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Abstract—Orthogonal frequency-division multiplexing (OFDM)
is known as an efficient technique to combat frequency-selective
channels. In this paper, we show that the combination of bit-inter-
leaved coded modulation (BICM) and OFDM achieves the full fre-
quency diversity offered by a frequency-selective channel with any
kind of power delay profile (PDP), conditioned on the minimum
Hamming distance ds... of the convolutional code. This system has
a simple Viterbi decoder with a modified metric. We then show
that by combining such a system with space-time block coding
(STBC), one can achieve the full space and frequency diversity
of a frequency-selective channel with N transmit and M receive
antennas. BICM-STBC-OFDM achieves the maximum diversity
order of NM L over L-tap frequency-selective channels regard-
less of the PDP of the channel. This latter system also has a simple
Viterbi decoder with a properly modified metric. We verify our an-
alytical results via simulations, including channels employed in the
IEEE 802.11 standards.

Index Terms—Bit-interleaved coded modulation (BICM), di-
versity, orthogonal frequency-division multiplexing (OFDM),
space-time block coding (STBC), space-time frequency coding.

I. INTRODUCTION

IRELESS communication channels suffer from severe
Wattenuation due to the destructive addition of multiple
paths in the propagation media and from interference generated
by other users. In some cases, it is impossible for the receiver to
make a correct decision on the transmitted signal unless some
form of diversity is employed. In order to combat severe condi-
tions of wireless channels, different diversity techniques (such
as temporal, frequency, spatial, and code diversity) have been
developed.

Zehavi showed that code diversity could be improved by bit-
wise interleaving [1]. Following Zehavi’s work, Caire et al. [2]
presented the theory behind bit-interleaved coded modulation
(BICM). Their work provided tools to evaluate the performance
of BICM with tight error-probability bounds, and design guide-
lines.

In recent years, deploying multiple transmit antennas has
become an important tool to improve diversity. The use of
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multiple transmit antennas allowed significant diversity gains
for wireless communications. Space—time (ST) codes are an
important class of spatial diversity systems, and some impor-
tant results can be listed, as in [3]-[6]. In these papers, the
multi-input multi-output (MIMO) wireless channel is assumed
to be flat-fading. However, when there is frequency selectivity
in the channel, the design of appropriate ST codes becomes a
more complicated problem due to the existence of intersymbol
interference (ISI). On the other hand, frequency-selective
channels offer additional frequency diversity [7], [8], and
carefully designed systems can exploit this property. Orthog-
onal frequency-division multiplexing (OFDM) is known to
combat ISI very effectively, and therefore, can simplify the
code-design problem for frequency-selective channels. Some
ST-frequency-coded systems have been proposed to exploit the
diversity order in space and frequency [9]-[17]. Out of these
references, [15] combines space—time block codes (STBC) of
[4] and [5] with BICM-OFDM to achieve diversity in space and
frequency as illustrated via simulations. References [13], [14],
and [16] use BICM-OFDM directly with multiple antennas and
without external STBC to achieve a higher data rate at the cost
of lower diversity.

In this paper, we separated the design of full space and
frequency diversity codes into two. First, single-input
single-output (SISO) wireless systems are considered. The
significant advantages of BICM-OFDM of Section III over fre-
quency-selective channels are presented. It is formally proven in
Section IV that BICM-OFDM systems can achieve a diversity
order of min(dg.ee, L) independent of the power delay profile
(PDP) of the channel, where dg.ee is the minimum Hamming
distance of the convolutional code, and L is the number of taps
in the channel. As a result, we first show that BICM-OFDM
systems provide codes that achieve full frequency diversity by
using an appropriate convolutional code. Initial results on this
subject, without the arbitrary PDP analysis developed in this
paper, were presented in [18].

On the other hand, STBC makes use of diversity in the space
domain by coding in space and time. Thus, by combining
STBC with BICM-OFDM, as presented in Section V, we are
able to add the spatial dimension to exploit diversity, as well. In
Section VI, using the results of Section IV, we formally prove
that BICM-STBC-OFDM systems achieve the diversity order
of NM min(dgee, L), for systems employing N transmit and
M receive antennas, over L-tap frequency-selective channels
regardless of the PDP of the channel. In addition to analysis,
through simulations, the performance of BICM-STBC-OFDM
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as compared with [3] and [19] with OFDM is illustrated. Initial
results on the diversity order of BICM-STBC-OFDM were
presented in [17].

