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Abstract— pg 100 Diversity coding, as introduced in [1], is a
method of protection against failures in a communication network
or a storage system, which is based on introducing a digital error-
correcting code across independent links. This technique makes
efficient use of the extra network capacity needed for coding and
has the additional advantages of being nearly instantaneous, not
requiring a feedback channel, rerouting, or resynchronization. In
high-speed (multi Gbps) networks, digital coding will be difficult
to implement, and the purpose of this paper is to demonstrate
how diversity coding may be implemented in the analog do-
main using the Discrete Fourier Transform. In particular, we
show that the DFT is a continuous-amplitude maximum-distance
separable code over the field of complex numbers when the
transform kernel is a prime root of umity. This code can be
used to generate self-healing or fault-tolerant communication
networks for continuous- or discrete-amplitude signals, as long as
continuous-amplitude parity channels are available. We describe
electrical and optoelectronic implementations, and a signal esti-
mation approach to combat channel noise and thereby improve
the performance of the analog diversity coding system. The most
important advantage of this technique is in greatly simplifying the
encoders and decoders of diversity coding systems for high-speed
networks, such as fiber-optic wavelength division multiplexed
networks. Application of analog diversity coding to systems with
analog sources, such as telemetry systems is also possible.

I. INTRODUCTION

IVERSITY CODING is an efficient method of protection

against failures in a communication network or a storage
system [1]. In the case of a communication network, the
technique has the advantages of being nearly instantaneous, not
requiring a feedback channel, rerouting, or resynchronization.
In [1], we described the application of the method to digital
communication networks where the encoding is performed in
a finite field. In this paper, we describe the implementation of
the method in the field of complex numbers to generate analog
(i.e., continuous-amplitude signals). Analog diversity coding
would be attractive in protecting multi Gbps transmission
systems, where digital encoding will be difficult to implement.
Since only the parity channels need to carry the analog signals,
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the data to be protected can have discrete-amplitude, and the
time can be either continuous or discrete.!

As an example, we describe a fault-tolerant lightwave com-
munication system: wavelength division multiplexed transmis-
sion of digital baseband signals. In this application the goal
is to protect against failures in the transmitters or receivers,
or disruptions in the transmission media of a subset of the
channels due to polarization dispersion or other impairments.

Within the framework of information theory, diversity cod-
ing may be viewed as coding for the erasure channel. In [1], we
showed that a generalized discrete Fourier transform (DFT),
taken over a finite field, results in an optimal erasure channel
code for binary signals when the field size is chosen appropri-
ately, where the sense of optimality is that of minimizing the
required number of redundant channels. Codes that satisfy this
optimality condition are known as maximum-distance codes
[2]. In this paper, we show how the DFT taken over the field
of complex numbers can result in a maximum-distance erasure
channel code for analog signals. In Section II, we describe
how to use the DFT for diversity coding, and in Section III,
we describe some applications and implementation techniques
for analog diversity coding. Proof for the claim in Section 11
is given in the Appendix.

1I. THE METHOD

In this section we describe the technique of analog diversity
coding. Consider Fig. 1 and let d = (di, d2,---,dy)" be a
vector whose members dy, are in the field of complex numbers
(to be denoted C). This vector represents the analog data at
one time instant. We are interested in forming a coded vector
e which has N + M members, such that any N members of
e are sufficient to determine d. For that purpose, we generate
e from d via multiplication by an (M + N) x N matrix G

e=Gd (1)
ie.,
€ 5
[ g
Dol=| 7 |a @)
EN+M IN+M

where g, € ¥ is the kth row vector of G. Within the
framework of the erasure channel model, we know which NV
! The method is also applicable to high-resolution discrete-amplitude signals

with high-resolution parity channels, enabling implementation via digital
signal processing circuitry.
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Fig. 1. The general M-for-N analog diversity coding system. The signals
dy, d2,---,dy and e). e2,-- -, enyas are treated as continuous-amplitude
complex numbers, and are functions of discrete or continuous time.
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Fig. 2. The separable M-for-V analog diversity coding sysiem. Note that
the data channels are not encoded and therefore, during normal operation,
they are untouched. Again, the signals di. dg,---.dx and ¢3. cg,- -, car
are treated as continuons-amplitude complex numbers, and are functions of
discrete or continuous time.

of the links are operational. So, when e, eg,,---.ex, are
available, 1 < k) < ko < -+ < ky < N + M, we recover
d via

-1

Gk, Cky

g €k
d=|"7 a )

kN SN
In order to be able to perform (3) for any set of indices
k1, k2, -+, kN, we require that any combination of N rows

of G be linearly independent. In the case of no failures, we
would like to be able to obtain d directly from e, without
performing any operation. In other words, we pick e = di
for 1 < k < N. Such codes are known as separable codes
[2]. This implies partitioning the G matrix as
I
G=1"] )
P

