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Abstruct-pg 100Diversity coding, as introduced in 111, is a 
method of protection against failures in a communication network 
or a storage system, which is based on introducing a digital error- 
correcting code across independent links. This technique makes 
efficient use of the extra network capacity needed for coding and 
has the additional advantages of being nearly instantaneous, not 
requiring a feedback channel, rerouting, or resynchronization. In 
high-speed (multi Gbps) networks, digital coding will he difficult 
to implement, and the purpose of this paper is to demonstrate 
how diversity coding may be implemented in the analog do- 
main using the Discrete Fourier Transform. In particular, we 
show that the DFT is a continuous-amplitude maximum-distance 
separable code over the field of complex numbers when the 
transform kernel is a prime root of unity. This code can be 
used to generate self-healing or fault-tolerant communication 
networks for continuous- or dsrrete-amplitude signals, as long as 
continuous-amplitude parity channels are available. We describe 
electrical and optoelectronic implementations, and a signal esti- 
mation approach to combat channel noise and thereby improve 
the performance of the analog diversity coding system. The most 
important advantage of this technique is in greatly simplifying the 
encoders and decoders of diversity coding systems for high-speed 
networks, such as fiber-optic wavelength division multiplexed 
networks. Application of analog diversity coding to systems with 
analog sources, such as telemetry systems is also possible. 

I. INTRODUCTION 
IVERSITY CODING is an efficient method of protection D against failures in a communication network or a storage 

system [I] .  In the case of a communication network, the 
technique has the advantages of being nearly instantaneous, not 
requiring a feedback channel, rerouting, or resynchronization. 
In [I] ,  we described the application of the method to digital 
communication networks where the encoding is performed in 
a finite field. In this paper, we describe the implementation of 
the method in the field of complex numbers to generate analog 
(Le., continuous-amplitude signals). Analog diversity coding 
would be attractive in protecting multi Cbps transmission 
systems, where digital encoding will be difficult to implement. 
Since only the parity channels need to carry the analog signals, 
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the data to be protected can have discrete-amplitude, and the 
time can be either continuous or discrete.' 

As an example, we describe a fault-tolerant lightwave com- 
munication system: wavelength division multiplexed transmis- 
sion of digital baseband signals. In this application the goal 
is to protect against failures in the transmitters or receivers, 
or disruptions in the transmission media of a subset of the 
channels due to polarization dispersion or other impairments. 

Within the framework of information theory, diversity cod- 
ing may be viewed as coding for  the erasure channel. In [ 11, we 
showed that a generalized discrete Fourier transform (DIT), 
taken over a finite field, results in an optimal erasure channel 
code for binary signals when the field size is chosen appropri- 
ately, where the sense of optimality is that of minimizing the 
required number of redundant channels. Codes that satisfy this 
optimality condition are known as maximum-distance codes 
[ 2 ] .  In this paper, we show how the D I T  taken over the field 
of complex numbers can result in a maximum-distance erasure 
channel code for analog signals. In Section 11, we describe 
how to use the DFT for diversity coding, and in Section 111, 
we describe some applications and implementation techniques 
for analog diversity coding. Proof for the claim in Section I1 
is given in the Appendix. 

11. THE METHOD 

In this section we describe the technique of analog diversity 
coding. Consider Fig. 1 and let d = ( d l ,  dz,...,dN)t be a 
vector whose members d k  are in the field of complex numbers 
(to be denoted C). This vector represents the analog data at 
one time instant. We are interested in forming a coded vector 
e which has N + M members, such that any N members of 
e are sufficient to determine d. For that purpose, we generate 
e from d via multiplication by an ( M  + N )  x N matrix G 

e = G d  (1) 

1.e.. 

where gk E CN is the kth row vector of G. Within the 
framework of the erasure channel model, we know which N 

' The method is also applicable to high-resolution discrete-amplitude signals 
with high-resolution parity channels, enabling implementation via digital 
signal processing circuitry. 