In the following sections, we provide step-by-step,
clear proofs on the diversity order of BICM-OFDM and
BICM-STBC-OFDM systems. In the Appendix, we show that
the matrix A, which is crucial to the pairwise error probability
(PEP) analysis, can be decomposed into a multiplication of
two Vandermonde matrices. Using the determinant property of
Vandermonde matrices, we provide the rank of the matrix A. In
Section 1V, the rank of A is shown to be the diversity order of
the overall system by calculating the PEP. The decomposition
presented in the Appendix is unique to this paper.

Unlike [13]-[16], our analysis does not require random ideal
bit interleaving. In fact, by starting our PEP analysis between
two binary codewords, we provide a very simple interleaver
design criterion. Since convolutional codes are trellis-based,
dfee distinct bits between any two codewords appear on a finite
number of consecutive trellis branches which spans, in total, d
bits. The interleaver should be designed such that d consecutive
coded bits are mapped onto different symbols and transmitted
over different OFDM subcarriers. The interleaver depth of only
one OFDM symbol is also shown to be sufficient. The first per-
mutation of the interleaver used in the IEEE 802.11a standard
ensures that adjacent coded bits are mapped onto nonadjacent
subcarriers [20], satisfying the design criterion presented here.
When BICM-STBC-OFDM is implemented, we first place the
K number of symbols (where K is the number of subcarriers
in an OFDM symbol) in vectors and apply ST coding on these
vectors. This way, the simple interleaver of BICM-OFDM can
be used for BICM-STBC-OFDM as well.

Our analysis does not depend on the delay spread of the
channel, whereas in [13] and [16], a large delay spread is
assumed. We provide exact diversity orders for different delay
spreads and for any convolutional code. In [13] and [14], the
diversity order of the system is given to be dependent on the
effective length of the space—frequency code. In this paper,
we specifically show that the diversity order directly depends
on the dgee of the convolutional code being used. Also, our
MIMO system, BICM-STBC-OFDM, guarantees a higher
diversity order. In other words, BICM-STBC-OFDM gives a
diversity order of N M min(dpee, I.) while the system in [13]
and [14] provides diversity order of M min(F, NL) where F
is the effective length of the space—frequency code. Higher
diversity order of our MIMO system arises from the fact that
we implement STBC, whereas in [13] and [14], there is no
STBC. In order to achieve a high performance, [13] and [14]
use iterative decoding. However, in this paper, we do not need,
and therefore do not consider, iterative decoding for the reasons
explained in the following sections. In [16], again assuming a
large delay spread, the diversity order is given as M d,ce.

Overall, in this paper, we provide two flexible systems,
BICM-OFDM and BICM-STBC-OFDM, that can achieve the
maximum diversity order available in the channel. Our proofs
on the diversity orders of these systems do not require large
delay spread and ideal interleaving assumptions. We present
an easy-to-implement design criterion for the bit interleaver
to achieve the maximum frequency diversity. We show that
this simple interleaver can be used for our MIMO system, as
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well, as long as ST coding is applied on vectors of symbols.
Unlike [12], the systems presented here do not require a priori
knowledge of the delay spread of the channel to design the
code. If that kind of knowledge is present and dg... > L, then
puncturing can be used to increase the data rate while still
achieving the maximum frequency diversity (given that dg,e. of
the punctured code is at least L). Or, a higher rate, lower dfce
(given dgee > L) best known convolutional code can be used
to achieve the maximum diversity and a higher coding gain
when compared with the punctured code.

We provide simulation results supporting our analysis in
Section VII. Finally, the paper is concluded in Section VIII,
where the important results of this paper are restated.

II. BIT-INTERLEAVED CODED MODULATION (BICM)

A BICM system can be obtained by using a bit interleaver
7 between an encoder for a binary code C and a memoryless
modulator over a signal set x C C of size |x| = M = 2™
with a binary labeling map u : {0,1}™ — x. Gray labeling
is used to map the bits onto symbols and plays an important
role in the performance of BICM. It is shown in [21] that the
capacity of BICM is surprisingly close to the capacity of a mul-
tilevel codes (MLC) scheme if and only if Gray labeling is used.
Moreover, Gray labeling allows parallel independent decoding
for each bit. In [21], it is actually recommended to use Gray la-
beling and BICM for fading channels. If set partition labeling
or mixed labeling is used, then an iterative decoding approach
can be used to achieve high performance [22]. Note that due to
the ability of independent parallel decoding of Gray labeling, it-
erative decoding does not introduce any performance improve-
ment [22]. Therefore, noniterative maximum-likelihood (ML)
decoding (Viterbi algorithm) is considered in this paper.

