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Abstract—In this paper, we investigate the performance of bit-
interleaved coded multiple beamforming (BICMB). We provide
interleaver design criteria such that BICMB achieves full spa-
tial multiplexing of min(N, M) and full spatial diversity of NM
with N transmit and M receive antennas over quasi-static Rayleigh
flat fading channels. If the channel is frequency selective, then
BICMB is combined with orthogonal frequency division multi-
plexing (OFDM) (BICMB–OFDM) in order to combat ISI caused
by the frequency-selective channels. BICMB–OFDM achieves full
spatial multiplexing of min(N, M), while maintaining full spatial
and frequency diversity of NML for an N × M system over L-tap
frequency-selective channels when an appropriate convolutional
code is used. Both systems analyzed in this paper assume perfect
channel state information both at the transmitter and the receiver.
Simulation results show that, when the perfect channel state infor-
mation assumption is satisfied, BICMB and BICMB–OFDM pro-
vide substantial performance or complexity gains when compared
to other spatial multiplexing and diversity systems.

Index Terms—Beamforming, bit-interleaved coded modulation
(BICM), BIC multiple beamforming (BICMB), diversity, spatial
multiplexing.

I. INTRODUCTION

MULTI-INPUT multi-output (MIMO) systems provide
significant capacity and diversity advantages [1]. A ba-

sic challenge in a MIMO system design is to achieve a high
diversity order as well as high throughput. In a MIMO sys-
tem, it is possible to transmit multiple streams of data over
multiple antennas. This technique is known as spatial multi-
plexing [2]. This is a good alternative solution to providing
high data rates with restrictions on the constellation size and
the available bandwidth. Spatial multiplexing can utilize dif-
ferent receivers some of which are maximum-likelihood (ML)
receiver, successive-cancelation (SUC) receiver, ordered SUC
receiver, minimum-mean-squared-error (MMSE) receiver, and
zero-forcing (ZF) receiver [2]. The ML receiver performs vector
decoding and is the optimal receiver for systems that utilize the
channel knowledge only at the receiver, although it has very high
complexity. In fact, ML receiver achieves full receive diversity
for uncoded systems regardless of the number of streams trans-
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mitted [2]. Recently, the ML receiver has been simplified by a
technique known as sphere decoding [3], [4]. The complexity
of this technique is much less than the ML receiver but can still
be significant [5]. On the other hand, MMSE and ZF receivers
are easy to implement, but their performances are inferior to the
performance of the ML receiver. None of these systems employs
channel state information at the transmitter (CSIT).

Clearly, the presence of CSIT can significantly improve over-
all performance. A technique that provides high diversity and
coding gain with the help of CSIT is known as beamforming [6].
Such an optimum technique (in terms of the number of chan-
nels) is singular value decomposition (SVD). SVD separates the
MIMO channel into parallel subchannels. Therefore, multiple
streams of data can be transmitted easily. Single beamform-
ing (i.e., sending one symbol at a time) was shown to achieve
the maximum diversity in space with a substantial coding gain
compared to space–time codes [7]. If more than one symbol
at a time are transmitted, then the technique is called multiple
beamforming. It can be expected that there would be a tradeoff
between spatial multiplexing and diversity order in such sys-
tems. In fact, for uncoded multiple beamforming systems using
uniform power allocation, while the data rate increases, one
loses the diversity order with the increasing number of streams
used over flat fading channels [8].

Bit-interleaved coded modulation (BICM) was introduced as
a way to increase the code diversity [9], [10]. BICM has been
deployed with OFDM and MIMO-OFDM systems to achieve
high diversity orders [11]–[14]. In Section II, we analyze BIC
multiple beamforming (BICMB). We show that with the inclu-
sion of BICM to the system, one actually does not need to lose
the diversity order with multiple beamforming even when all
the subchannels are used. That is, in Section III, we show that
BICMB achieves full diversity order of NM, and full spatial
multiplexing order1 of min(N,M) for a system with N trans-
mit and M receive antennas over Rayleigh flat fading channels.
We provide design criteria for the interleaver that guarantee full
diversity and full spatial multiplexing.

If there is frequency selectivity in the channel, then BICMB
is combined with OFDM in order to combat ISI. In Section V,
we show that BICMB–OFDM achieves full diversity order
of NML and full spatial multiplexing order of min(N,M)
for a system with N transmit and M receive antennas over
L-tap frequency-selective channels, when an appropriate con-
volutional code is used.

We would like to reiterate that we assume perfect channel
state information both at the transmitter and the receiver. As
will be shown in Section VI, the systems investigated here

1In this paper, we use the term “spatial multiplexing” or “spatial multiplexing
order” to describe the number of spatial subchannels, as in [2]. It should be
noted that this term is different from “spatial multiplexing gain" defined in [15].
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provide substantial performance or complexity gains. A sig-
nificant improvement may be expected even in the presence of
channel estimation errors and limited feedback.

