Most
papers considered the unitary or semi-unitary constraint on
the precoder since the optimal linear precoder is unitary with
perfect CSIT for linear receiver architectures [8]. In such a
case, it is possible to exploit the properties of unitary matrices
and parameterize the optimal precoder into a set of angles to
be quantized [22], [23].
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It has been shown that for a MIMO system with N transmit
and M receive antennas, it is possible to achieve full spatial
diversity of NM , independent of the number of streams
1 ≤ S ≤ min(N, M) transmitted over quasi-static Rayleigh
flat fading channels. One possible system achieving this limit
is the so-called bit-interleaved coded multiple beamforming
(BICMB) [1], [2]. Design criteria for the interleaver and the
convolutional encoder which guarantee full diversity and full
spatial multiplexing are provided in [1], [2]. Previously, bit-
interleaved coded modulation (BICM) [24], [25] was em-
ployed in single- and multi-antenna systems without utilizing
CSIT [26], [27], [28], [29]. In general, BICMB requires per-
fect knowledge of only channel eigenvectors at the transmitter,
i.e., does not need the channel gains (eigenvalues) at the
transmitter. It has linear detection complexity and needs a
simple soft-input Viterbi decoder. It also achieves full diversity
without any adaptation for the number of streams.

In this paper, the goal is to design a limited feedback scheme
for BICMB. We first deal with codeword selection criterion
assuming that there is already a given codebook. We provide
a new optimal distortion measure for the selection of the best
precoder from the codebook. This new distortion measure is
due to the non-uniqueness property of the SVD [30]. We
then calculate a centroid for this new distortion measure. We
analyze the performance of the proposed distortion measure
for different receiver structures through extensive simulations.
For comparison purposes, we first use a randomly generated
codebook. Next, we utilize the generalized Lloyd’s algorithm
[31] to design better codebooks. For this new codebook, we
employ the minimum mean square error (MMSE) and the
zero-forcing (ZF) receivers as well as a new receiver.

Notation: N is the number of transmit antennas, M is the
number of receive antennas. The symbol S denotes the total
number of symbols transmitted at a time (spatial multiplexing
order, in other words the total number of streams used). The
superscripts (·)†, (·)H , (·)T , (·)∗, and the symbol ∀ denote the
pseudoinverse, Hermitian, transpose, complex conjugate, and
for-all respectively.

II. SYSTEM MODEL

In the limited feedback context, authors of [20] showed
that, in their uncoded system, for both the ZF and the MMSE
receiver the optimal precoder is in the form of VQ, where
is V is the channel right singular matrix and Q is any
unitary matrix. This characterization enabled authors to see
the direct relation between codebook design for multiple
beamforming and Grassmannian subspace packing. However,
as we will show, in our system, multiplication of the channel
right singular matrix V with a general unitary matrix Q, and
employing VQ as the precoding matrix causes performance
degradation. A new selection criterion and codebook design
procedure is needed for limited feedback in BICMB.

In BICMB, the output bits of a binary convolutional encoder
are interleaved and then mapped over a signal set χ ⊆ C of
size |χ| = 2m with a binary labeling map μ : {0, 1}m → χ.
We use the same interleaver that was previously employed for
the perfect CSIT case in [2]. The interleaver is not unique
and not necessarily the optimal one, but satisfies the design

criterion and enables the system to have full diversity when
perfect CSIT is available. Gray encoding is used to map the
bits onto symbols. During transmission, the code sequence c
is interleaved by π, and then mapped onto the signal sequence
x ∈ χ.

Let H denote the quasi-static, flat fading M × N MIMO
channel, where M and N are the number of receive and
transmit antennas, respectively, and assume perfect timing,
synchronization, and sampling. In this paper, we assume that
the transmitter employs multiple beamforming prior to the
transmission of the complex baseband symbols. When S
symbols are transmitted at the same time, the system input-
output relation between transmitted and received baseband
complex symbols can be written as

y = HVLx + n (1)

where x is an S × 1 vector of symbols to be transmitted,
n is an M × 1 additive white Gaussian noise vector whose
elements have zero mean and variance N0 = N/SNR, and
VL is an N ×S precoding matrix, which is dependent on the
instantaneous channel realization. The total power transmitted
is scaled as N . The channel matrix elements are modeled
as i.i.d. zero-mean, unit-variance complex Gaussian random
variables. Consequently, the received average signal-to-noise
ratio is SNR.