During transmission, the code sequence c is interleaved by 7,
and then mapped onto the signal sequence x € x. The signal
sequence x is then transmitted over the channel.

The bit interleaver can be modeled as 7 : k' — (k, ) where
k' denotes the original ordering of the coded bits ¢/, k denotes
the time ordering of the signals xj, transmitted, and ¢ indicates
the position of the bit ¢y in the symbol x.

Let Xi denote the subset of all signals z € x whose label has
the value b € {0, 1} in position . Then, the ML bit metrics with
the channel state information (CSI) can be given by

N (yes ew) = min |lye - p|)? D
pr
where y, is the received symbol at time k, p denotes the
Rayleigh coefficient, and ||(-)||?> represents the squared Eu-
clidean norm of (). Following (1), the ML decoder at the
receiver can make decisions according to the rule

¢ = 3 i /\Z oy 7). 2
¢ arglélelg; (Yks ) @)

1. BICM-OFDM

The system deploys only one transmit and one receive an-
tenna (SISO). One OFDM symbol has K subcarriers, where
each subcarrier corresponds to a symbol from a constellation
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map x. As given in Section II, constellation size |x| = 2™. A
convolutional encoder is used to generate the binary code at the
transmitter. For the kg /nq-rate convolutional code with a given
number of states, the one with the highest minimum Hamming
distance df.c. is picked from tables, e.g., [23]. The output bit
c of a convolutional encoder is interleaved and mapped onto
the subcarrier 2 (k) at the ith location. The interleaver should be
designed such that consecutive coded bits are:

1) mapped onto different symbols;

2) transmitted over different subcarriers;
3) interleaved within one OFDM symbol to avoid an extra
delay requirement to start decoding at the receiver.

Consider a frequency-selective channel with L taps given by
h=1hohy ... h(L_l)]T. Each tap is assumed to be statistically
independent and modeled as a zero-mean complex Gaussian
random variable with unit variance. The fading model is as-
sumed to be quasi-static, i.e., the fading coefficients are constant
over the transmission of one packet, but independent from one
packet transmission to the next. It is assumed that the taps are
spaced at integer multiples of the symbol duration, which is the
worst-case scenario in terms of designing full diversity codes
[24].

A cyclic prefix (CP) of appropriate length is added to each
OFDM symbol. Adding CP converts the linear convolution of
the transmitted signal and the L-tap channel into a circular con-
volution. When CP is removed and fast Fourier transform (FFT)
is taken at the receiver, the received signal is given by

y(k) 0<k<K-1

= H(k)z(k) + n(k), 3)
where (k) is the transmitted signal at the kth subcarrier, n(k)
is complex additive white Gaussian noise (AWGN) with zero

mean and variance Ng = 1/SNR, and H (k) is given by

H(k) = Wi (k)Ph )

"
nwk w2k wE san Lox 1
—j2n/K

where W (k)
vector with W = e ,and P is an L x L diagonal
matrix with p;, for/ = 0,...,L — 1, on the main diagonal
representing the PDP of the frequency-selective channel h.
PDP matrix entries p;’s are real and strictly positive. Note that
the transmitted symbols are assumed to have average energy
of 1, and Zf;ol pl2 = 1. Consequently, with the channel, PDP,
and AWGN models described here, the received signal-to-noise
ratio is SNR.

IV. DIVERSITY ORDER OF BICM-OFDM

In this section, the PEP analysis of the system described in
Section III is provided. It will be shown that for an L-tap fre-
quency-selective channel with any type of PDP, BICM-OFDM
can achieve a diversity order of min(ds.e, L) without the use
of multiple antennas. Since dg... of convolutional codes can be
large, this is a significant result.
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Assume the code sequence c is transmitted and ¢ is detected.
Then, the PEP of c and ¢ given CSI can be written as, using (1)
and (2)

Plc—¢H) =P (Z min |ly(k) — H(k)z|

o .’L'GX’Ck/

> i k) —H(k)z|*|.
_;xglxli/lly() ()lll) ©)

Assume d(c — &) = dfyee for ¢ and ¢ under consideration for
PEP analysis, which is the smallest Hamming distance between
any two codewords. Then, Xik, and Xék’ are equal to one another
for all k' except for dgee distinct values of k’. Therefore, the
inequality on the right-hand side of (5) shares the same terms
on all but dg. Summation points, and the summations can be
simplified to only dg.e. terms for PEP analysis. Note that for
binary codes and for the dy;. points at hand, ¢, = &, where
(+) denotes the binary complement of (-). For the dg. bits, let
us denote

#(k) = arg min |y(k) — H(k)z|”

.T/Exékl

#(k) = arg min |y(k) — H(k)z|*.