Notation: N is the number of transmit antennas, M is the
number of receive antennas, K is the number of subcarriers
within one OFDM symbol, and L is the number of taps in a
frequency-selective channel. The minimum Hamming distance
of a convolutional code is defined as dfree. The symbol S denotes
the total number of symbols transmitted at a time (spatial multi-
plexing order), in other words, the total number of streams used.
The minimum Euclidean distance between the two constellation
points is given by dmin. The superscripts (·)H , (·)T , (·)∗, (̄·),
and the symbol ∀ denote the Hermitian, transpose, complex
conjugate, binary complement, and for all, respectively.

II. BICMB: SYSTEM MODEL

BICMB is a combination of BICM and multiple beamform-
ing. The output bits of a binary convolutional encoder are inter-
leaved and then mapped over a signal set χ ⊆ C of size |χ| = 2m

with a binary labeling map µ : {0, 1}m → χ. The dfree of the
convolutional encoder should satisfy dfree ≥ S. The interleaver
is designed such that the consecutive coded bits are:

1) transmitted over different subchannels that are created by
beamforming;

2) the code and the interleaver should be picked such that
each subchannel created by SVD is utilized at least once
within dfree distinct bits between different codewords.

The reasons for the interleaver design are given in Section III.
Gray encoding is used to map the bits onto symbols. Since Gray
encoding allows independent decoding of each bit [16], a Viterbi
decoder is deployed at the receiver. During transmission, the
code sequence c is interleaved by π, and then mapped onto the
signal sequence x ∈ χ.

Beamforming separates the MIMO channel into parallel sub-
channels. The beamforming vectors used at the transmitter and
the receiver can be obtained by the SVD [17] of the MIMO chan-
nel. Let H denote the quasi-static, Rayleigh flat fading M × N
MIMO channel. Then, the SVD of H can be written as

H = UΛVH = [u1 u2 · · · uM ]Λ[v1 v2 · · · vN ]H (1)

where U and V are M × M and N × N unitary matrices, re-
spectively, and Λ is an M × N diagonal matrix with singular
values of H, λi ∈ R, on the main diagonal with decreasing order.
If S symbols are transmitted at the same time, then the S × M
[u1 u2 · · · uS ]H and the N × S [v1 v2 · · · vS ] matrices are em-
ployed at the receiver and the transmitter, respectively. The sys-
tem input–output relation at the kth time instant can be written as

y
k

= [u1 u2 · · · uS ]H H[v1 v2 · · · vS ]xk + [u1 u2 · · · uS ]H nk

(2)

yk,s = λsxk,s + nk,s , for s = 1, 2, . . . , S (3)

where xk is an S × 1 vector of transmitted symbols, y
k

is
an S × 1 vector of the received symbols, nk is an M × 1
additive white Gaussian noise with zero mean and variance
N0 = N/SNR. Note that the total power transmitted is scaled as

N . The channel elements hm,n are modeled as zero-mean, unit-
variance complex Gaussian random variables. Consequently,
the received signal-to-noise ratio is SNR. Uniform power allo-
cation is deployed for each subchannel. An adaptive modulation
and coding scheme for BICMB was introduced in [18].

For an uncoded multiple beamforming system using uniform
power allocation, if S symbols are transmitted at a time, then
the diversity order is equal to (N − S + 1)(M − S + 1) [19].

The bit interleaver of BICMB can be modeled as π : k′ →
(k, s, i), where k′ denotes the original ordering of the coded bits
ck ′ , k denotes the time ordering of the signals xk,s transmitted,
s denotes the subchannel used to transmit xk,s , and i indicates
the position of the bit ck ′ on the symbol xk,s .

Let χi
b denote the subset of all signals x ∈ χ whose label has

the value b ∈ {0, 1} in position i. Then, the ML bit metrics are
given by using (3), [9], [10]

γi(yk,s , ck ′) = min
x∈χi

c
k ′

|yk,s − λsx|2. (4)

The ML decoder at the receiver makes decisions according to
the rule

ĉ = arg min
c∈C

∑
k ′

γi(yk,s , ck ′). (5)

III. BICMB: PEP ANALYSIS

In this section, we show that by using BICM and the given
interleaver design criteria, coded multiple beamforming can
achieve full spatial diversity order of NM while transmitting
S ≤ min(N,M) symbols at a time. Assume that the code se-
quence c is transmitted and ĉ is detected. Then by using (4) and
(5), the pairwise error probability (PEP) of c and ĉ given CSI
can be written as