We assume that the receiver selects a precoder matrix from
a finite set of beamforming matrices and sends the index of the
selected precoder through an error-free feedback link without
any delay. Precoded symbols are transmitted over the channel
and at the receiver a linear equalizer is used as a detector prior
to the Viterbi decoder. Our aim is to investigate the effects
of imperfect CSIT on the BICMB system compared to the
perfect CSIT scenario and therefore, we concentrate on a linear
detector followed by soft input non-iterative Viterbi decoder as
in [1], [2]. In this paper we do not consider nonlinear detectors
or iterative decoding techniques.

The bit interleaver of BICMB can be modeled as π :
k′ → (k, s, i) where k′ denotes the original ordering of the
coded bits ck′ , k denotes the time ordering of the signals
xk,s transmitted, s denotes the subchannel used to transmit
xk,s, and i indicates the position of the bit ck′ on the symbol
xk,s. Let χi

b denote the subset of all signals x ∈ χ whose
label has the value b ∈ {0, 1} in position i. The bit metrics,
i.e., γi(yk,s, ck′), are dependent on the receiver structure and
will be revisited in Section III-D. The Viterbi decoder at the
receiver makes decisions according to the rule

ĉ = argmin
c∈C

∑
k′

γi(yk,s, ck′ ). (2)

III. BIT-INTERLEAVED CODED MULTIPLE BEAMFORMING

A. Background on SVD

As stated previously, the work in this paper depends on
the fact that SVD has an invariance property under diagonal
unitary transformation. We provide a formal description of this
fact below [30].

Theorem 1: If H ∈ C
M×N has rank k, then it may be

written in the form H = UΣVH , where U and V are unitary
matrices whose columns are the left and right singular vectors
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of H. The matrix Σ = [σij ] ∈ RM×N has σij = 0 for all i �=
j, and σ11 ≥ · · · ≥ σkk > 0, and σk+1,k+1 = · · · = σqq = 0,
where q = min(N, M). The numbers σii ≡ σi, i = 1, 2, . . . , q
are the nonnegative square roots of the eigenvalues of HHH ,
and hence are uniquely determined. The columns of U are
eigenvectors of HHH and the columns of V are eigenvectors
of HHH. If N ≤ M and if HHH has distinct eigenvalues,
then V is determined up to a right diagonal unitary matrix
D = diag(ejθ1 , ejθ2 , . . . , ejθN ) with all θi ∈ [0, 2π); that is,
if H = U1ΣVH

1 = U2ΣVH
2 , then V2 = V1D.

Proof: See [30].
The conditions of the theorem above hold for the system in

this paper, and therefore there are infinitely many right singu-
lar matrices for a given channel realization. Note that when
S ≤ q streams are transmitted, the first S columns of V, i.e.,
V, are employed. Therefore, if H = U1ΣVH

1 = U2ΣVH
2 ,

then V2 = V1D and U2 = U1D, where D is any S × S
diagonal unitary matrix.

B. Selection Criteria

In this section, we assume that there exists a codebook and
we wish to find a criterion to choose the best approximation
to V from the codebook V = {V̂i}C

i=1, where C is the
codebook size. One could potentially use the well-known
Euclidean metric, however the property described in Theorem
1 complicates the problem.

Selection Criterion - Euclidean (SC-E) : The receiver selects
VL such that

VL = argmin
V̂i∈V

|| V − V̂i ||2F . (3)

This selection criterion aims to find the codebook element
closest to the optimal beamforming matrix V. It can be argued
that this criterion asymptotically diagonalizes the system as the
number of feedback bits goes to infinity.

However, the property in Theorem 1 makes straightforward
application of (3) nonpractical. This can be explained with
the aid of Figure 1. Assume that an application of SVD for a
given instantiation of the H matrix yields a V matrix. Assume
that when V is multiplied by all diagonal unitary matrices
D, one gets the set SV in Figure 1. It should be clear that
the closest member of V to V is not necessarily the closest
member of V to SV. As a result, one needs to modify (3) such
that the minimum distance between two sets V and SV can
be calculated. A way to accomplish this is

VL = argmin
V̂i∈V,D∈D

|| VD − V̂i ||2F (4)

where D stands for the set of all diagonal unitary matrices.
Proposition 1: The minimization in (4) is equivalent to the

following minimization problem

VL = arg min
V̂i∈V

|| VDopt − V̂i ||2F . (5)

The kth diagonal element of the diagonal matrix Dopt is given
as

θopt
k = −φk k = 1, 2, . . . , S (6)

VD1

VDopt

V1
^

V2
^

V3
^

VD2

V

V

Fig. 1. Sets illustrating the codebook elements,V, and unitary matrices from
SVD, SV.

where 0 ≤ φk < 2π is the phase of v̂H
ikvk and where the

vectors v̂ik and vk correspond to the kth column of V̂i and
V, respectively.