Note that the system in Fig. 2 is the implementation of a
separable code, where we have denoted cx = enyr for
1 < k < M. In this case, the requirement that any combination
of N rows of G be linearly independent is equivalent to
requiring that all square submatrices of P be nonsingular.
Let dy, ds,- - -, dn represent data from the lines 1, 2,--- | N
respectively. We would like to protect M simultaneous line

failures by providing A parity symbols c1, ca,--+,cpr, 1 <
M < N. This encoding is carried out linearly as
N
C; = Zpijd]‘ 1 S I3 _<_ M (5)
j=1

where ¢;, p;;, and d; are in C. In the notation of (4), P =
[pij]larx v- The parity symbols c; are then transmitted to the

m

receiver along with the data symbols. Consider first the case
when n of the N data lines fail (1 < n < M). At the receiver
their carrier signals drop, and the receiver detects the failures.
Let kq, ko, - -+, kn be the indices of the links that failed; we
generate signals ¢; as

N

Ei:Ci_ E

=1
JF#kY, kg, ik

1<i<n. 6)

This can easily be done since p;; are fixed and known at the
receiver, and d; for 1 < j < N, j # ki, ko, -,k are
available. Note from (5) and (6) that

éi = Z pi]'d]' 1 S [ S n. (7)
j=ki, k2, kn
The n erased data symbols di, , dg,, - -, dx, can be recovered

from é, ¢p,- -+, ¢, via an inverse linear transform, provided
p;; are chosen such that the row vectors (pik, , Piky, -+ Dik, )
for 1 <i<m 1<k <k < -+ <k, <N, and
1 < n <M< N are all linearly independent. This can
be checked by considering the determinant of the matrix

B, ky..kn = [Piks]nxn
Let
piy = WEDU-D ®)
where
W = e_i%, 2= \/——1_ (9)

is the N'th root of unity, W¥' = 1, and we will specify N’
shortly. Due to (8), we have P in (4) equal to

1 1 1 1
w W2 WN~1
P=]1 w? w4 W2(N-1)
1 WM-1 pr-12 W(M—.l)(N—l)
()
and By, 1, .k, equal to
By, k... k.,
1 1 1
Wk,—l chz‘l Wkn—l

Waltki—1) W2ka=1) W2ka—1)
Wn=D(ka=1)

an

Wn-D(k=1)  pp(a-D(ka=1)

Note that (10) is composed of the first M rows and N
columns of the DFT matrix whose number of data samples
is N’. Therefore ¢ can be calculated from d by using one of
the several standard fast Fourier transform (FFT) methods,
making use of the decomposition of multiplications to achieve
parallelism, speed, and economy in circuit components.

Let

N'>N. 12
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Then, all the elements in the second row of P in (10) are
distinct, and therefore all the elements in the second row of
By, ...k, in (11) are also distinct. Note that By, 1,,. . in

(11) is a Vandermonde matrix. By using a well-known result
from linear algebra, we have

H (ij~1 _ ch,—l).

1<i<j<n

det By, gy, .k, = (13)

No_nc of the entries in the product in (13) can be zero, since
W*, 0 < i< N'—1, are distinct roots of unity of order N’. In
other words, W¥: =1 = W*:~1 if and only if i = j. Therefore,

det By, &, .k, #0 (14)

forl1<kj<hko<--<k,<N,1<n<MZ<N,and
there exists a linear inverse transform Bl;], ks, k,, [0 ODLain
diyy diyy o di,, 38

dg, 1
di Ca
2 -1
: T Pky, k2 kn s)
dr, ¢n

From (6) to (15) we have assumed that all the failures occur
in the data lines. That is, the system is to be used to recover
from n < M simultaneous line failures out of dy, do,---,dy
in an environment where the M parity lines never fail. For this
scenario, N’ > N suffices. However, we can solve the more
general problem where failures are allowed in both data and
parity lines by using the P matrix in (10), and by appropriately
choosing the order of the root of unity. Let c1, cp, -+, cpr be
generated as in (5) where p;; = WO-DU-D W = ¢~'%,
i =+/—1, and N’ will be specified shortly. We now assume
that up to a total of M lines out of the data lines d;, do,-- -, dn
and parity lines ¢, ca,- -, cps can fail. Let there be n < M
failures in the data lines, and let there be m < M — n failures
among the M parity lines. At least n parity lines have not
failed and they can be used for recovering the n failed data
lines. Let us denote the n failed lines by dy,, di,, -, dx,
and any n of the healthy parity lines by ¢, c,, -, ¢, ,
where 1 <n < M,1 <k <ky<- - <k, <N, and
1<h <l <+ <, £ M. Similarly to (6), generate

signals ¢;
N
G=a,— Y. s (16)
J#klv]k:le ke
= > pugd;
]‘=k1,k2,‘“,k’n
= > wEbibg 1<i<a (17