P (c → ĉ|H) = P

(∑
k ′

min
x∈χi

c
k ′

|yk,s − λsx|2 ≥

∑
k ′

min
x∈χi

ĉ
k ′

|yk,s − λsx|2
)

(6)

where s ∈ {1, 2, . . . , S}.
For a convolutional code, the Hamming distance between c

and ĉ, d(c − ĉ), is at least dfree. For c and ĉ under consideration
for PEP analysis, assume d(c − ĉ) = dfree. Then, χi

ck ′ and χi
ĉk ′

are equal to one another for all k′ except for dfree distinct values
of k′. Therefore, the inequality on the right-hand side of (6)
shares the same terms on all but dfree summation points. Hence,
the summations can be simplified to only dfree terms for PEP
analysis

P (c → ĉ|H) = P


 ∑

k ′,dfree

min
x∈χi

c
k ′

|yk,s − λsx|2 ≥

∑
k ′,dfree

min
x∈χi

ĉ
k ′

|yk,s − λsx|2

 (7)

where
∑

k ′,dfree
denotes that the summation is taken with index

k′ over dfree different values of k′.
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Note that for binary codes and for the dfree points at hand,
ĉk ′ = c̄k ′ . For the dfree bits, let us denote

x̃k ,s = arg min
x∈χi

c k ′

|yk,s − λsx|2

x̂k ,s = arg min
x∈χi

c̄
k ′

|yk,s − λsx|2. (8)

It is easy to see that x̃k ,s 	= x̂k ,s as x̃k ,s ∈ χi
ck ′ and x̂k ,s ∈ χi

c̄k ′ ,
where χi

ck ′ and χi
c̄k ′ are complementary sets of constella-

tion points within the signal constellation set χ. Also, |yk,s −
λsxk,s |2 ≥ |yk,s − λs x̃k,s |2 and xk,s ∈ χi

ck ′ .
For convolutional codes, due to their trellis structure, dfree

distinct bits between any two codewords occur in consecutive
trellis branches. Let us denote d such that dfree bits occur within
d consecutive bits. The bit interleaver can be designed such that
d consecutive coded bits are mapped onto distinct symbols. This
guarantees that there exist dfree distinct pairs of (x̃k ,s , x̂k ,s) and
dfree distinct pairs of (xk,s , x̂k,s). The PEP can be rewritten as

P (c → ĉ|H)

= P


 ∑

k,dfree

|yk,s − λs x̃k,s |2 − |yk,s − λs x̂k,s |2 ≥ 0




= P


 ∑

k,dfree

|yk,s − λs x̃k,s |2 ≥
∑

k,dfree

|yk,s − λs x̂k,s |2



≤ P


 ∑

k,dfree

|yk,s − λsxk,s |2 ≥
∑

k,dfree

|yk,s − λs x̂k,s |2



= P


 ∑

k,dfree

|nk,s |2 ≥
∑

k,dfree

|λs(xk,s − x̂k ,s) + nk,s |2



= P


β ≥

∑
k,dfree

|λs (xk,s − x̂k ,s) |2



≤ Q




√√√√√d2
min

S∑
s=1

αsλ
2
s

2N0


 (9)

where β =
∑

k,dfree
βk,s , βk,s = λs(x̂k ,s − xk,s)∗nk,s +

λs(x̂k ,s − xk,s)n∗
k,s , αs denotes how many times the sth

subchannel is used within the dfree bits under consideration,
and

∑S
s=1 αs = dfree. For given H, βk,s’s are indepen-

dent zero-mean Gaussian random variables with variance
2N0|λs(x̂k ,s − xk,s)|2. Consequently, β is a Gaussian ran-
dom variable with zero mean and variance 2N0

∑
k,dfree

|
λs(x̂k ,s − xk,s)|2.

If the interleaver is designed such that the consecutive coded
bits are not spread over different subchannels created by beam-
forming, then the performance is dominated by the worst sin-
gular value. In other words, the error event on the trellis
occurs on consecutive branches spanned by the worst sub-

channel, and αS = dfree. This results in a diversity order of
(N − S + 1)(M − S + 1) as in uncoded multiple beamform-
ing. On the other hand, by spreading the consecutive coded
bits over subchannels, bits that are transmitted over better sub-
channels can do better error correcting on nearby bits that are
transmitted over worse subchannels (interleaver design criterion
1). Criteria 1 and 2 guarantee that αs ≥ 1, for s = 1, 2, . . . , S.