Proof: Without loss of generality, let N ≤ M and S = N
streams be used. For the other cases, the matrices are replaced
by their first S columns. The term to be minimized in (4) can
be expressed as

|| VD − V̂i ||2F = 2tr[I] − tr
[
V̂H

i VD + (V̂H
i VD)H

]
(7)

= 2N − 2tr
[

[V̂H

i VD]
]

= 2N − 2

[

N∑
k=1

v̂H
ikvkejθk

]
(8)

where D = diag(ejθ1, ejθ2 , . . . , ejθN ), v̂ik and vk correspond
to the kth column of V̂i and V, respectively. Minimizing (7)
is equivalent to maximizing the second term in (8). It is easy
to see that the optimal value of θk maximizing the summation
in (8) is

θopt
k = −φk k = 1, 2, . . . , N (9)

where 0 ≤ φk < 2π is the phase of v̂H
ikvk = |v̂H

ikvk|ejφk .
Proposition 1 results in the following optimal selection

criterion in the Euclidean sense.

Selection Criterion - Optimal Euclidean (SC-OE) : The
receiver selects VL such that

VL = argmin
V̂i∈V

|| VDopt − V̂i ||2F . (10)

Note that, in (10), Dopt depends on both V and V̂i.
Employing (10), one can apply the well-known generalized
Lloyd algorithm [31] to design an optimum codebook V. The
resulting codebook can then be used together with (10), as
a limited-rate CSIT BICMB system. To that end, we will
need centroids for the generalized Lloyd algorithm. We will
calculate these new centroids in the next subsection.

C. Codebook Design

Our codebook design is based on generalized Lloyd’s algo-
rithm [31]. We will minimize the average distortion

J = E

[
min
V̂i∈V

|| VDopt − V̂i ||2F
]

. (11)
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Here, the distortion measure we intend to use is

d(V̂i,V) = || V − V̂i ||2F . (12)

But, due to the previous discussion, we need to calculate the
distortion between each V̂i and the whole set SV. As a result,
we employ

d1(V̂i,V) = || VDopt − V̂i ||2F (13)

due to the nonuniqueness property of SVD. We assume that
B bits are reserved for the limited feedback link to quantize
the optimal beamforming matrix. In this algorithm, we will
begin with an initial codebook of matrices Ṽ0 = {Ṽ0,k}2B

k=1

and iteratively improve it to generate a set of matrices Ṽm =
{Ṽm,k}2B

k=1 until the algorithm converges. The algorithm can
be summarized by the following steps:

1) Generate a large training set of channel matrices, H(n)
and their corresponding right singular matrices V(n). Let Ψ
be the set of all V(n)s.

2) Generate an initial codebook of unitary matrices, Ṽ0 =
{Ṽ0,k}2B

k=1.
3) Set m = 1.
4) Partition the set of training matrices into P = 2B

quantization regions where the kth region is defined as

Xk = {V ∈ Ψ| || VDopt − Ṽm−1,k ||2F
≤ || VDopt − Ṽm−1,l ||2F ∀ k �= l} (14)

5) Using the given partitions, construct a new codebook
Ṽm, with the kth beamforming matrix being

Ṽm,k = arg min
V̂: V̂HV̂=I

E
[
|| VDopt − V̂ ||2F | V ∈ Xk

]
. (15)

6) Define

Jm =
2B∑
i=1

∑
n:V(n)→Ṽm,i

|| V(n)Dopt − Ṽm,i ||2F (16)

where V(n) → Ṽm,i means Ṽm,i = argmin
V̂j∈Ṽm

d1(V̂j ,V(n)) .

If (Jm−1−Jm)/Jm−1 > ε, set m = m+1 and go back to Step
4. Otherwise, terminate the algorithm and set the codebook
V = Ṽm.