: i
Iex?w

(6)

It is easy to see that #(k) # (k) since Z(k) € x. , and
(k) € Xéw , Where Xéu and Xéw are complementary sets of
constellation points within the signal constellation set x. Also,
ly(k) — x(k)H (k)| > [ly(k) — (k) H (k)||?, and the trans-
mitted signal z(k) € xf:k,.

For convolutional codes, dg.e. distinct bits between any
two codewords occur on a finite number of consecutive trellis
branches which span, in total, d bits. The bit interleaver should
be designed such that d consecutive coded bits are mapped onto
different symbols and transmitted over different subcarriers
(design criteria 1 and 2). This guarantees that there exists
dree distinct pairs of (z(k),z(k)), and dgee distinct pairs of
(z(k),2(k)). Note that if there is no bit interleaver following
the encoder, the number of distinct pairs is significantly lower.
The PEP can be rewritten as

Plc—eH) =P | Y |y(k) - H(k)a(k)

kydgree

— |y(k) — H(E)z(k)]” > o)
> A

k,deree

1 (k)]
<Q

5Ng (N

where ), d,., means that the summation is taken with index &
over dg..e different values of &, and d,y,;, denotes the minimum
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Euclidean distance between two symbols on the constellation.
Using (4)

Y HEBP= Y WTPW (k)W (k)Ph
k,df,»ee kydfl'ee

=hfP | Y Wi (kWi (k)| Ph
| krdtree

=hip Z A,| Ph

| krderee

=h¥PAPh

=h"Bh ®)

where A, B, and A.’s are L x L matrices and A, =
W (k)W Z (k) with rank one. However, due to the special form
of the Ay matrices, the rank of the matrix A = ) kodreo A,
is 7 = rank(A) = min(dgee, L) (see the Appendix for the
proof). Since P is a nonsingular matrix, B = PAP has rank
min(dfee, L). Note that Ags are positive semidefinite
Hermitian, and so are A and B [3], [25]. Consequently, the
singular value decomposition (SVD) of B can be written as
[25]

r =

B = VAVH 9)

where V is an L X L unitary matrix, and A is an L x I diagonal
matrix with eigenvalues of B, { )\i(B)}f:_ol in decreasing order
(which are real and nonnegative), on the main diagonal.
According to Ostrowski’s theorem, for each
0,1,...,L — 1, there exists a positive real number ¢; such
that )\L_l(PZ) <4 < )\0(P2) and )\L(B) = 97)\7(A) [25].

Since P2 is a diagonal matrix, the minimum eigenvalue of P2,

i =

Ar—1(P?) = Apin(P?) = min,; p? = p2;.. Consequently,
Ai(B) > p2. Ni(A) fori=0,1,...,L—1.

Let us denote the elements of the vector VP h as v; for i =
0,1,...,L — 1. Note that |v;|s are Rayleigh distributed with
probability density function (pdf) 2|vi|e’|”1’|2. Using an upper
bound for the @ function Q(z) < (1/2)e=""/2, PEP can be
written as

Plc—¢) =E[P(c — ¢H)]
L—1

dﬁlinp?nin Z )‘t(A)|/UL|2
i=0

4N,

1

2
= T2 2 SNRY
:( MA)) <7mm e ) (10)

Fals
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for high SNR. It can be easily seen from (10) that the diver-
sity order of BICM-OFDM system is » = min(dgee, L) re-
gardless of the PDP of the frequency-selective channel. Note
that the smallest upper bound is given for equal PDP, where
pi = p? = ... = p2_, = p2,, = 1/L. The industry
standard 1/2-rate 64-state (133,171) convolutional encoder has
dfree = 10. Therefore, a BICM-OFDM system with this convo-
lution code can achieve a diversity order of 10 without imple-
menting any additional antennas, or using any other diversity
technique. In order to even further increase the diversity order
of the system, one can, in addition, add multiple antennas using
STBC to multiply the diversity order of BICM-OFDM with the
number of transmit and receive antennas (see Section VI). Or,
multiple antennas can be used to increase the throughput of the
system, while BICM-OFDM is used to provide the necessary di-
versity order. Also, alow-complexity Viterbi decoder can be im-
plemented for BICM-OFDM systems without any performance
degradation [26], [27]. Thus, a low-complexity, easy-to-imple-
ment, and a high-diversity-order system can be easily generated
by BICM-OFDM.

