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Abstract—In this letter, we study two techniques, known as single
and multiple beamforming, to exploit the perfect channel state in-
formation (CSI) available both at the transmitter and the receiver
of a multiantenna wireless system. Assuming and are the
number of antennas at the transmitter and the receiver, respec-
tively, we show that single beamforming (transmission of a single
symbol from all transmit antennas at the same time, employing the
best subchannel) can achieve the maximum spatial diversity order
in the channel ( ). We extend our analytical results to multiple
beamforming (transmission of symbols simultaneously, 1)
and calculate that the diversity order achievable for this system is
( + 1)( + 1).

Index Terms—Beamforming, diversity, multi-input multi-output
(MIMO) systems, pairwise error probability (PEP).

I. INTRODUCTION

I N RECENT years, spatial diversity techniques are under
investigation to increase the robustness as well as the

throughput of multi-input multi-output (MIMO) wireless sys-
tems, employing transmit and receive antennas [1]. These
systems can be grouped into two. The first group requires
the channel state information (CSI) at the receiver, but not at
the transmitter. Space–time (ST) codes are a subset of these
systems [2]. The second group requires perfect or partial CSI
at both the transmitter and the receiver. When perfect CSI is
available at both ends, two techniques that can be used are
single and multiple beamforming [3]. These techniques use sin-
gular value decomposition (SVD), which separates the MIMO
channel into parallel subchannels. When only the subchannel
with the largest gain is used for transmission, the technique
is called single beamforming [3]. MIMO systems can also be
used to enhance the throughput of wireless systems [4]. To
that end, when more than one subchannel is used to improve
the capacity, the technique is called multiple beamforming
[3]. In other words, multiple beamforming is a special case of
spatial multiplexing in which SVD-based linear processing is
employed at the transmitter and receiver sides [5]. In this letter,
we focus on the performance analysis of single and multiple
beamforming. First, we show that single beamforming achieves
the maximum diversity available in space. We then calculate the
diversity order for multiple beamforming. A general study of
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the tradeoff between diversity and multiplexing gain appeared
in [6] with CSI only at the receiver.

The rest of the letter is organized as follows. Section II gives
a brief overview of the channel model and the beamforming
concept. The pairwise error probability (PEP) analyses of both
single and multiple beamforming are given in Section III. Sim-
ulation results supporting our analytical analysis are given in
Section IV. Finally, we end the paper with a brief conclusion in
Section V.

II. CHANNEL MODEL AND BEAMFORMING OVERVIEW

We assume a quasi-static flat-fading MIMO channel model,
where channel fading parameters are modeled as independent,
identically distributed (i.i.d.) complex Gaussian random vari-
ables. Let us denote the quasi-static Rayleigh flat fading
MIMO channel as , where is the number of transmit an-
tennas and is the number of receive antennas. Without any
linear processing at the transmitter and the receiver, the received
signal can be simply expressed as

(1)

where is a vector containing the symbols to be trans-
mitted, and is a sequence of circularly symmetric complex
Gaussian noise of size .

Beamforming is implemented by multiplying the symbol(s)
with appropriate beamforming vector(s) both at the transmitter
and the receiver. In this letter, we assume that CSI is available at
both ends. In such a case, the beamforming vectors are obtained
via the SVD of the channel. Then, the SVD of can be written
as

(2)

where is an matrix with singular values ,
, in decreasing order on the main diagonal.

and are two unitary matrices of size and ,
respectively. By using SVD, the MIMO channel is divided into
parallel subchannels.

In the case of multiple beamforming, multiple symbols are si-
multaneously sent over different parallel subchannels. The op-
timal vectors to be used as weights at the transmitter and re-
ceiver sides are the first columns of and corresponding
to the first largest singular values of , when subchannels
are used simultaneously. Note that . Then, the
input–output relation for the th subchannel for multiple beam-
forming becomes

(3)
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where is the th largest singular value of , and is a com-
plex additive white Gaussian noise (AWGN) with zero mean and
variance SNR. When , multiple beamforming
simply reduces to single beamforming. The elements of are
modeled as complex Gaussian random variables with zero mean
and 0.5 variance per complex dimension. Note that the average
total transmit power at the transmitter is assumed to be 1. There-
fore, the received signal-to-noise ratio is SNR with the given
channel and noise models.