The optimal solution of the optimization problem in (15)
gives the optimal centroid for the corresponding region. The
distortion measure to be minimized can be rewritten as

|| VDopt − V̂i ||2F = 2N − 2tr
[

[V̂HVDopt]

]

= 2N − 2

[

N∑
s=1

v̂H
s vse

jθopt
s

]

= 2N − 2
N∑

s=1

|v̂H
s vs| (17)

where (17) follows by using the optimal θopt
s previously

derived in (9). Therefore the original optimization problem
in (15) can be rewritten as

Ṽm,k = argmax
V̂: V̂HV̂=I

E

[
N∑

s=1

|v̂H
s vs| | V ∈ Xk

]
. (18)
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Fig. 2. Average distortion for 2 × 2 system with 4-bit feedback.

The maximization problem above does not have a tractable
analytical solution. Next, we will modify the problem to find
an approximate analytical solution. Note that the expectation
in (18) can be written as the sum of expectation of each
term due to the linearity of the expectation operation. We will
relax the unitary constraint on V̂ and replace the constraint
with having unit norm columns. In this case, the modified
optimization problem is equivalent to finding independent
optimal vectors which maximize each expectation in (18). The
individual maximization problem becomes

ẽ(i)
m,k = arg max

ê: ||ê||22=1

E
[
|êHvi| | vi ∈ X

(i)
k

]
i = 1, 2, . . . , N

(19)

where X
(i)
k corresponds to the space of the ith column of the

elements in Xk. The optimal solution for (19) is [32]

ẽ(i)
m,k = principal eigenvector of E

[
vivH

i | vi ∈ X
(i)
k

]
(20)

where the numerical averaging over X
(i)
k is substituted for

expectation during codebook design. Let Ẽm,k be the matrix
whose columns are found from (20), maximizing the expec-
tation in (19) and approximating the maximization in (18).
Note that this matrix is not necessarily unitary, therefore to
find the centroid we will utilize Euclidean projection to find
the closest unitary matrix as follows

Ṽm,k = arg min
V̂: V̂HV̂=I

|| Ẽm,k − V̂ ||2F . (21)

The closest unitary matrix can be found in closed form as [30]

Ṽm,k = ŨW̃H (22)

where Ẽm,k = ŨΣ̃W̃H .
The approach explained above to find the centroid in each

region reduces to the optimal solution for the single beam-
forming case. Although it may be suboptimal for the multiple
beamforming case, the centroid found from (22) enables the
algorithm to have monotonic decrease in average distortion
given by (11) in each iteration and to converge to a local
minimum, as shown in Figure 2 for a 2 × 2 scenario with 2
streams and 4-bit feedback.
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D. The Receiver

We will first discuss the ZF and MMSE receivers and then
describe a receiver based on SVD. We show in the appendix
that the performance of these three decoders is the same when
there is perfect CSIT.

1) ZF Receiver: When there is only limited feedback for
the quantization of V, i.e., VL is used as the precoder, the
diagonalization of the channel will be lost and with the ZF
detector, the system input-output relation becomes;

r = Gy = x + Gn (23)

where G = (HVL)† = [(HVL)H(HVL)]−1(HVL)H . In
this case, we will use the following bit metrics [33],

γi(rk,s, ck′) = min
x∈χi

c
k′

|rk,s − x|2
||gs||2

(24)

where rk,s is the received signal after equalization at time k
on the sth stream and gs is the sth column of GT .

In the perfect CSIT case, where the channel right singular
matrix V is perfectly known at the transmitter, the bit metrics
(24) of the ZF receiver are equal to that of the optimum
BICMB receiver. The proof is provided in the Appendix.

2) MMSE Receiver: MMSE detector is a superior solution
to the linear detection problem which balances ISI against
noise enhancement. The corresponding input-output relation
is given by (23), where now G is given by

G = [(HVL)HHVL + σ2I]−1(HVL)H (25)

and where σ2 = N/SNR from the system model given in
Section II. We will use the following bit metrics [34]

γi(rk,s, ck′) = min
x∈χi

c
k′

Wss

1 − Wss

∣∣∣∣ rk,s

Wss
− x

∣∣∣∣
2

(26)

where W = [I+σ2[(HVL)HHVL]−1]−1 and Wss is the sth

diagonal element of W.
In the perfect CSIT case, the MMSE receiver is equivalent

to the optimum BICMB receiver. The proof is provided in the
Appendix.