Using an upper bound for the Q function Q(x) ≤ (1/2)
e−x2/2, PEP can be upper bounded as

P (c → ĉ) = E [P (c → ĉ|H)]

≤ E


1

2
exp



−d2

min

S∑
s=1

αsλ
2
s

4N0





 . (10)

Let us denote αmin = min{αs : s = 1, 2, . . . , S}. Then,(
S∑

s=1
αsλ

2
s

)
S

≥

(
αmin

S∑
s=1

λ2
s

)
S

≥

(
αmin

N∑
s=1

λ2
s

)
N

. (11)

Note that

Θ


=

N∑
s=1

λ2
s = ‖H‖2

F =
∑
n,m

|hn,m |2 (12)

is a chi-squared random variable with 2NM degrees of free-
dom (the elements of H, hm,n , are complex Gaussian random
variables). Using (10)–(12), the PEP is upper bounded by

P (c → ĉ) ≤ E

[
1
2

exp
(
−d2

minαminS

4N0N
Θ

)]
. (13)

The expectation in (13) is evaluated with respect to Θ with
probability density function (pdf) fΘ(θ) = θ(N M −1)e−θ/2/
2N M (NM − 1)! [20]. Consequently,

P (c → ĉ) =g(d, αmin, χ)

≤ 1
2N M +1

(
d2
minαminS

4N0N
+

1
2

)−N M

(14)

≈ 1
2N M +1

(
d2
minαminS

4N2
SNR

)−N M

(15)

for high SNR. The function g(d, αmin, χ) denotes the PEP of
two codewords with d(c − ĉ) = d, with αmin corresponding to
c and ĉ, and with constellation χ. Note that the PEP function
g(·) depends on αmin as well as the distance d. That is, a set
of codewords all of which are at Hamming distance d from one
another can have different PEPs depending on the corresponding
αmin between any two codewords. In the case of BICM with a
rate kc/nc binary convolutional code, the bit error rate (BER)
Pb can be bounded as

Pb ≤
1
kc

∞∑
d=dfree

WI (d)g0(d, µ, χ) (16)

where WI (d) denotes the total input weight of error events
at Hamming distance d, g0(·) is the PEP of two codewords
with d(c − ĉ) = d, µ is a constellation labeling map, and χ is
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the constellation [10]. Since we have a fixed, Gray-encoded
constellation labeling map, µ can be ignored. Needless to say,
g0(·) and g(·) are two different functions. In BICMB, Pb can be
calculated as

Pb ≤
1
kc

∞∑
d=dfree

WI (d)∑
i=1

g(d, αmin(d, i), χ). (17)

For example, for the industry standard 1/2 rate, 64-state (133,
171) convolutional code WI (d = dfree = 10) = 11. Depending
on the interleaver used, 11 codewords at a Hamming distance
of 10 from the all-zero codeword may each have a different
αmin. Therefore, we deviated from the usual notation for the
union bound of convolutional codes of (16) to the one given in
(17) with an extra summation inside specifically distinguishing
the different αmin’s for the codewords at a Hamming distance
d. Note that the union bound in (17) provides a loose bound
for quasi-static channels, and a limiting and averaging method
should be used for a tighter bound [21], [22]. Nevertheless,
the union bound is a very useful tool to provide an insight
for the asymptotic behavior of the system, and therefore, the
diversity order. In this paper, our goal is to provide the diversity
order of the BICMB system when multiple streams of data are
transmitted over multiple antennas, rather than providing tight
bounds. Following (15) and (17)

Pb ≤
1
kc

∞∑
d=dfree

WI (d)∑
i=1

1
2N M +1

(
d2
minαmin(d, i)S

4N2
SNR

)−N M

.

(18)

As can be seen from (18), for all the summations, the SNR com-
ponent has a power of −NM . Consequently, BICMB achieves
full diversity order of NM independent of the number of spatial
streams transmitted.

IV. BICMB-OFDM: SYSTEM MODEL

In order to combat the ISI in frequency-selective channels, we
combined BICMB with OFDM (BICMB–OFDM). The system
model is similar to BICMB with few minor differences as given
in this section. The multiplication with beamforming vectors
are carried at each subcarrier before inverse fast Fourier trans-
form (IFFT) at the transmitter and after fast Fourier transform
(FFT) at the receiver. The interleaver is designed such that the
consecutive coded bits are:

1) interleaved within one MIMO-OFDM symbol to avoid
extra delay requirement to start decoding at the receiver;

2) transmitted over different subcarriers of an OFDM
symbol;

3) transmitted over different subchannels that are created by
beamforming.