V. BICM-STBC-OFDM

In this section, we consider complex orthogonal STBCs [5].
For N transmit antennas, S/T-rate STBC is defined as the com-
plex orthogonal block code which transmits S symbols over T’
time slots. The code generator matrix G gy is a1’ X [N matrix
and satisfies [5]

GgTNGSTN:K,(|LI71|2+|LL'2|2+...+|:L’5|2) Iy (11)
where & is a positive constant, {z; },L-Szl are the complex symbols
transmitted in one STBC codeword, and Iy is the N x N iden-
tity matrix. For example, Alamouti code [4] is a rate-one STBC
given as

G222: |: 5171* x2:|.

*
—&g Xy

12)

In BICM-STBC-OFDM, a rate-S/T STBC is used to code
the tones of an OFDM symbol across time and space, and BICM
is applied for coded modulation. After interleaving, the output
bit ¢;s is mapped onto the tone (k) at the ith bit location,
where 1 < s < S. As shown in Fig. 1, once the coded bits are
mapped onto symbols, K consecutive symbols are converted
from serial to parallel. ST coding is then applied on the vec-
tors of symbols of length K. By doing so, the simple interleaver
of BICM-OFDM can be used, such that adjacent coded bits are
mapped onto different subcarriers. It is assumed that an appro-
priate length of CP is used for each OFDM symbol. As a result,
the received signal for each tone is given by the 7' x M matrix

R(k) = C(k)H(k) + N(k) (13)

where C(k) = Ggrn(z1(k),...,zs(k)), which is calculated

by applying the symbols z1(k), ..., zs(k) to the STBC gener-

ator matrix G g7, and N(k) isa T x M complex AWGN with
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IFFT |+ Pis | cp

|Enooder }—>| Interleaver |—>| Modulator }—»| S/IP |+’| STBC

Fig. 1. Block diagram of BICM-STBC-OFDM.

zero mean and variance Ny = N/SNR. N x M channel matrix
H(k), at the kth subcarrier, is given by

H(k) = WE(k)Prh
Wik (k) =In @ W (k),
Pr=IyP
h11 h12 h11\/1
hy, bk hyy,
h= | 7% M (14)
th hN2 hNM NLXxM

where ® denotes the Kronecker product of two matrices,
W (k) and P are as defined in Section III, and h,,,, is the
L x 1 vector representing the L-tap frequency-selective channel
from the transmit antenna n to the receive antenna m. Each
tap is assumed to be statistically independent and modeled
as a zero-mean complex Gaussian random variable with unit
variance. The fading model is assumed to be quasi-static. Note
that the average energy transmitted from each antenna at each
subcarrier is assumed to be 1. Then, with the given channel,
PDP, and noise models, the received SNR is SNR. Also note
that from now on, we deviate from the notation of (3) as to
the order of C(k) and H(k) because of the convention in the
literature for STBC [28].

VI. DIVERSITY ORDER OF BICM-STBC-OFDM

In this section, by calculating the PEP, it will be shown that
BICM-STBC-OFDM can achieve the maximum achievable di-
versity order of N M L. Assume that binary codeword c is sent
and ¢ is detected. Then, the PEP, given channel information, is
written as

P(c— ¢H) = <Z min ||R(k) (k)||?F

T EXCA’

> E min
Y m.;EX;k,

HR(k) - CH(I@)Hi) (15)

where ||(+)||% denotes ||(-)[|2 = Tr{(-)2(-)} [square of the
Frobenius norm of (-)], and C and C denote the two distinct
STBC codewords.

Note that | R(k) — CH(k)||% provides S equations to decode
S symbols within STBC C [5], [6]. As mentioned in Section V,
the output bit ¢;s is mapped onto the ith bit of z4(k). So the
bit metric for each ¢; is found by minimizing the sth equation
given by ||R(k) — CH(k)||7 with respect to x5 € .. ,.