3) SVD Receiver: In the case of perfect knowledge of V at
the transmitter, the receiver can use the UH matrix to diago-
nalize the channel, where H = UΣVH . In the case of limited
feedback, the UH matrix can still be used as an equalizer [22],
[35]. In this section, we will provide a linear detector which
performs the same as the UH detector with lower complexity.
Note that, we proposed an optimum selection criterion in
(10) which is needed because of the nonuniqueness property
of SVD. The optimized selection criterion aims to quantize
VDopt instead of V. Each element of the diagonal unitary
matrix Dopt can be found from (9) and it is dependent on the
codebook elements and the instantaneous channel realization.
From Theorem 1, it is easy to see that there is a unique
matching left singular matrix for VDopt, which can be used as
a detector. Therefore the corresponding linear equalizer matrix
is

G = (UDopt)H . (27)

In this case, when VL is used as a precoder at the
transmitter, the baseband system input-output relation is

r = GHVLx + Gn (28)

= (Dopt)HΣVHVLx + n′ (29)

where in (29) H is replaced by its SVD. Note that because
G is a unitary transformation the noise vectors n′ and n have
the same statistics. Then the input-output relation for the sth

stream becomes

rs = λse
−jθopt

s

S∑
i=1

vH
s vL,ixi + n′

s

= λse
−jθopt

s vH
s vL,sxs + λse

−jθopt
s

S∑
i=1,i�=s

vH
s vL,ixi + n′

s

= λs|vH
s vL,s|xs + λse

−jθopt
s

S∑
i=1, i�=s

vH
s vL,ixi + n′

s.

(30)

Note that the first term in (30) has the desired signal, the
second term is interference from other streams, and the third
term is noise. The transmitted symbols xi are typically from
symmetric constellations. Therefore, the mean of xi is zero.
As discussed previously, we normalize its variance to 1. Due
to bit interleaving, xi, i = 1, 2, . . . , S are uncorrelated. For
a given channel realization, (30) can be written in a compact
form as

rs = λ̃sxs + ñs (31)

where λ̃s = λs|vH
s vL,s| and ñs is approximated as a

zero-mean complex Gaussian random variable with variance
σ̃2

s = λ2
s

∑S
i=1,i�=s |vH

s vL,i|2 + N/SNR. We determined
through simulations that the Gaussian approximation is highly
accurate for low and intermediate SNR values (e.g., 15 dB) or
when the number of feedback bits is beyond 4. Although for
large SNR (e.g., 30 dB), the approximation is less accurate,
as the feedback rate increases, the accuracy loss diminishes
independent of SNR. In addition, this approximation enables
a very simple bit-metric calculation similar to the perfect CSIT
case.

Let χi
b denote the subset of all signals x ∈ χ whose label

has the value b ∈ {0, 1} in position i. The bit metrics for (31)
are given by [24]

γi(rk,s, ck′) = min
x∈χi

c
k′

|rk,s − λ̃sx|2
σ̃2

s

. (32)

In the sequel, we will call the receiver proposed in this
section as the SVD receiver. We will show in the next section
that the performance of the SVD receiver is close to that of the
MMSE receiver for the 2 × 2 MIMO system. The advantage
of the SVD receiver over the MMSE receiver is its relative
simplicity since it avoids the matrix inversions needed in (25)
and (26). One can observe that when the limited feedback rate
is low, the interference term may dominate the noise term,
which may result in poor performance. We emphasize that
the optimum receiver with a linear detector for the limited-
rate CSIT system described in the previous section is the
MMSE receiver. However, the SVD receiver is a simpler one
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Fig. 3. The precoding matrix given by SVD V vs. V′ = VQ where Q is
a DFT matrix 2 × 2 and 3 × 2 system with 2 streams.
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Fig. 4. New selection criterion vs. λmin-based selection criterion 3 × 2
system with 2 streams.

with a performance tradeoff against the MMSE receiver while
consistently outperforming the ZF receiver.

IV. SIMULATION RESULTS

In the simulations below, the industry standard 64-state 1/2-
rate (133,171) dfree = 10 convolutional code is used and the
constellation is 16-QAM. As in all similar work, the channel
is assumed to be quasi-static and flat fading.