By adding cyclic prefix (CP), OFDM converts the frequency-
selective channel into parallel flat-fading channels for each
subcarrier. Let H(k) denote the quasi-static, flat fading
M × N MIMO channel observed at the kth subcarrier,
and hmn = [hmn (0) hmn (1) · · ·hmn (L − 1)]T represent the
L-tap frequency-selective channel from the transmit antenna n
to the receive antenna m. Each tap is assumed to be statistically

independent and modeled as zero-mean complex Gaussian ran-
dom variable with variance 1/L. The SVD is formed for each
H(k) in order to calculate the beamforming matrices for each
subcarrier. If S symbols are transmitted on the same subcarrier
over N transmit antennas, then the system input–output relation
at the kth subcarrier can be written as

y(k) = {[u1(k) u2(k) · · · uS (k)]H H(k)

[v1(k)v2(k) · · · vS (k)]x(k)}
+ [u1(k) u2(k) · · · uS (k)]H n(k) (19)

ys(k) = λs(k)xs(k) + ns(k) (20)

for s = 1, 2, . . . , S and k = 1, 2, . . . ,K, where λs(k) is the sth
largest singular value of H(k) and n(k) is the additive white
complex Gaussian noise with zero mean and variance N/SNR.
The average total power transmitted over all the antennas at
each subcarrier is scaled as N such that the received signal-to-
noise ratio over all the receive antennas is SNR. Note that the
received SNR at each subchannel for each subcarrier is directly
proportional to the corresponding channel gain λs(k)2.

V. BICMB-OFDM: PEP ANALYSIS

Assume the code sequence c is transmitted and ĉ is detected.
Then, by using (20), the PEP of c and ĉ given CSI can be written
as

P (c → ĉ|H(k),∀k) = P

(∑
k ′

min
x∈χi

c
k ′

|ys(k) − λs(k)x|2

≥
∑
k ′

min
x∈χi

ĉ k ′

|ys(k) − λs(k)x|2
)

(21)

where s ∈ {1, 2, . . . , S}.
Similar to Section III, for dfree bits under consideration for

the PEP analysis, let us denote

x̃s(k) = arg min
x∈χi

c k ′

|ys(k) − λs(k)x|2

x̂s(k) = arg min
x∈χi

c̄
k ′

|ys(k) − λs(k)x|2. (22)

It is easy to see that x̃s(k) 	= x̂s(k) since x̃s(k) ∈ χi
ck ′ and

x̂s(k) ∈ χi
c̄k ′ , where χi

ck ′ and χi
c̄k ′ are complementary sets of

constellation points within the signal constellation set χ. Also,
|ys(k) − λs(k)xs(k)|2 ≥ |ys(k) − λs(k)x̃s(k)|2 and xs(k) ∈
χi

ck ′ .
Interleaver design criteria 2 and 3 suggest that the bit inter-

leaver should be designed such that d consecutive coded bits are
mapped onto distinct symbols and onto distinct subcarriers. This
guarantees that there exist dfree distinct pairs of (x̃s(k), x̂s(k))
and dfree distinct pairs of (xs(k), x̂s(k)) with dfree distinct val-
ues of k. The PEP can be rewritten as

P (c → ĉ|H(k)∀k)

= P

( ∑
k,dfree

|ys(k) − λs(k)x̃s(k)|2

− |ys(k) − λs(k)x̂s(k)|2 ≥ 0
)

(23)
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≤ P


β ≥

∑
k,dfree

|λs(k) (xs(k) − x̂s(k)) |2



≤ Q




√√√√ ∑
k,dfree

d2
minλs(k)2

2N0


 (24)

for some known s at each subcarrier k, where β =
∑

k,dfree

λs(k)(x̂s(k) − xs(k))∗ns(k) + λs(k)(x̂s(k) − xs(k))n∗
s(k).

For given H(k),∀k, β is a Gaussian random variable with zero
mean and variance 2N0

∑
k,dfree

|λs(k)(x̂s(k) − xs(k))|2.
The interleaver can be designed such that the consecutive

coded bits are transmitted on different subchannels (interleaver
design criterion 3). This way, on the trellis, within the dfree bits
under consideration, coded bits that are transmitted on better
subchannels can provide better error correcting on the neigh-
boring bits that are transmitted on worse subchannels. Using an
upper bound for the Q function Q(x) ≤ (1/2)e−x2/2, PEP can
be upper bounded as

P (c → ĉ) =E [P (c → ĉ|H(k),∀k)]

≤ E


1

2
exp


−

d2
min

∑
k,dfree

λs(k)2

4N0





 . (25)

Assuming high frequency selectivity in the channel, λs(k)s
are independent for different k, and identically distributed for
the same s. Let us denote µs(k) = λs(k)2, the marginal pdfs of
each µs(k) as f(µs(k)), and αs as the number of times the sth
channel is used within dfree bits under consideration such that∑S

s=1 αs = dfree. Note that, criterion 3 guarantees αs ≥ 1, ∀s.
The expectation in (25) can be evaluated using the marginal
pdfs as

P (c → ĉ)

≤ 1
2

S∏
s=1

[∫ ∞

0

exp
(
−d2

minµs(k)
4N0

)
f(µs(k)) dµs(k)

]αs

.