IFFT |+ PIs | cP

Similar to Section IV, by defining

— _ ) ,
C(k)—argc:GSIrggg_ ..... o, [IR(F) — CH(K)|[F

s.t. xsexzk/
C(k) = arg min |IR(k) — CH(K)||% (16)

C=Ggrn(e1.-7g)
s.t. zgEXL
T

where C(k) and C(k) are distinct two STBC matrices, and
C(k) is the transmitted STBC, (15) can be rewritten as

Ple—em<p(p> Y |[(ctm-cm)Hm)
k,dreo
> || (et -em)aw)|
:Q k,dfree 2N0 (17)
where § = 3, . B(k). and f(k) = Tr{H" (k)(C(k) -

C(k))EN(k) —f—NH(k)(C(k) — C(k))H}. Consequently,
[ is a zero-mean Gaussian random variable with variance
2No 3o ay... I(C(k) = C(k))H][%.

Let us define D(k) = C(k) — C(k), which is stilla T x N
complex orthogonal design. D (k)D(k) = |d(k)|*Iy, where
4(6)2 = w(ldy ()2 + [da(k) + ... + |ds(k)?) is a posi-
tive constant with d;(k)’s denoting the S complex numbers of
D(k). C(k) and C(k) differ at in least at one symbol. There-
fore, |d(k)|* > kd? .. It follows that

D AIDEHE) = Y [dk)] Tr {0 (k)H(k)}
k,dfree k,dfree
> kdo, Tr {h"Pp(Iy ® A)Pph}
=Tr{h"Zh} (18)
where
Z=Iy®B
B =PAP
A= > A
k,dfree
Ay =W (k)W (k). (19)

Note that the NL x N L matrix Z is positive semidefinite,
and has rank N min(dfee, L), and, as shown in Section IV, A
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has rank » = min(dgee, I.). The SVD and the eigenvalues of Z
can be given as (recalling Ostrowski’s theorem)

Z=VzA, V]
Mi(Z) = ANy (B) 2 prinAli/nj(A), i=0,...,NL -1
(20)
where |(-)] is the floor function, and the eigenvalues are in de-
creasing order with index .
Let us denote the elements of VEZh with wv;;, for
i = 0,1,..,NL—1andj = 0,1,...,M — 1. Note
that |v;;|’s are Rayleigh distributed with 2|v;;|e~1iI". Similar
to Section IV

P(c—¢)
M-1NL-1

K i Piin 2 X Al (A)vi; 2
J=0 i=

4Ny

1
<E|-exp|-
S ZeXP

4N

—NM y
1 ﬁ )\(A) Kd?ninPIQninSNR o
2 =0 ' AN

for high SNR. It is clearly evident from (21) that the
BICM-STBC-OFDM system successfully achieves the di-
versity order of N M min(dgee, ). Note that, unlike [12], a
priori knowledge of the delay spread is not necessary to design
specific codes. If that kind of knowledge exists, puncturing
can be used to increase the data rate while achieving the
maximum frequency diversity for low-delay-spread channels.
Or, a higher rate, lower df... best known convolutional code
can used to achieve the maximum frequency diversity, while
having a higher coding gain compared with the punctured code.
Indoor channels are, in general, highly frequency-selective
for a typical office environment. Consequently, the proposed
system achieves a higher diversity order than the one presented
in [13] and [14], when the industry standard 64-state df.ce = 10
convolutional code is used.

A low-complexity decoder for BICM-STBC-OFDM can be
implemented using [29]. Hence, BICM-STBC-OFDM provides
a low-complexity, easy-to-implement system with a high diver-
sity order.

1 —NM
1 H kd? D2 /\,L-(A)SNR)
_ 1 + minf“ min
2 (
i=0

1R

21

VII. SIMULATION RESULTS

In the simulations of this section, 64 subcarriers are used for
each OFDM symbol. One symbol has a duration of 4 us, of
which 0.8 us is CP. 1000 bytes of information bits are sent with
each packet, and the channel is assumed to be the same through
the transmission of one packet. Coded bits are interleaved with
the interleaver given in [20], and modulated onto symbols using
16-QAM with Gray labeling.

A. Diversity Order of BICM-OFDM

Figs. 2 and 3 show the simulation results for different root
mean square (rms) delay-spread values of the frequency-selec-
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BICM-OFDM using 64 states dfree= 10 code, Equal Power Taps

75ns, 16 taps |
——50ns, 11 taps |
—+—25ns, 6 taps |
—*%—5ns, 2taps |
—&— Flat, 1 tap

10 15 20 25 30 35 40
SNRin dB

Fig. 2. BICM-OFDM results using 1/2-rate 64-state df... = 10 convolutional
encoder.