0090-6778194$04.00 0 1994 IEEE 

- 



AYANOCLU ef of.:  ANALOG DIVERSITY CODING I l l  
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Fig. I .  The general A&-f0r-S analog diversity coding system. The signals 
d l ,  d 2 . .  . . , d N  and e , .  e * , .  . . . e.v+h, are treated as continuous-amplitude 
complex numbers. and are functions of discrete or continuous time. 
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Fig. 2. The separable M-for-N analog diverbity coding system. Note that 
the data channels are not encoded and therefore, during normal operation, 
they are untouched. Again, the signals d l .  d 2 , .  . . . d.y and c1. c 2 , .  . . , c.11 
are treated as continuous-amplitude complex numbers, and are functions of 
discrete or continuous time. 

of the links are operational. So, when e k l .  e k , ,  . . . . e k h  are 
available, 1 5 k1 < kz < . . .  < l i . ~  5 N + M ,  we recover 
d via 

In order to be able to perform (3) for any set of indices 
k l ,  k z ; .  . . , k N .  we require that any combination of N rows 
of G be linearly independent. In the case of no failures, we 
would like to be able to obtain d directly from e, without 
performing any operation. In other words, we pick e k  = d k  

for 1 5 k 5 N .  Such codes are known as separable codes 
[ 2 ] .  This implies partitioning the G matrix as 

G = (.:,) . (4) 

Note that the system in Fig. 2 is the implementation of a 
separable code, where we have denoted C k  = e N + k  for 
1 5 k 5 M .  In this case, the requirement that any combination 
of N rows of G be linearly independent is equivalent to 
requiring that all square submatrices of P be nonsingular. 

Let d l ,  dz, .  . . , d N  represent data from the lines I ,  2;. . . ~ N 
respectively. We would like to protect M simultaneous line 
failures by providing M parity symbols c1, C Z ,  . . . , CM, 1 5 
M 5 N .  This encoding is carried out linearly as 

N 

where c, ,  p , , ,  and d, are in C.  In the notation of (4). P = 
[ P , , ] M x N .  The parity symbols c7 are then transmitted to the 

receiver along with the data symbols. Consider first the case 
when n of the N data lines fail (1 5 71 5 M). At the receiver 
their carrier signals drop, and the receiver detects the failures. 
Let kl, kz ,  . . . k ,  be the indices of the links that failed; we 
generate signals E, as 

J f k l .  Irz: . k n  

This can easily be done since pi j  are fixed and known at the 
receiver, and d j  for 1 5 j 5 N ,  j # ICl,  k z , .  . . , k ,  are 
available. Note from ( 5 )  and (6)  that 

ci = p i j d j  15 i 5 n. (7) 
j = k i ,  k>,-..,kn 

The 71 erased data symbols d k l .  dl;, ~. . . . d k ,  can be recovered 
from E l ,  Ez, . . . ,E, via an inverse linear transform, provided 
pi j  are chosen such that the row vectors ( p i k , ,  p i k a ,  . . . ! p i k , )  

for 1 5 i 5 n, 1 5 kl  < kz < . . .  < k ,  5 N ,  and 
1 5 71 5 M 5 N are all linearly independent. This can 
be checked by considering the determinant of the matrix 
Bkl. k ,  ...., k ,  = [ P i k , ] n x n .  

Let 

where 

is the N'th root of unity, W" = I, and we will specify N' 
shortly. Due to (8). we have P in (4) equal to 

1 . . .  1 w2 . . .  w"-1 

wM-1 w(h;-l)Z , ,; w ( M - i ) ( N - l )  

(10) 
and B k l ,  k 2 ,  A, equal to 

B k i . k 1 ,  , k ,  

1 . . .  1 1 
wk1-1 wkz-1 _ . _  

WZ(ki-1) wZ("'-') . . .  

W(n-l)(k1-1) W(n-l)(k2-1) . . . w(n- l ) (kn- l )  =i (11) 

Note that (10) is composed of the first M rows and N 
columns of the DIT matrix whose number of data samples 
is N'. Therefore c can be calculated from d by using one of 
the several standard fast Fourier transform ( F F T )  methods, 
making use of the decomposition of multiplications to achieve 
parallelism, speed, and economy in circuit components. 

