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Abstract—In this letter, we propose a low complexity Maxi-
mum Likelihood (ML) decoding algorithm for orthogonal space-
time block codes (OSTBCs) based on the real-valued lattice
representation and QR decomposition. We show that for a system
with rate » = K/T, where K is the number of transmitted
symbols per 7" time slots, the proposed algorithm decomposes the
original complex-valued system into a parallel system represented
by 2K real-valued components, thus allowing for a simple and
independent detection of the real and imaginary parts of each
complex transmitted symbol. We further show that for square
L-QAM constellations, the proposed algorithm reduces the de-
coding computational complexity from O(L) for conventional
ML to O(+/L) without sacrificing the performance.

Index Terms—Maximum likelihood (ML) decoding, orthogonal
space-time block codes (OSTBCs), QR decomposition.

I. INTRODUCTION

PACE-TIME block codes (STBCs) from orthogonal de-

signs (OSTBCs) are attractive since they achieve the
maximum diversity, the maximum coding gain, and the high-
est throughput [1]. These codes are used in multiple-input
multiple-output (MIMO) systems to introduce high perfor-
mance gains [2]. Their design allows simple Maximum Likeli-
hood (ML) decoding. The decoding complexity is very critical
for practical employment of MIMO systems. In OSTBCs pro-
posed by Alamouti [3] and Tarokh et al. [4], each transmitted
symbol is decoded separately, resulting in linear decoding
complexity.

For N transmit antennas, a complex orthogonal space-time
block code is described by a T'x N transmission matrix Gy,
where each entry in Gy is a linear combination of the K
variables s1, s2, . .., Six and their conjugates [5]. Gy can send
K symbols from a signal constellation in a block of 7" channel
uses. Since 7' time slots are used to transmit K symbols, the
rate of G is defined as r = K/T [6].

In this letter, we focus on the decoding complexity of
OSTBCs. We introduce a new decoding algorithm for square
QAM constellations based on the QR decomposition of the
real-valued lattice representation and show that conventional
simple ML detection can be further simplified. In other words,
we show that the optimal ML performance for OSTBCs is
obtained with a substantial reduction in the decoding com-
plexity. We also compare our decoding complexity with that
of conventional ML detection.
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The remainder of this letter is organized as follows: In Sec-
tion II, we specify the system model and define the problem.
In Section III, we introduce the new decoding algorithm. A
complexity discussion is provided in Section IV. Finally, we
conclude the letter in Section V.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Consider a MIMO system with N transmit and M receive
antennas, and an interval of 7' symbols during which the
channel is constant. The received signal is given by

Y=GyvH+V 1)

where YV = [yg I7xn is the received signal matrix of size
TxM and whose entry y/ is the signal received at antenna
jattimet, t =1,2,...,7, 5 =1,2,... . M; V = [v]]lrxm
is the noise matrix, and Gy = [gi]rxn is the transmitted
signal matrix whose entry g! is the signal transmitted at
antenna ¢ at time ¢, t = 1,2,...,7, ¢ = 1,2,...,N. The
matrix H = [h; j]nxn is the channel coefficient matrix
of size NxM whose entry h;; is the channel coefficient
from transmit antenna ¢ to receive antenna j. The entries
of the matrices H and V are independent, zero-mean, and
circularly symmetric complex Gaussian random variables of
unit variance.

Assuming that the channel H is known at the receiver,
the ML estimate is obtained at the decoder by performing
minHY—QNHHQF, where ||.||p is the Frobenius norm.

OgTBCs have a very simple and decoupled ML decoding
algorithm. The squared norm ||Y — Gy H | \QF can be decoupled
into K parts, where each part decodes one transmitted symbol
independently [5]. We illustrate this by an example. Consider
the OSTBC proposed by Alamouti [3] for N = 2 and defined

as
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The receiver decodes s; and se by decomposing the measure
Y — GnH| \QF into two parts, and minimizes each separately
over all possible values of s; and ss that belong to the
constellation used. Let the square L-QAM alphabet be given
as 2, where Q = {—vL+1,—VL+3,...,v/L—1}. Then,
ML is equivalent to [4]
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and,
2
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Obviously, ML detection in [5] is simple since it decodes
each transmitted symbol independently. A number of ML
decoders for N > 2 were derived in [5]. In a similar way, it
was shown that the decoder decomposes the ML measure into
K parts where each is minimized over all constellation points
to decode one symbol separately. As a result, the complexity
of ML decoding in [5] is O(L) which is linear with the
constellation size L. Thus, the decoding algorithm can be
implemented using only linear processing at the receiver. We
will show in this letter that the complexity can still be reduced
substantially. The algorithm proposed in this letter reduces the
decoding complexity from O(L) to O(v/L) with a substantial
reduction in the number of arithmetic operations required.