BICM-OFDM using 4 states dfree= 5 code, Equal Power Taps

75ns, 16 taps |
—>—50ns, 11 taps |
—+—40ns, 9 taps |4
—*—5ns, 2taps |
—&— Flat, 1 tap

10 15 20 25 30 35 40
SNRin dB

Fig. 3. BICM-OFDM results using 1/2-rate 4-state df,.. = 5 convolutional
encoder.

tive channel with equal power taps with 64-state and 4-state con-
volutional encoders, respectively. As can be seen from Fig. 2, as
the number of taps of the channel increases, the diversity order
of BICM-OFDM increases as well to the maximum value of 10.
Another interesting observation is that while diversity order for
50 ns and 75 ns channels reach the maximum value, the 75 ns
channel shows a slightly better coding gain.

From Fig. 3, it is clearly evident that as the number of taps
for the channel increases, the diversity order increases, as well.
It can be seen that the maximum diversity order that can be
achieved by df.ee = 5 BICM-OFDM is 5. Similar to the results
shown in Fig. 2, while diversity for 40, 50, and 75 ns channels
reach the maximum value (i.e., all the curves have the same
slope for high SNR values), the 75 ns channel shows a slightly
better coding gain.

Fig. 4 illustrates the results of BICM-OFDM over equal
power taps, and taps with exponential PDP. As can be seen,
BICM-OFDM achieves full frequency diversity for different
kinds of PDP at asymptotically high SNR values.
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BICM-OFDM using 64 states d, =10 code
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Fig. 4. BICM-OFDM results using 1/2-rate 64-state dr... = 10 code over
equal power taps, and taps with exponential PDP.

0 BICM-STBC-OFDM (64 states code) over Equal Power Tap Channels
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Fig. 5. BICM-STBC-OFDM results using 1/2-rate 64-state dg... = 10 code.

B. Diversity Order of BICM-STBC-OFDM

The system has two transmit antennas, and Alamouti’s code
[4] is used to implement BICM-STBC-OFDM.

Fig. 5 shows the results for the 1/2-rate 64-state dgee = 10
convolutional code. It can be seen from the figures that as the
number of taps increases in the channel, the diversity order of
BICM-STBC-OFDM increases up to the maximum diversity of
N M min(dgee, L). Note that as the number of receive antennas
is increased, the diversity order gets multiplied in the figures.
For the two-transmit four-receive antenna case, even at low SNR
values, the performance curve is extremely steep.

The simulation results for IEEE channel models [30]—-[32] are
given in Fig. 6. The channel models B and D have 9 and 18 taps,
respectively, with the PDPs given in [30]. The indoor channel
models are highly frequency-selective, and hence, our proposed
MIMO system achieves a high diversity order.

Figs. 7 and 8 show the performance curves for 4-state
BICM-STBC-OFDM, 4-state quaternary phase-shift keying
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BICM-STBC-OFDM over IEEE channel Models, 2 x 2
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Fig. 6. BICM-STBC-OFDM results using 1/2-rate 64-state deee = 10 code
over IEEE channels.

BICM-STBC-OFDM (4st) vs SOSTTC-OFDM and STTC-OFDM, Equal Power Taps 50ns
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Fig. 7. Comparison between BICM-STBC-OFDM, SOSTTC-OFDM, and
STTC-OFDM over equal power taps frequency-selective channel with 50 ns
rms delay spread.

(QPSK) super-orthogonal space—time trellis code (SOSTTC)
[19] with OFDM, and 4-state QPSK space—time trellis code
(STTC) [3] with OFDM. 4-state 1/2-rate dgee = 5 con-
volutional code [23] with 16-QAM modulation is used for
BICM-STBC-OFDM,; so that all the systems transmit 2 bits
at each subcarrier. The channel is modeled as an equal power
taps frequency-selective channel with 50 ns rms delay spread
in Fig. 7. For the 2x1 case, 4-state BICM-STBC-OFDM
outperforms SOSTTC-OFDM and STTC-OFDM by more than
10 and 13 dB, respectively. For the 2 X2 case, the performance
gain is more than 3.5 and 6.5 dB. If a 64-state convolutional
code is used, then the performance gain is increased to 5.5 and
8.5 dB. Fig. 8 illustrates the results for IEEE Channel Models
B and D. As can be seen, the performance gain is significant.
This is mainly due the fact that SOSTTC and STTC were not
designed to fully exploit the frequency diversity that is available
in the channel. What we want to illustrate is that it is crucial and
very beneficial to exploit, if it exists, the frequency selectivity
of the channel. Also, by using the decoding scheme given in
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BICM-STBC-OFDM vs SOSTTC-OFDM and STTC-OFDM, IEEE Channels 2 x 2
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Fig. 8. Comparison between BICM-STBC-OFDM, SOSTTC-OFDM, and
STTC-OFDM over IEEE Channel Models B and D.