III. DIVERSITY PERFORMANCE

A. Single Beamforming

In this section, by analyzing the PEP, we will show that single
beamforming achieves the diversity order of for arbitrary

and . References [7] and [8] conjecture this result, but do
not give a formal proof for an arbitrary pair. We will
present an upper bound for PEP. The same result is derived in
[4]. We have formerly published a tighter bound than [4] that
yields this result (see [9]). However, in this letter, we will em-
ploy a method different from [9] to provide a better extension to
our multiple beamforming results in Section III-B.

Single beamforming uses the subchannel with the largest
gain, , to transmit only one symbol. Assume that the symbol

is sent and is detected. Then, using the maximum-likelihood
(ML) criterion, the PEP of and , given CSI, can be written as

(4)

where , is the minimum
Euclidean distance between two symbols on the constellation,
and is the well-known -function. For given , is a zero-
mean Gaussian random variable with variance .
Using an upper bound for the function ,
PEP can be bounded as

(5)
Without loss of generality, we assume . Since is

the maximum singular value, then

(6)

PEP can be given by

(7)

Let us denote . Note that are the
eigenvalues of in decreasing order [10]. The diversity

order of single beamforming can be calculated using the joint
probability density function (pdf) of ’s, which is given by [11]

(8)
where is a normalization constant that depends on both

and . Using (7) and (8), PEP is upper bounded by

(9)

By simply making a change of variable,
, it can be shown that PEP is bounded by

SNR

(10)
for high SNR. From (10), it is easy to see that the diversity order
of single beamforming is . It is straightforward to obtain the
same result for : all ’s should be replaced by , and
all ’s should be replaced by . For an alternate derivation
with a tighter bound, we refer the reader to [9]. The derivation
above, however, is useful for establishing a framework for our
results on multiple beamforming in the next subsection.

B. Multiple Beamforming

In this section, we will show that multiple beamforming
achieves the diversity order of
for arbitrary , , and . As in the case for single beam-
forming, without loss of generality, we assume . In
multiple beamforming, multiple parallel subchannels are used
for transmission of multiple symbols (i.e., multiple streams of
data). However, the performance is dominated by the weakest
subchannel [5]. Therefore, when symbols are transmitted,
the PEP can be bounded by

(11)

where is the th largest eigenvalue of , i.e., ,
is the corresponding pdf, and where is the indef-

inite integral . For
systems with small and , one can find the marginal pdf
of the th largest eigenvalue of using the joint pdf of
ordered eigenvalues in (8). Then, one can analytically calculate
the bounds for the PEP and diversity orders. To illustrate, we
will give an example for below.

Example: Diversity order of 2 2 system (two subchannels
used). The input–output relation for each subchannel is given
by (3), where . The diversity order of the strongest (first)
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subchannel is four (proved in Section III-A). The diversity order
of the second subchannel can be found using (11), where ex-
pectation is taken with respect to the pdf of the second largest
eigenvalue . The marginal pdf of can be analytically
found from (8), and can be expressed as

(12)

Using (11) and (12), PEP at high SNR can be bounded by

SNR (13)

As seen from (13), the diversity order of the second (weakest)
subchannel is one. This approach can be extended to other
values of and . However, computational complexity to
evaluate the formulas increases exponentially. In our experi-
ence, for values of more than four, this method is
no longer practical.

To this end, we will use an approximation to the marginal pdfs
to achieve analytical results for arbitrary , and . Note that
in (11), the resultant PEP is highly dependent on the values of

around zero. The term approaches zero when
, since it has an exponential factor with a negative exponent.