Let 

N' 2 N. (12) 
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Then, all the elements in the second row of P in (IO) are 
distinct, and therefore all the elements in the second row of 

(1 I) is a Vandermonde matrix. By using a well-known result 
from linear algebra, we have 

detBk,,k *,..., k, = n (Wk>-l  - Wk' - l ) .  (13) 

None of the entries in the product in (13) can be zero, since 
W i ,  0 5 i 5 N' - 1, are distincr roots of unity of order N'.  In 
other words, Wk.-I = Wk%-I if . and only if i = j .  Therefore, 

B k , ,  kz ,..,, k, in (11) are d S 0  distinct. Note that B k , ,  kz ,.,,, k, in 

l < i < j < ,  

detBkl, k2 ,..., k, # 0 (14) 

for 1 5  kl  < k 2  < . . .  < k ,  5 N ,  1 5  n 5 M 5 N ,  and 
there exists a linear inverse transform B;:, k 2 , , , , , k ,  to obtain 
dk,, dkzr...,dk, as 

From (6) to (15) we have assumed that all the failures occur 
in the data lines. That is, the system is to be used to recover 
from n 5 M simultaneous line failures out of dl , &, . . . , d N  
in an environment where the M parity lines never fail. For this 
scenario, N' 2 N suffices. However, we can solve the more 
general problem where failures are allowed in both data and 
parity lines by using the P matrix in (IO), and by appropriately 
choosing the order of the root of unity. Let c1, c2, . . . , CM be 
generated as in ( 5 )  where p i j  = W(i-l)(j- l) ,  W = e- '$,  
ẑ  = a, and N' will be specified shortly. We now assume 
that up to a total of hl lines out of the data lines dl  , d ~ ,  . . . . d , ~  
and parity lines clr ~ 2 , .  . . , CM can fail. Let there be n 5 M 
failures in the data lines, and let there be m 5 M - n failures 
among the M parity lines. At least parity lines have not 
failed and they can be used for recovering the 71 failed data 
lines. Let us denote the n failed lines by dk, . dt,, . . . , dk,, 
and any n of the healthy parity lines by c1, c12 ~. . . CI, ,  , 
where 1 5 n 5 M ,  1 5 kl < k 2  < . . '  < k ,  5 N ,  and 
1 5 11 < 12 < ... < 1, 5 M .  Similarly to (6 ) ,  generate 
signals Ei 

N 

In other words, by using the N - n healthy data lines 
and n healthy parity lines, we can generate n data symbols 
E l ,  E z , .  . . , E, which are linear combinations of the n failed 
symbols dk, , dkz, . . . , d k n .  We can recover the erased symbols 
via an inverse transform provided that the transformation 

matrix Bk,, I C l  ,..., b,;  1 1 ,  lZ ,..., 

B k ~ ,  k,, ..., k , , ; l l ,  12 ...., 1,  

= [ ~ ( " - 1 ) ( k 3 - 1 ) ] , , , ,  or 

4 w(11 --l)(h -1) W("-1)("-l) . . . W(l,-1mn-11 

= (  (18) 

linking d k ,  , dk2, .  . . , dk, to C l ~  E z ,  . . . , C, is invertible. Note 
that we would like any n x n square submatrix of P to be 
invertible, where 1 5 n 5 M .  B k , ,  k2 ,..., k,; t l ,  1 *,..., 1, is not 
a Vandermonde matrix in general. Therefore, it cannot be 
verified nonsingular with the method we used for Bkl, k 2 , . . . , k  ".  
However, when 

w ( b l ) ( k r - 1 )  ~ ( b - l ) ( k ~ - l )  . . , ~ ( l z - l ) ( k n - l )  

W ( L - l ) ( k i - I )  w ( l n - 1 ) ( k z - 1 )  . . . w ( l n - l ) ( k - l )  

N' 2 N ,  N' is prime (19) 

then we have 

detBk,,ki, ,..., kn;lt,lz ,..., 1 f o .  (20) 

Based on some numerical evidence, this result was conjectured 
by the authors, and was recently proved by R. Stanley of MIT 
[3]. For completeness, we provide this proof in the Appendix. 

Again, the encoding can be accomplished by using the FFT 
methods. There are published FFT algorithms for the case 
when the sample size is prime [4]. 