[29], one can show that BICM-STBC-OFDM has a very low
decoding complexity.

VIII. CONCLUSION

BICM and OFDM are used widely in many wireless com-
munication systems. In this paper, it is shown that the two can
be combined to achieve a high diversity order. It is illustrated
both analytically and via simulations that the maximum diver-
sity that is inherited in frequency-selective channels can be fully
and successfully achieved. If a convolutional code is used with
a minimum Hamming distance of df;ee, it is shown that the di-
versity order of BICM-OFDM is min(dfyee, L) for an L-tap fre-
quency-selective fading channel with any kind of PDP. Simu-
lations also showed that when I > df.c, as the delay spread
increases, the coding gain increases, improving the system per-
formance.

The BICM-STBC-OFDM system is introduced in order to
exploit diversity in space as well as in frequency. It is shown
both analytically and via simulations that BICM-STBC-OFDM
reaches the maximum diversity order that can be offered by the
channel. If the convolutional code being used has a minimum
Hamming distance of dfc., it is shown that the diversity order
of BICM-STBC-OFDM is N M min(dfee, L) for a system with
N transmit and M receive antennas over an L-tap frequency-
selective fading channel, regardless of the PDP of the channel.

Easy to implement interleaver design criteria to achieve the
maximum frequency diversity is presented. Complete, clear, and
unique proofs of diversity orders of BICM-OFDM and BICM-
STBC-OFDM systems for any delay spread and for any convo-
lutional code are given.

There exist low-complexity implementations of both systems
presented. Hence, the two proposed schemes offer high perfor-
mance (high diversity order), low complexity, and easy-to-im-
plement systems.

APPENDIX
PROOF OF RANK min(dgee, L)

Note that, in general, the number of subcarriers K > dfee
and K > L, and these are assumed to be the case in this paper.
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In order to have a clearer presentation, let us denote D = dfce
and without loss of generality, the D different A matrices can
be reordered (or redefined) such that A = Zszl A . Assume
for now that D < L. Then, it is known that [25] rank (A) =
r < Zszl rank(Ag) = D. Let us denote ay 2 WE. Note
that agl = aj, and a;’s lie on the unit circle on the complex
plane and a; # a; fori # j, 1 < ¢, 57 < K. Then Aj’s can be
rewritten as

1 ar .. ach_l)
_ L—2
A= ™ 1 1 “ . |
@D =2 1
D
A= ZAk
k=1
- b b )
D > ag S oart
k=1 k=1
D —1 D i L—-2
a a
_ | 2 & (A1)
SV p
L k=1 4 LxXL

Clearly, if the rank of A is r, then there exists a submatrix
within A of size r x r such that the determinant of the submatrix
is nonzero [25]. Consider the submatrix A p of size D x D of
A

_ D IS _
D Sap o Y oag
k=1 k=1
i a—l D i aD—2
A — k k
D= k=1 k=1
SV p
Le=1 4 pxbD
(A.2)

A p can be decomposed into the multiplication of two D x D
matrices given by Ap = BpCp, where

r 1 1 1
aii aQ:; al:);
BD = al a2 e aD
~(D-1) _—(D-1) —(D-1)
Ly DxD
(1 agD_l)
(D-1)
1 a
Cp = 2 2 (A.3)
L1 ap - a(DD_l) DxD

It is easy to see that Cp is a Vandermonde matrix of size D.
The determinant of a Vandermonde matrix can be calculated by
[25]

D

det(Cp) = H(ai — aj)

(A4)
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which is nonzero, since a; # a; fori # 7,1 < 4,5 <
D < K. Therefore, rank(Cp) = D, and Cp is full rank.
Since agl = aj, Cg = Bp, and Bp is also full rank. This
shows det(Ap) = det(Bp)det(Cp) is nonzero, confirming
A p is a full-rank matrix with rank D. Since Ap is a sub-
matrix of A, then rank(A) > D = dgee, concluding with
rank(A) = D < L.

If L < D, then A is a submatrix of Ap. Again from (A.2),
(A.3) and (A.4), Ap is a full-rank matrix with rank D, due to
the fact that a; # aj fori # 5,1 < ¢, j < D < K. Since
any submatrix of a full-rank matrix is also full rank, then the
L x L matrix A is full rank with rank(A) = L. Consequently,
rank(A) = min(D, L) = min(dgee, L).
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