ITI. PROPOSED ALGORITHM

We start by rewriting (1) in matrix form

yb - yM vib o oM
: S =onH+ | ¢+ (3
where
hi1 him
I )
hna hn,M

We specify the complex transmitted symbols s1, sg, ..., sk of
Gn by their real and imaginary parts as s; = Tg;_1 + jxo; for
1 =1,2,..., K. Now, we obtain the real-valued representation
of (3). To do so, we first arrange the matrices Y, H, and V,
each in one column vector by stacking their columns one after
the other [7] as

yi hia o
Col=6n | |+ o )
yr' hn,m vp!

where C;N £ Iy ® Gy, with I is the identity matrix of
size M and ® denoting the Kronecker matrix multiplication
[7], and then we decompose the MT-dimensional complex
problem defined by (4) to a 2MT-dimensional real-valued
problem by applying the real-valued lattice representation
defined in [8] to obtain

jg=Hx+v
or equivalently
R(y1) R(s1) R(v})
S(y1) | S(s1) (o)

=H : + : )]

() S(sx) ()

The real-valued fading coefficients of H are defined using the
complex fading coefficients h; ; from transmit antenna ¢ to
receive antenna j as h, , = R(h;;), and h}, = S(hy ;) for
l=1,2,...,Nand j = 1,2,..., M. Now, since Gy is an
orthogonal matrix and due to the real-valued representation of
the system using (5), we observe that

« All columns of H = [ hl hg EQK ] where h;
is the ith column of H , are orthogonal to each other, or
equivalently

(hi, hy) =0, i # . ©)
o The norm of every column in H is equal to the norm of
any other column in H, i.e.,

norm(h;) = norm(h;), i,j=1,2,....,2K. (7)

These two properties have a major impact on the complexity
reduction of our proposed algorithm.
Applying QR decomposition to (5), we have

y=QRx+ v
QP y=Rr+ Q"o
y=Rx+7 ®)

where v and v have the same statistical properties since )
is unitary and so is Q. Recall that H is a 2MT x 2K
matrix. Then QF is a 2K x 2MT matrix and § is a one
column vector of size 2K. Since H is an orthogonal matrix,
QR decomposition produces a 2K x 2K diagonal R matrix
(see [9] for proof), a property which substantially reduces the
decoding complexity.

Using (8), the ML problem is now simpler and rather than
minimizing ||Y — Gy H HQF, the solution is obtained by mini-
mizing the metric ||§ — Rx||3 over all different combinations
of the vector x. In other words, the ML solution is found by
minimizing

2

n ri1 0 0 HiA)
Y2 0 rop 0 T2
Yor 0 0 ToK,2K ToK (2

over all combinations of z € Q2X. This can be further
simplified as

(10)

N = 2
Z; = arg min |g; — 14 2]
z;€Q

fori=1,2,...,2K. Then, the decoded message is

).

T = (&1,22,...,T2K

This means that the proposed algorithm produces 2K
parallel 1 x 1 real-valued subsystems for any OSTBC, thus
making the detection of the real and imaginary parts of
each transmitted complex symbol possible to be carried out
independently. Note that this simplification is obtained through
the observation of the orthogonality properties of H, the
observations in (6) and (7), and the QR decomposition in (8),
resulting in (9) and (10). Obviously, this approach results in a
simplified ML problem that can be solved in a parallel fashion
to obtain the optimal solution while substantially reducing the
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TABLE I
# OF REAL MULTIPLICATIONS AND REAL ADDITIONS VS L FOR 2 X 1
SYSTEM USING ALAMOUTI CODE

[ [Z [ ] 6] e %)
Ry || ML || 224 | 896 | 3584 | 14336
PR 128 | 160 224 352
Ra ML || 176 | 704 | 2816 | 11264
PR 31 47 79 143

TABLE II
# OF REAL MULTIPLICATIONS AND REAL ADDITIONS VS L FOR 4 X 1
SYSTEM USING G4

[ L [ 4] 6] e[ %]
Ry || ML || 960 | 3840 | 15360 | 61440 ‘
PR 732 796 924 1180
Ra ML || 864 | 3456 | 13824 | 55296 ‘
PR 167 199 263 391

overall decoding complexity.