Since the D l T  operates over complex variables and gen- 
erates complex variables, whereas real-life data are real, a 
mapping needs to be made from real-valued data into complex- 
valued data in order to use our methods. This can be accom- 
plished for discrete-time systems by considering one of the 
two consecutive samples as the real part and the other as the 
imaginary part of a complex number. Or, for all systems, a 
complex-valued channel can be formed by treating two parallel 
real-valued channels as one complex-valued channel. Using 
the first scheme, recovery from up to M failures can be 
achieved, and with the second scheme, up to M / 2  pairs of 
failures can be restored. 

111. APPLICATIONS 
Our method is applicable to a wide variety of problems 

where some redundancy is desired to protect failures or losses 
in systems in which analog channels are used for the trans- 
mission of coded data, where data are processed in parallel (in 
a space, time, or frequency sense), and where the channels in 
which failures can be identified via some external mechanism, 
such as loss of carrier or synchronization. Note that only 
parity channels need to cany analog data, and protected 
channels can carry either analog or digital data waveforms. 
The reason for this is that the digital waveforms are a special 
case of analog waveforms, and therefore, the method for 
analog waveforms covers digital waveforms. Depending on 
the particular application and implementation, time could be 
either discrete or continuous. 

One could think of several such applications. For example, 
consider a deep space probe that sends measurements from the 
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Fig. 3. Lightwave WDM transmission of digital baseband signals. 

space to the earth. Some such probes use analog pulse position 
modulation to send analog baseband data with the possibility 
of more than one such telemetry channels being operational at 
one time. However, during operation, galactic and atmospheric 
noise interfere with the incoming signal, and sometimes the 
receiver cannot detect the incoming pulse within a time 
slot, in which case it declares an erasure. More importantly, 
sometimes one of the transmitters fails. Although, in such a 
situation, the earth station can identify the failed channel and 
direct the satellite to switch the failed channel data to a spare 
transmitter, the round trip propagation delay involved may 
cause important information to be missed. To prevent this from 
happening, spare channels can continuously transmit encoded 
data where the encoding is performed, using the methods 
introduced in the previous section. Then, in the case of an 
erasure due to either noise or equipment failure, the receiver 
can extract the erased data via decoding, using the information 
in the healthy data and parity channels. Other variations of 
this problem are in the transmission of analog measurement, 
control, and instrumentation data in the factory environment 
where failures, due to interference or physical disruptions, may 
occur; or parallel communication channels that can undergo 
noise, fading, interference, or jamming such as in analog 
secure voice systems operating on HF transmission bands over 
the air. Similarly, analog recordings may be protected by using 
our DFT methods against loss, destruction, noise, or equipment 
failure. 

A different class of applications is for high-speed (several 
Gbps) transmission systems that may be transmitting digital 
data, but their speed precludes efficient digital implementation 
of diversity coding. Consider the application of our method 
to the wavelength division multiplexed (WDM) lightwave 
communication system shown in Fig. 3 [SI. In this case, 
the baseband signals are digital, and each modulates a laser. 
The generated lightwave signals are combined optically us- 
ing a star coupler at the transmitter. At the receiver, the 
heterodyning is performed optically, and bandpass filtering 
and signal detection are carried out electrically. In [1], we 
proposed the use of finite field erasure channel codes for 
transmitter or receiver failures, and polarization dispersion 
for this application. Here, we propose the use of analog 
codes for protection to avoid high-speed (multi Gbps) digital 
circuitry. In Fig. 3, the signals d l  ( t ) ,  . . . , d~ ( t )  that modulate 

Fig. 4. 
d , ( t ) .  . . . , d . w ( t )  for the WDM example. 

Electrical implementation of the analog encoder of the binary signals 

lasers at frequencies f l , .  . . , fN are digital, whereas the signal 
c l ( t )  = d l ( t )  + . .. + d N ( t )  that modulates the laser at 
frequency f ~ + ~  is discrete-valued, but we treat it as analog. 
In the case of a failure in one of the data channels, say 
d l ( t ) ,  the failed channel can be recovered at the receiver as 
c l ( t ) -dz ( t ) - .  . . - d N ( t ) .  This is an interesting example where 
our analog diversity codes are used to protect discrete-time 
binary signals by generating a discrete-amplitude, continuous- 
time signal. Note that we can generalize this point-to-point 
topology into a multipoint-to-multipoint topology as in [l]. 