Figure 3 illustrates that in the case of BICMB, the pre-
coder matrix V is not invariant under a general unitary
matrix transformation. As discussed previously, assumption of
this invariance results in the Grassmannian codebook design
approach studied widely in the literature [20]. Again, as
discussed previously, most of the work in the literature is
for uncoded systems where invariance under a general unitary
matrix transformation follows from the use of optimization
criterion such as MSE, SNR, or mutual information. All curves
in this figure employ BICMB with ZF receiver, while the solid
ones employ the V matrix given by SVD of H, those with
broken lines employ V′ = VQ where Q is a 2 × 2 DFT
matrix, which is unitary. Clearly, BICMB performance is not
invariant under a general unitary matrix transformation.
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Fig. 5. Comparison SC-E (3) and SC-OE (10) 2×2 system with 2 streams.

Figure 4 shows a number of different systems to illustrate
the improvement due to the new selection criterion (10). This
selection criterion is compared to the one that maximizes
the minimum eigenvalue (λmin) of HVi. This method is
employed in [20] with the ZF receiver. In order to show that
there is a gain due to (10), we use the ZF receiver in our
system as well. Systematic generation of codebooks [17] with
a selection criterion that maximizes λmin is used for the curves
with legend SC-λmin and the randomly generated codebook
with the selection criterion in (5) and (6) is used for the
curves with legend SC-OE. As can be seen, the performance is
improved significantly with the proposed approach, and with
λmin approach, the performance saturates with increasing the
number of bits.

Figure 5 compares (3) and (10) employing two receiver
structures: ZF and MMSE. The codebook employed is ran-
domly generated. There is clearly a significant gain due to
(10) for both receivers. In Figure 6 the performance of the
SVD receiver is compared with the ZF and MMSE receivers
for the 2 × 2 scenario with 2 streams. All curves in the
figures use the optimized Euclidean criterion with a randomly
generated codebook. The SVD receiver, which exploits the
nonuniqueness of SVD both at the transmitter and the receiver,
significantly outperforms the ZF receiver and achieves a
performance very close to the MMSE receiver for the 8-bit
scenario. Note that, the overall complexity of the system with
the SVD receiver is less than the one with the MMSE receiver.
When the number of feedback bits is 8 for the 2 × 2 case,
it achieves a performance 0.25 dB close to the unquantized
system.

Figure 7 shows the simulation results for various receivers
in a 2 × 2 system when the codebook is designed using
the VQ algorithm discussed in Section III-C. All curves use
the optimal Euclidean criterion. As seen from the figure, the
performance of the randomly generated codebook (RVQ) can
be significantly improved for all receivers. To illustrate, the
performance of MMSE 8-bit RVQ and 6-bit VQ are very
close to each other, therefore 2 bit reduction is achieved via
the proposed codebook design. A similar reduction can be
observed for the SVD receiver. On the other hand, for the same
number of feedback bits, 2 dB performance gain is achievable
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Fig. 6. The SVD receiver vs. MMSE and ZF receivers using SC-OE with
randomly generated codebook 2 × 2 system with 2 streams.
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Fig. 7. The SVD receiver vs. MMSE and ZF receivers with RVQ and VQ
using SC-OE 2 × 2 system with 2 streams.

for the ZF receiver. Note that there is significant performance
degradation when the ZF receiver is used for both RVQ and
VQ scenarios compared to the MMSE and SVD receivers.

V. CONCLUSION

BICMB is a high-performance and low-complexity broad-
band wireless system with full spatial multiplexing and full
diversity. However, the system requires perfect knowledge of
the channel right singular vectors, which is not practical in a
real environment.

This paper addressed the performance of BICMB with
limited CSIT feedback using a codebook-based approach. We
proposed a new optimal distortion measure for selecting the
best precoder from a given codebook. The centroids for this
distortion measure are calculated. Codebook design is per-
formed via the generalized Lloyd algorithm based on the new
distortion measure and the new centroids. We provided sim-
ulation results demonstrating the performance improvement
achieved with the proposed distortion measure for various
receivers with linear detectors.

VI. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
whose comments improved the quality of the paper.