(26)

Since the instantaneous received SNR for each s and each
k depends directly on µs(k), the diversity and coding gains
for average BER at high SNR depend only on the behavior of
f(µs(k)) around the origin µs(k) = 0 [23], [24]. Using a Taylor
series expansion around 0, the first-order approximation of the
marginal pdf of µs(k) is given by [8], [19], [24], [25]

f(µs(k)) = κsµs(k)(N −s+1)(M −s+1)−1 (27)

where κs is a constant [24]. Consequently, (26) can be calculated
as

P (c → ĉ) = g(d, α, χ)

≤ 1
2

S∏
s=1

γαs
s

(
d2
min

4N
SNR

)−αs (N −s+1)(M −s+1)

(28)

where γs is a constant, which depends on κs [24]. The func-
tion g(d, α, χ) denotes the PEP of two codewords that are at
a Hamming distance of d from one another with the corre-
sponding vector α = [α1, α2, . . . , αS ]. The coefficients αs for,
s = 1, . . . , S, are calculated depending on the codewords c and
ĉ, d(c − ĉ), and the interleaver used. Note that the function g(·)
changes for different α. Therefore, the PEPs of a set of code-
words (all of which are at a distance d from one another) can be
different depending on the corresponding α. In a similar fash-
ion to Section III, we use the usual union bound to illustrate the
diversity order of the system. The BER Pb can be calculated as

Pb ≤
1
kc

∞∑
d=dfree

WI (d)∑
i=1

g(d, α(d, i), χ). (29)

For a set of codewords at a Hamming distance d, there may be a
different vector α. α(d, i) = [α1(d, i), α2(d, i), . . . , αS (d, i)]
denotes the vector α for a codeword at a distance d from
the all-zero codeword with the given interleaver. For the same
Hamming distance of d from the all-zero codeword, there are
a total of WI (d) different codewords, and therefore, there may
be WI (d) different α(d, i) vectors (some of which could be the
same). Let us define

∆(α(d, i)) =
S∑

s=1

αs(d, i)(N − s + 1)(M − s + 1) (30)

α(dfree, j) = arg min
α(d free , i )

i=1,...,WI (dfree)

∆(α(dfree, i)). (31)

Note that ∆(α(dfree, j)) is the minimum for all d ≥ dfree, since
convolutional codes are trellis-based and for any d > dfree,
∆(α(d, i)) ≥ ∆(α(dfree, j)). Combining (28)–(31), Pb can be
calculated as

Pb ≤
1

2kc

S∏
s=1

[
γαs (dfree,j)

s

(
d2
min

4N
SNR

)−αs (dfree,j)(N −s+1)(M −s+1)
]

+
1
kc

∞∑
d=dfree

WI (d)∑
i=1

i 	=j,d=dfree

g(d, α(d, i), χ). (32)

For asymptotically high SNR, the diversity order of a sys-
tem is determined by the smallest power of SNR, since the
higher order terms yield to zero faster with increasing SNR.
Consequently, BICMB-OFDM provides a diversity order of
∆(α(dfree, j)) for a spatial multiplexing order of S. Note that, if
the interleaver design criterion 3 is not met, then the maximum
diversity order reduces to (N − S + 1)(M − S + 1)dfree for
spatial multiplexing order of S with αS (dfree, j) = dfree. It is
known that the maximum diversity order of MIMO systems over
L-tap frequency-selective channels is NML [26], [27]. As will
be shown in Section VI, BICMB–OFDM achieves full diver-
sity order of NML when NML ≤ ∆(α(dfree, j)) for spatial
multiplexing order of S.
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Fig. 1. BICMB with four transmit and four receive antennas and with different
number of streams.

A very low-complexity decoder for BICM–OFDM can be
implemented as in [28] and [29]. The same decoder can be
used for BICMB and BICMB–OFDM as well: instead of using
the single-input single-output (SISO) channel value of BICM–
OFDM for the decoder [28], [29], one should use λs for BICMB,
and λs(k) for BICMB–OFDM. Hence, BICMB and BICMB–
OFDM provide full spatial multiplexing, full diversity, and easy-
to-decode systems.

VI. SIMULATION RESULTS

In the simulations described next, the industry standard 64-
state 1/2-rate (133, 171) dfree = 10 convolutional code is used.
For BICMB, coded bits are separated into different streams of
data and a random interleaver is used to interleave the bits in
each substream. BICMB-OFDM deploys the interleaver given
in [30]. The interleavers satisfy the design criteria of Section II
and IV. Each packet has 1000 bytes of information bits, and
the channel is changed independently from packet to packet.
Each OFDM symbol has 64 subcarriers, and has 4 µs duration,
of which 0.8 µs is CP. All the comparisons given later are
made at 10−5 BER. Unless otherwise mentioned, 16 quadratic-
amplitude modulation (QAM) is used for all the simulations.