We present two implementations of analog coders that 
realize the linear combination of binary baseband signals. The 
first is an electrical implementation, and is shown in Fig. 4. The 
switches are actuated by the binary signals d l ( t ) ,  ... , d N ( t )  
that can be either 0 or 1. The output vo(t) is given as 

By appropriately choosing V, RL, R1,. . . , RN. and whether 
to use positive or negative polarization for the constant volt- 
age sources with magnitude V, any real combination of 
d l  ( t ) ,  . . , d ~ ( t )  can be formed. Note that at the transmitter 
the resistors R1,.  . . , RN are fixed since they are used for 
encoding. At the receiver, they should change value according 
to which channels have failed. This functionality can be 
realized by using voltage controlled resistors. 

The second implementation of the analog combiner uses 
optoelectronic technology and is shown in Fig. 5. In this 
implementation, signal sources dl ( t ) ,  . . . , d ~ ( t )  drive an ar- 
ray of lasers, each signal modulating one laser. The lasers 
illuminate a mask whose opaqueness is varied, according to 
the linear combination coefficients in the transform. Using 
focusing optics, the light through the mask is collected on 
a photodiode, whose output signal is a linear combination 
of d l  ( t ) ,  . . , d N ( t )  where the coefficients are determined by 
the mask. Note that this method restricts the coefficients to 
positive real numbers. To realize both positive and negative 
coefficients, two such photodiodes and two rows in the mask 
are used. One row and one photodiode are dedicated to the 
positive coefficients in the linear combination, and the other 
to the negative coefficients. Then, the outputs of the two 
photodiodes are subtracted from each other to form the desired 
real linear combination of the signal sources. Thus, for a 
complex number, four rows and four photodiodes are needed. 
By stacking up photodiodes and rows of the interconnectivity 
mask, the product of the signal vector with a complex matrix 
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links will be 
1 1 -  - = z E ( d  - d)H(d  - d)  

hl = 4 
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Fig. 5. Optoelecuonic implementation of the analog encoder for the WDM 
example. In this figure, R e [ c ~ ( t ) ]  = a l d l ( t )  - a&(t)  = a s d , ( t ) .  
Im [cl (t)] and the real and imaginary components of c1 ( t )  for 2 2 j 5 M 
are obtained similarly. 

can easily be computed. The mask to be used at the transmitter 
can be obtained using a fixed film. For the receiver, spatial 
light modulators whose opaqueness can be varied via control 
signals (which are not shown) can be used. This method is used 
in optical neural computers to implement adaptive weights 
in conjunction with a learning mechanism such as the hack- 
propagation algorithm [6]. The advantage of this technique is 
the ability to perform large matrix products easily, fast, and at 
high frequencies without running into inductive or capacitive 
problems as might be the case for the technique in Fig. 4. 

Iv. SIGNAL ESTIMATION FOR ANALOG DIVERSITY CODING 

Since the decoding operation correlates noise belonging to 
different channels, the analog diversity coding scheme in the 
previous sections suffers from noise enhancement when the 
transmission medium is noisy. We now describe a signal esti- 
mation approach to combat channel noise and thereby improve 
the performance of the analog diversity coding system. With 
this method, the linear operation performed at the decoder 
involves all of the healthy data and parity channels, as opposed 
to N healthy channels, where N is the number of information- 
bearing channels, as in the scheme in the previous sections. 
This approach provides an averaging of the noise, reducing 
the effective noise power on each recovered channel. 

When there is noise in the channel, the recovery via (3) 
or via (15) results in noise enhancement. For example, for 
A4 = 1, and when a data channel fails, say kl, it is recovered 
as 

N N N 

$1 = x d k  + 71.0 - (dk + nk) = d k ,  - TLk (22) 
I r = ,  k = 0  

k # k i  k f k i  
k = l  

where n k  is the noise on the kth channel, 1 5 k 5 N ,  and 
no is the noise on the protection channel. When the noise is 
distributed independently and identically with zero mean and 
variance 02 from channel to channel, the output noise power 
in the recovered link IC1 will be equal to Nu:, a large increase 
from u:. In general, under the independence and the identical 
distribution assumption, the average noise in the recovered 

where we defined 

and used H to represent the complex conjugate transpose, and 
tr the trace of a matrix. d is the right hand side of (3), which 
in the presence of channel noise is not equal to d.  