Therefore, the pdf of the th largest eigenvalue around zero is
essential in determining the diversity performance. In this anal-
ysis, we calculate an approximation to the th smallest eigen-
value, pursuing an approach similar to the one in [12].

Approximation to the th Smallest Eigenvalue: Let and
be the th smallest eigenvalue and its pdf, respectively.

By integrating (8) times, can be expressed as

(14)

where is the joint pdf of eigenvalues with or-
dering . Since our main concern is
the marginal pdfs around zero, (14) can be further simplified,
assuming that is close to the origin. For every and smaller
than , and will also be close to the origin. Correspond-
ingly, can be approximated as for and

. With these assumptions, the integrals from to
in (14) can be separately calculated and result in a constant.

The integrals over ’s, , can be calculated using the
fact that for small . The final
form of can be written as

(15)

where and is a function of ,
consisting of polynomials and exponential functions of such
that . Let us define as the cumulative distri-
bution function of . From (15), it is easy to see that the first
derivatives of evaluated at are zero. Therefore, ne-

Fig. 1. Performance of single and multiple beamforming for scenario 1 with
diversity order of four for flat-fading channels.

glecting the higher order terms, the Taylor expansion of
around the origin can be approximated as

(16)

where . To find the pdf for the th largest
eigenvalue, just a change of variable with is needed.
Then, the pdf for the th largest eigenvalue can be approximated
as

(17)

where is a constant. When (17) is used in (11), the PEP for
multiple beamforming can be written as

SNR (18)

where is a constant. Consequently, as seen from (18), the di-
versity order for multiple beamforming is

when subchannels are simultaneously used. Note that for
the special case of , diversity order reduces to , which
was previously proved in Section III-A for single beamforming.

IV. SIMULATION RESULTS

In this section, we provide Monte Carlo simulation re-
sults that quantify the analytical results derived in this letter.
Figs. 1–3 show the simulation results for different antenna con-
figurations. For all of the simulation scenarios, information bits
are mapped onto 16 quadrature amplitude modulation (QAM)
symbols in each subchannel. We consider packet transmission
for each channel use where each packet contains 2000 infor-
mation bits. To plot the curves for different scenarios, 150 000
packet transmissions are simulated for each SNR.
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Fig. 2. Performance of single and multiple beamforming for scenario 2 with
diversity order of nine for flat-fading channels.

Fig. 3. Performance of single and multiple beamforming for scenario 3 with
diversity order of 16 for flat-fading channels.

In Figs. 1–3, three different groups of scenarios, whose di-
versity orders are expected to be 4, 9, and 16, correspondingly,
are presented. Note that in all groups of scenarios, there is al-
ways a curve with one stream achieving full diversity order of

, which is also known in the literature. This will enable us to
quantify the diversity orders of scenarios with streams.
As seen in Fig. 1, the curves for the first scenario are parallel
to each other, especially for the high-SNR region. Therefore,
the corresponding diversity order is four. Similar observations

can be made for the other scenarios to quantify the diversity or-
ders from the figures and the validity of analytical analysis. In
the second scenario, as shown in Fig. 2, the curves for
with one stream and with two streams are parallel in the
low-error-rate region, therefore, their diversity order is nine. Fi-
nally, for the third scenario in Fig. 3, the diversity order of
with one stream and with three streams are both 16, since
they are also parallel in the low-error-rate region. Thus, simu-
lation results verify that the diversity order of multiple beam-
forming with subchannels is .

V. CONCLUSION

In this letter, we focused on MIMO systems with full CSI both
at the transmitter and the receiver. We analyzed the PEP and
marginal pdfs of channel eigenvalues. First, we showed that over
Rayleigh flat-fading channels, single beamforming achieves the
maximum spatial diversity order of . Next, we analytically
showed that the diversity order of multiple beamforming is

. We provided simulation results that verify
the analytical results.
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