A. BICMB

Fig. 1 illustrates the results for BICMB with QPSK and
with four transmit and four receive antennas. Note that when
S = 4, and with 1/2-rate convolutional code, BICMB transmits
4 bits/sHz. Also, note that all the curves have the same slope
for high SNR. One can verify by using simulation results with,
e.g., a 4 × 4 1/2-rate complex orthogonal STBC, that our system
achieves full spatial diversity order of 16 regardless of the num-
ber of streams transmitted simultaneously. A comparison with
the systems in [31] and [32] shows the same results for diver-
sity. The systems in [31] and [32] have comparable performance
without CSIT, employing sphere decoding, which has signifi-

Fig. 2. BICMB transmitting min(N, M ) streams with the 2 × 2, 3 × 3, and
4 × 4 cases.

cantly higher complexity than that of our system. The prospect
of a high-performing, full-diversity and maximum spatial mul-
tiplexing system without CSIT is very appealing. But, when
used in an N × N MIMO system, sphere decoding results in a
complexity of O(AµN 2

), where A is the constellation size and
µ is a number between 0 and 1, close to 1 for low SNR [5]. As
a result, the complexity of such a system, although much lower
than that of ML, is still high and is dependent on SNR.

A comparison of the 2 × 2, 3 × 3, and 4 × 4 cases, with full
spatial multiplexing in each case, is given in Fig. 2. In all the
cases, 16 QAM is deployed for transmission. Even though the
4 × 4 system transmits twice the data rate of 2 × 2 system,
the performance of the 4 × 4 system is significantly better than
that of the 2 × 2 system. This is due to the fact that the 4 × 4
system achieves a diversity order of 16 where the 2 × 2 system
has a diversity order of 4. Consequently, BICMB provides both
advantages of MIMO systems: it provides full diversity and full
spatial multiplexing.

Fig. 3 illustrates the importance of the interleaver design. We
simulated a random interleaver such that consecutive coded bits
are transmitted over the same subchannel. In other words, on a
trellis path, consecutive bits of length 1/Sth of the coded packet
size are transmitted over the same subchannel. Consequently, an
error on the trellis occurs over paths that are spanned by the worst
channel and the diversity order of coded multiple beamforming
approaches to that of uncoded multiple beamforming with uni-
form power allocation. It is our experience that a straightforward
use of the interleaver employed in the 802.11a standard [33] can
result in this behavior, especially for S = 2 and 4.

Fig. 4 shows the simulation results of BICMB when com-
pared to a spatial multiplexing system using BICM at the trans-
mitter and ML, MMSE, and ZF receivers. All the receivers
deploy a soft Viterbi decoder. In this paper, for ZF and MMSE,
the bit metrics in [34] and [35], respectively, are employed.
All the systems have spatial multiplexing order of 2. While
ML receiver achieves a high diversity order with substantial
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Fig. 3. BICMB transmitting min(N, M ) streams with the 2 × 2 and 4 × 4
cases using an interleaver meeting and not meeting the design criteria.

Fig. 4. BICMB vs. MLD, ZF, and MMSE for the 2 × 2 case.

complexity, ZF achieves a diversity order of M − N + 1 [2],
[36]. ML receiver is known as the optimal receiver for a spa-
tial multiplexing system. Using BICM at the transmitter with
an interleaver, spreading the consecutive bits over the transmit
antennas, and deploying ML receiver can be considered as the
vertical encoding (VE) in [2]. Such a system is capable of pro-
viding a high diversity order. However, as discussed previously,
ML receiver has prohibitive complexity while its simplified form
sphere decoder still has substantial complexity in real MIMO
applications. Therefore, suboptimal (therefore, poorer perfor-
mance) but easy-to-implement receivers are designed such as
MMSE, ZF, SUC, and ordered SUC [2]. As illustrated for the
2 × 2 case, BICMB outperforms ML receiver by 4.5 dB, while
the performance gain compared to MMSE and ZF receivers is

Fig. 5. BICMB-OFDM transmitting two streams using two transmit and two
receive antennas.

more than 25 dB. It is possible that the base station (or the access
point) has more antennas than that of the receiver. BICMB with
four transmit and two receive antennas with spatial multiplex-
ing of 2 outperforms ML receiver by 15.5 dB. Note that, for
BICMB, the performance of the 4 × 2 and the 2 × 4 cases are
identical. Therefore, the same high performance is available for
both the downlink and the uplink.