When n 5 M link failures occur, the approach in Section 
I1 uses exactly n of the parity channels for recovery. In the 
case of no noise, data in the remaining M - n channels are 
redundant, and can be ignored. When there is noise, however, 
data in these channels can be used to reduce the noise power 
and thereby enhance the signal. Assume that n 5 M lines 
have failed, and the links k1, kz, . . . . I C N + M - ~  are active. The 
received vector is 

e =  GkL,kz , .%kN+M-nd+n (25) 

where e and n have N + M - TZ members, and 
G k l , k 2 ,  . , , k N i t M - , ,  is as defined in (24). Based on e, we 
want to recover d,  i.e., choose a d optimally close to d in 
some sense.-The criterion of closeness, that is, on which sense 
we choose d determines the decoder. 

A. Least Squares Estimation 

sense. In this case, we require that the estimate minimize 
First, consider estimation of d from e in the least squares 

Note the absence of the expectation operator in (26). In 
fact, we do not assume we know any statistics about the 
problem. We only assume that we have some observation e, 
and we fit some data d to it such that when d is transformed 
via Gk,, k2 ,..., k N + M - - n  it is close to our observation e. By 
straightforward minimization with respect to d,  (26) yields the 
optimum estimate in the least squares sense: 

which is equal to the well-known least squares solution for 
the noisy observations of an overdetermined set of linear 
equations. For the method to work for any n 5 A4 failures, 
the inverse in (27) should always exist. It is well-known 
that A H A  is nonsingular if the columns of A are linearly 
independent [7]. It has been proved in [3] that any N rows 
of Gk,, kz  ..., k,+,-, are linearly independent, in other words 
that GkI, k 2  ,,.., k N + M - - n  is of full rank. Therefore, the columns 
of Gkl, kz,. . , k , w + M - n  are linearly independent, consecutively 
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the matrix GE,k2 ,..., kN+M--nGkl,  k z  ,..., k N + M - ,  is always non- 
singular for any 1 5 kl  < kz < . ’ .  < ~ N + M - ~  5 N + M ,  
n 5 M ,  and the estimate in (27) is well-defined. In this case, 
when the noise is independently and identically distributed 
with zero mean and variance u i  from channel to channel, the 
average noise after estimation is 

Note that when n, is zero-mean, the least squares estimate is 
unbiased (Le. (Ed = Ed). 

The method can be used to enhance the signal even when 
there are no link failures, that is, when n = 0. In this case, 
due to (4), GHG can be decomposed as 

G ~ G  = I + P ~ P .  (29) 

This matrix can be inverted using the matrix inversion lemma 
and noting that 

PPH = N I  (30) 

since the rows of P are a set of orthogonal basis vectors for 
C N ,  which yields 

( G H G ) - ~ =  I - ~ P H P .  (31) N + l  

On the other hand, the ith row, j th  column entry of P H P  can 
be calculated as 

Therefore, (28) becomes 

(33) 

Equation (33) shows that using the signal estimation in (27), 
the reduction in noise power increases linearly with M for 
1 5 M 5 N .  If M = N ,  by transmitting every d k  on two 
separate channels and averaging the received signals one can 
reduce the noise power in each data channel by a factor of one 
half. On the other hand, note from (33) that when M = N ,  
the method of (27) results in a noise power reduction of 

When there are link failures, that is, when 71 > 0, there will 
be some reduction in noise power similar to (33). However, 
an analytical calculation of this reduction is difficult. It can 
be numerically calculated as the ratio of (28) to (23). In Fig. 

( N  + 1)-fold. 

~ j J  ~~ ~~ 2 
” ( 3  i o  l o l  ::c 3:c 

Fig. 6.  
estimate for M = 4. 