APPENDIX

In the perfect CSIT case, the transmitter uses the right
singular matrix V as the precoding matrix VL. The N × S
precoding matrix can be expressed as VL = VΦN , where the
N ×S matrix ΦN is used to select the first S columns of V,
defined as

ΦN =
[

IS

0N−S,S

]
,

and 0N−S,S is an (N −S)×S matrix whose elements are all
zeros. Therefore, the system input-output relation in (1) can
be written as

y = UΣ̂x + n, (33)

where Σ̂ is defined as

Σ̂ = ΣΦN =
[

ΣS

0M−S,S

]
,

and ΣS is an S × S square matrix whose elements are taken
from the largest S singular values of H.

A. BICMB Receiver

The optimum detector for the BICMB receiver is the
corresponding left singular matrix UH . The baseband input-
output relation for each subchannel becomes [2]

r′k,s = λsxk,s + nk,s (34)

for s = 1, 2, . . . , S where λs is the sth channel singular value
and r′k,s is the detected symbol of the sth subchannel at the
kth time instant which is defined as in (2). Then, the following
ML bit metrics for the BICMB soft input Viterbi decoder are
used [1], [2]

γi
BICMB(r′k,s, ck′) = min

x∈χi
c
k′
|r′k,s − λsx|2 (35)

where k′ is defined as in (2).

B. ZF Receiver

After the ZF detector, the system input-output relation
becomes

rZF = Σ̂†UHy = x + Σ̂†UHn (36)

where G in (23) is replaced by (HVL)† = (UΣVHVΦN )†

= Σ̂†UH . Note that the last equality (AB)† = B†A† holds
if AHA = I [36]. Accordingly, the baseband input-output for
each substream becomes

r̂k,s = xk,s + λ−1
s nk,s = λ−1

s r′k,s, (37)

where the relation with r′k,s is obvious when (37) is compared
with (34).
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To calculate the sth column of GT for metric calculation in

(24), consider U = (u1

...u2

... . . .
...uM ), where u1,u2, . . . ,uM

are the column vectors of U. Then,

GT = (Σ̂†UH)T = (u∗
1

...u∗
2

... . . .
...u∗

M )
[

Σ−1
S

0M−S,S

]
. (38)

Therefore, the sth column of GT in (24) is equal to λ−1
s u∗

s ,
leading to ||gs||2 = 1/λ2

s. By replacing ||gs||2 and r̂k,s in
(24) with 1/λ2

s and λ−1
s r′k,s, respectively, the bit metrics for

the ZF decoder become

γi
ZF (r̂k,s, ck′) = min

x∈χi
c
k′
|r′k,s − λsx|2 (39)

which are equal to the bit metrics of BICMB in (35).

C. MMSE Receiver

The MMSE detector G in (25) with perfect CSIT becomes

G = [(HVΦN )HHVΦN + σ2I]−1(HVΦN )H

= [Σ̂HΣ̂ + σ2I]−1Σ̂HUH

= [Σ2
S + σ2I]−1Σ̂HUH . (40)

If we define Ω as

Ω = Σ2
S + σ2I (41)

then, Ω is an S × S diagonal matrix whose sth diagonal
element can be expressed as μs = λ2

s + σ2. The baseband
signal after the MMSE detector given in (23) is

rMMSE = Ω−1Σ̂HUHy = Ω−1Σ2
Sx + Ω−1Σ̂HUHn

(42)

where G is replaced by the shortened form of (40) and (41).
Since Ω−1, Σ̂ and Σ2

S are all diagonal matrices, the baseband
vector signal can be separated into each subchannel signal,
resulting in the following relation with r′k,s of (34) as

r̃k,s =
λ2

s

μs
xk,s +

λs

μs
nk,s =

λs

μs
r′k,s. (43)

The bit metrics in (26) require the calculation of a matrix
W. Using an analysis similar to the MMSE detector, W can
be expressed as

W = [I + σ2(Σ2
S)−1]−1. (44)

By multiplying (Σ2
S)−1 with the both sides of (41), we get

I + σ2(Σ2
S)−1 = Ω(Σ2

S)−1. (45)

Using (44) and (45), the sth diagonal element Wss of W
can be easily found as Wss = λ2

s/μs. Finally, with the help
of simplified Wss and the relation with r′k,s of (43), the bit
metrics in (26) become

γi
MMSE(r̃k,s, ck′) = min

x∈χi
c
k′

1
σ2

|r′k,s − λsx|2 (46)

which are equivalent to the bit metrics of BICMB in (35)
because the constant 1/σ2 can be ignored in the metric
calculation.
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