We state once again that CSIT is absent in the systems we
compare BICMB with, whereas BICMB employs perfect CSIT.
However, the large performance or complexity gains achieved
by BICMB leave room for more modest performance gains
with channel estimation errors and limited feedback, and may
be indicative of practical systems with good performance. Our
goal in this paper is to merely quantify absolute performance
bounds.

B. BICMB-OFDM

Fig. 5 illustrates the results for BICMB–OFDM for different
rms delay spread values, when 2 streams of data are transmitted
at the same time. The maximum delay spread of the channel is
assumed to be ten times the rms delay spread. The channel is
modeled as in Section IV, where each tap is assumed to have
equal power. The spectrum of (133, 171) shows that there are 11
codewords with a Hamming distance of dfree from the all-zero
codeword. When compared to the all-zero codeword, the code-
word [1110010100010101110000000· · ·] has the worst perfor-
mance for BICMB–OFDM. It corresponds to (31). On this code-
word, the code and the interleaver combination result in α1 =
3 and α2 = 7. Consequently, when S = 2, BICMB–OFDM
achieves a maximum diversity order of 3NM + 7(N − 1)
(M − 1) (19 for a 2 × 2 system). Note that, in Fig. 5 up to an
rms delay spread of 15 ns, BICMB–OFDM achieves the max-
imum diversity with full spatial multiplexing of 2. The 2 × 2
system over a 20 ns channel provides a maximum achievable
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Fig. 6. BICMB-OFDM vs. MLD, MMSE, and ZF transmitting two streams
over IEEE channel model B.

Fig. 7. BICMB-OFDM vs. MLD, MMSE, and ZF transmitting two streams
over IEEE channel model D.

diversity order of 20. Therefore, BICMB–OFDM achieves a
diversity order of 19 for rms delay spreads of 20, 25, and 50 ns.

Figs. 6 and 7 illustrate the simulation results for BICMB–
OFDM and BICM–OFDM with spatial multiplexing (BICM–
SM–OFDM) using ML, MMSE, and ZF receivers. In both fig-
ures, the spatial multiplexing order is set as 2. The simulations
are carried over the IEEE channel models B and D [37]–[39].
Note that BICMB-OFDM employs CSI at both the transmitter
and the receiver, while ML, MMSE, and ZF employ CSI at the
receiver. As can be seen, BICMB-OFDM outperforms signifi-
cantly high complexity, but best spatial multiplexing receiver,
ML, by more than 3.5 dB. Note that the decoding complexity of
BICMB-OFDM is substantially lower in complexity than that
in ML receiver. BICMB-OFDM outperforms MMSE and ZF
receivers at 10−5 BER by 6 and 7.5 dB, respectively. It is possi-

Fig. 8. BICMB-OFDM vs. MMSE, and ZF transmitting four streams over
IEEE channel models B, and D.

ble that the base station (or the access point) has more antennas
than the receiver. BICMB-OFDM with four transmit and two
receive antennas with spatial multiplexing of 2 outperforms ML
receiver by 9 dB. Similar to BICMB results, the performance of
the 4 × 2 and the 2 × 4 cases are identical for BICMB-OFDM.
Therefore, the same high performance is available for both the
downlink and the uplink.

Fig. 8 presents the results for the 4 × 4 case trans-
mitting four streams for BICMB-OFDM, MMSE, and ZF
over IEEE channel models B and D. For the S = 4 case,
when compared to the all-zero codeword, the codeword
[001110010100010101110000 · · ·] leads to the worst diversity
order. The coefficients are given as α1 = 1, α2 = 3, α3 = 2 and
α4 = 4, which leads to a maximum diversity order of 55 for the
4 × 4 case. BICMB-OFDM outperforms MMSE by 11.5 dB
and ZF by 15 dB at 10−5 BER for IEEE channel model B.

VII. CONCLUSION

In this paper, we analyzed BICMB. BICMB utilizes the chan-
nel state information at the transmitter and the receiver. By doing
so, BICMB achieves full spatial multiplexing of min(N,M),
while maintaining full spatial diversity of NM over N trans-
mit and M receive antennas. We presented interleaver design
guidelines to guarantee full diversity at full spatial multiplexing.

If the channel is frequency selective, then we combined
BICMB with OFDM in order to combat ISI. BICMB-OFDM
achieves full spatial multiplexing of min(N,M), while main-
taining full spatial and frequency diversity of NML for a
N × M system over L-tap frequency-selective channels when
an appropriate convolutional code is used.

Simulation results also showed that, with perfect CSIT,
BICMB and BICMB-OFDM substantially outperform the opti-
mal high complexity ML and easy-to-implement MMSE and ZF
receivers that do not employ CSIT. The substantial performance
gains may point to practical systems with channel estimation
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errors and limited feedback whose performance or complexity
gains are more modest but still significantly more than conven-
tional systems.
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