Reduction in noise power after estimation using the least squares 

B. “Best” Linear Unbiased Estimate 

Note that the least squares estimate in (27) does not require 
any knowledge of the signal or the noise statistics. The avail- 
ability of these statistics improves the estimate. In particular, 
when the constraint that the estimate be unbiased and efficient, 
i t . ,  that the error variance in each of the members of d is 
minimum is imposed, one obtains the so-called best linear 
unbiased estimare [8] 

where R,, is the autocorrelation matrix of the noise, & = 
EnnT. Note that only noise statistics, and not the data 
statistics are needed in (34). For identically and independently 
distributed noise, the estimates in (27) and (34) are the same. 
Otherwise, the estimate in (34) has the property of weighting 
the contributions of samples with small noise power heavily 
and those of large power lightly. 

Note that in the term “best linear unbiased estimate,” “best” 
is in the sense of minimizing the error norm when the signal 
statistics are not known. When the signal statistics are known, 
one can obtain better error norm performance as described 
below. 

C. Minimum Mean Squared Error Estimarion 

matrix Rd = E d T  is known, one can write 
When the signal has zero mean and its autocorrelation 

By using the result for the best linear unbiased estimate (34), 
the estimate for d in (35) can be obtained as [8]: 

This becomes, via the matrix inversion lemma 

and therefore, the same noise power. 
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where we have used G for G k , ,  k2 ,..., k N + M - n  in (37). Equation 
(381 is the Wiener solution, i t . ,  the estimate that minimizes 
Elld - d1I2. equal to 

;1= ~ ( d e ~ ) [ ~ ( e e ~ ) ] - '  (39) 

also known as the minimum variance estimate, or the minimum 
mean squared error estimate. 

We now would like to calculate the noise power after 
estimation in the minimum mean squared error estimate when 
there are no link failures, similarly to (33) .  Assuming that the 
signal has zero mean and the autocorrelation matrix R d  = ~$1, 
Le., statistically independent from channel to channel, and the 
noise has zero mean and the autocorrelation matrix R, = n:Z, 
i s . ,  again, statistically independent from channel to channel, 
(36) becomes 

Using this result, (30) ,  and (32), after some manipulation, one 
obtains 

This result should be contrasted with (33) ,  to which it reduces 
when the signal-to-noise ratio SNR = ui/u: goes to infinity. 
By plotting (42), it can be seen that the noise power reduction 
saturates around an SNR of 10 or 20. For larger SNR 
values. the performance with the minimum mean squared error 
estimate is the same as that with the least square estimate, 
that is, there is no improvement gained by knowing the signal 
statistics. For smaller values of SNR, however, the estimate 
is weighted approximately by a factor of (1 + SNR- l )p l ,  
which reduces the noise power by estimation approximately 
by the square of this factor. 

As in the case of least squares estimation, an analytical 
calculation of the reduction in noise power after estimation 
is difficult in the case of minimum mean squared error 
estimation. We provide a numerical evaluation, and plot the 
results in Fig. 7. We assume the noise is independent from 
channel to channel, has zero mean and variance g:; likewise, 
we assume the signal is independent from channel to channel, 
has zero mean and variance u;. The number of data channels 
N varies between 1 and 30, and the number of parity channels 
M is equal to 4. In this case, the reduction in noise power is 
much more than in the case of least squares estimation. For 
example, for N = 10, A4 = 4 and n = 1, the reductions in 
noise power are 0.42 and 0.32 with least squares estimation 
and minimum mean squared estimation, respectively. On the 
other hand, for N = 10, M = 4 and n = 3, the reductions 
in noise power are 0.17 and 0.001 1 (is.,  a factor of 20 dB) 
with least squares estimation and minimum mean squared 
estimation, respectively. 

i,l"l,"r up,,,. 
,n,.,lhnr,,, 

Fig. I. 
squared error estimate for M = 4. 