IV. COMPUTATIONAL COMPLEXITY

In this section, we compare the computational complexity
of our proposed algorithm with that of conventional ML
detection. The overall complexity is measured in terms of
the number of operations required to decode the transmitted
signals for each block period 7. A complex multiplication
is equivalent to 4 real multiplications Rj; and 2 real addi-
tions R4, while a complex addition is equivalent to 2 real
additions. We split the complexity formula into two parts in
order to represent Rys and R4 independently. We denote the
complexity of our proposed algorithm by Cpr, and show it
as a two dimensional vector where the first dimension is the
number of real multiplications and the second, the number of
real additions, then

Cpr = 2KVL(4Ry, 2R ). (11)

Note that performing QR decomposition requires additional
number of computations. Due to the special structure of the
channel matrix H, QR can be simplified into two simple
steps. To illustrate this, let H = [ hi ho hox ]
where 712- is the ith column of H. Then, due to (6), R is
diagonal. The definition of the diagonal elements in R in QR
decomposition is r;,; = norm(ﬁi). Due to (7) the matrices )
and R are computed by

Step 1: Calculate the diagonal elements of the matrix R
by finding 11 = norm(ﬁl) and then set r,;, = ry; for
i = 2,...,2K. (Note that due to (7) all diagonal elements
are equal).

Step 2:  Calculate the unitary matrix @ =
o @ Qo | where g = hi/ri;  for
i=1,2,...,2K.

Finding R requires 2MT + 12 Ryr and 2MT —1 R4, and
computing @) requires 16 M T K Ry, assuming that a square
root operation and a real division are equivalent to 12 and 4
real multiplications respectively [10].

Moreover, the computation of § = Q¢ requires 4MTK
Ry and AMTK —2K R 4. Therefore, (11) is rewritten taking
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TABLE III
# OF REAL MULTIPLICATIONS AND REAL ADDITIONS VS L FOR 3 X 2
SYSTEM USING G3

| [ L ] 4] 16 | 64 | 256 |
Ry [ ML ]| 1606 | 6424 | 25696 | 102784
PR || 1388 | 1452 | 1580 1836
Ra ML [ 1248 | 4992 | 19968 | 79872
PR 311 | 343 407 535

into account the complexity of computing QR and Q7 as

Cpr = (MT(20K +2) + 12+ 8KVL)Ryy,

(MT(4K +2) 4+ 2K(2VL — 1) — 1)Ra.  (12)

Conventional ML detection [5], on the other hand, performs
simple detection for each complex symbol independently. The
complexity Cpsz, can be derived using the presentation in [5]
(see Appendix of [5] for details) as

Cyvr = L((AMN(T + K) + 12K )Ry,

(AMN(T + K) + 6K)Ra). (13)

Obviously, the complexity of ML is O(L) whereas the
complexity of the proposed algorithm is O(+/L). Furthermore,
the number of computations required to decode one block of
transmitted symbols using conventional ML is much higher
than that required for the proposed algorithm.

We give a comparison between Cpr and Cjyy, in terms of
the number of real multiplication and real additions consid-
ering N = 2,3, 4 for different constellation sizes. In Table I,
we show this comparison for N = 2 considering the Alamouti
OSTBC defined in (2). In Tables II and III, we show the
same comparison for N =4, M =1 and N =3, M = 2,
respectively, using the OSTBCs G4 and Gs defined in [5].

Clearly, the complexity gain obtained by the proposed
algorithm is substantial. Finally, it is important to emphasize
the fact that the complexity reduction, as shown in all tables,
becomes greater as L is larger.

V. CONCLUSIONS

An efficient ML decoding algorithm based on QR decom-
position of the channel matrix is proposed for orthogonal
space-time block codes. The performance is shown to be
optimal while reducing the decoding complexity significantly
compared to conventional ML. Furthermore, we show that the
complexity of this algorithm is O(v/L) compared to O(L)
for conventional ML, and consequently the complexity gain
becomes grater as the constellation size is larger.
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