Reduction in noise power after estimation using the minimum mean 

v. SUMMARY AND CONCLUSIONS 

We described the optimal use of the DFT over the field of 
complex numbers (in the sense of minimizing the number of 
extra channels required), to perform analog diversity coding. 
In particular, we have shown that the DFT can be used to 
generate a continuous-amplitude maximum-distance separable 
code over the field of complex numbers when the transform 
kernel is a prime root of unity. This coding can be used to gen- 
erate fault-tolerant communication networks for continuous- 
or discrete-amplitude signals, as long as continuous-amplitude 
parity channels are available. We have described electrical 
and optoelectronic implementations of this code. The most 
important advantage of this technique is in greatly simplifying 
the encoders and decoders of diversity coding systems for 
high-speed networks, such as fiber-optic WDM networks. 
Furthermore, application of analog diversity coding to systems 
with analog sources, such as telemetry systems is also possible. 

We showed how straightforward signal estimation can en- 
hance the performance of analog diversity coding systems in 
the presence of channel noise by making use of the information 
in the remaining M - n channels when n link failures occur 
in an analog diversity coding system of N data channels. With 
least squares estimation, and with an added complexity by a 
factor of M / N  multiply/add operations, the noise power after 
estimation is reduced by about 3 dB for n = 1, or by about 10 
dB or more for 1 < n < M, as compared to the case without 
estimation. This approach does not require the statistics of the 
signal or the noise be known. When the second order statistics 
of the signal and the noise are known, the minimum mean 
squared error estimation can be used to reduce the noise power 
by more than 3 dB for n = 1, and by about 13 dB or more 
for 1 < n < M as compared to the case without estimation, 
without any added complexity. In particular, for n > 1, the 
ratio of noise power with and without estimation is in the 
negative tens of dB's as N gets large. 
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APPENDIX 

e'%, P a prime integer, and let 
p l ,  p z , .  . . , p~ and 41, 4 2 ,  . . . , q N  be integers in the range 

Claim: Let C = 
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[0, P - 11 with p m  # pn, qm # qrL for 7 n  # 71. Then the 
matrix, whose ( j ,  k)th entry is { P J ~ L ,  1 5 , j .  k 5 N ,  is 
nonsingular. 

Proof (due to R. Stanley /3/): Let D denole the determi- 
nant det[<p~qh]l ,  1 5 j .  k 5 N .  Consider the determinant 
det [ty], 1 5 j ,  k 5 N .  This is a polynomial in the variables 
21, 2 2 , .  ’ .  , ZN. which vanishes whenever z,,, = z,,,  since 
then two rows of the determinant coincide. Consequently, that 
determinant has a factor the polynomial n,,, ( z k  - z,), 1 5 
j ,  k < N ,  and the quotient is a polynomial in z l r  z 2 . .  . - . z~v 
with integer coefficients. To see this explicitly. we can subtract 
the top row from each of the others, and extract a factor zk  - z1 
from the kth row. This yields as quotient the determinant 
whose top row is zql. t q2 .  . . . . z*.” and whose kth row is 
(2;’ - t ~ ’ ) / ( z l c - z ~ ) ,  a polynomial with integer coefficients. In 
this determinant, we now subtract the second row from each 
subsequent row, and extract factors (z3 - 2 2 )  . . . ( z1 -  - 
Continuing this procedure, we find 

with a denoting the multi-index ( ( 1 1 .  ( k 2 .  . . . . ( Y . ~ ) ,  and cr, an 
integer, as was desired. We can evaluate c, in (43) by sub- 
stituting z3 = , u J ~ ,  1 < j 5 N ,  whereupon the numerator on 
the left becomes det [ ( u J ~ ) ~ ~ ]  = det [ ( w Y h  ) . I ] ,  a Vandermonde 
determinant equal to , d = “ + y ~ +  ’ ’  ’ + * v  n ( w y k  - ‘ w ~ J ) .  On 
letting 711 i 1, we thus find from (43) 

, < k  

On setting z, = { ” J ,  1 5 .j 5 i’V. in (43) becomes 
D/  n,,, ( { p j  - { ” A ) .  We will now derive a contradiction from 
the vanishing of D. For as the denominator does not vanish, 
we see that if D = 0, then 

is the polynomial of least degree over the integers vanishing 
at C, it must be a factor of T ( w ) ,  and so 

T(?u) = Q(’ltl)L(’ll’) (46) 

where &(,tu) is a polynomial with integer coefficients. On 
evaluating at 70 = 1 we find 
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