J=k, ko, kn

In other words, by using the N — n healthy data lines
and n healthy parity lines, we can generate n data symbols
¢1, €9, -+, C, which are linear combinations of the n failed
symbols dy, , dg,, - - - , di, . We can recover the erased symbols
via an inverse transform provided that the transformation
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. _ L=1)(k; 1

matrix Bklvk27>«-;kn;llyl2 ----- I = [W( Yy )]nxns or

By ks L el
wh—1)(k1-1)

Wit =1)(ki—1)

Wth—1)(k2—1)
W (la—1)(k2—1)

W=D (ka=1)
Wlt2=D(ka=1)

Wt =Dka—1)
(18)

W=Dk =1) Pt —Dlka=1)

linking d,, di,,- -, dk, to ¢1, €2, --,Cq 18 invertible. Note
that we would like any n x n square submatrix of P to be
invertible, where 1 < n < M. By, ik, koily,iz,..l. 15 DOt
a Vandermonde matrix in general. Therefore, it cannot be
verified nonsingular with the method we used for By, &, . k..
However, when

N'> N, N’ is prime

then we have

det By, ko, knity,1s,..1 7 0. 20)

Based on some numerical evidence, this result was conjectured
by the authors, and was recently proved by R. Stanley of MIT
[3]. For completeness, we provide this proof in the Appendix.

Again, the encoding can be accomplished by using the FFT
methods. There are published FFT algorithms for the case
when the sample size is prime [4].

Since the DFT operates over complex variables and gen-
erates complex variables, whereas real-life data are real, a
mapping needs to be made from real-valued data into complex-
valued data in order to use our methods. This can be accom-
plished for discrete-time systems by considering one of the
two consecutive samples as the real part and the other as the
imaginary part of a complex number. Or, for all systems, a
complex-valued channel can be formed by treating two parallel
real-valued channels as one complex-valued channel. Using
the first scheme, recovery from up to M failures can be
achieved, and with the second scheme, up to M/2 pairs of
failures can be restored.

III. APPLICATIONS

Our method is applicable to a wide variety of problems
where some redundancy is desired to protect failures or losses
in systems in which analog channels are used for the trans-
mission of coded data, where data are processed in parallel (in
a space, time, or frequency sense), and where the channels in
which failures can be identified via some external mechanism,
such as loss of carrier or synchronization. Note that only
parity channels need to carry analog data, and protected
channels can carry either analog or digital data waveforms.
The reason for this is that the digital waveforms are a special
case of analog waveforms, and therefore, the method for
analog waveforms covers digital waveforms. Depending on
the particular application and implementation, time could be
either discrete or continuous.

One could think of several such applications. For example,
consider a deep space probe that sends measurements from the



AYANOGLU et al.: ANALOG DIVERSITY CODING

\
an

dgu

Mod. | [Laser Mod
s et

¢
|
h

Laser

BPE = d

Dol

Star
Coupler

/

Splitter /
Fiher '
\\ Mer
N
\
| Demod, =4 BPF }-» dy
|
\ Laer |
!

i -
Demod BPE b= o

Fig. 3. Lightwave WDM transmission of digital baseband signals.

space to the earth. Some such probes use analog pulse position
modulation to send analog baseband data with the possibility
of more than one such telemetry channels being operational at
one time. However, during operation, galactic and atmospheric
noise interfere with the incoming signal, and sometimes the
receiver cannot detect the incoming pulse within a time
slot, in which case it declares an erasure. More importantly,
sometimes one of the transmitters fails. Although, in such a
situation, the earth station can identify the failed channel and
direct the satellite to switch the failed channel data to a spare
transmitter, the round trip propagation delay involved may
cause important information to be missed. To prevent this from
happening, spare channels can continuously transmit encoded
data where the encoding is performed, using the methods
introduced in the previous section. Then, in the case of an
erasure due to either noise or equipment failure, the receiver
can extract the erased data via decoding, using the information
in the healthy data and parity channels. Other variations of
this problem are in the transmission of analog measurement,
control, and instrumentation data in the factory environment
where failures, due to interference or physical disruptions, may
occur; or parailel communication channels that can undergo
noise, fading, interference, or jamming such as in analog
secure voice systems operating on HF transmission bands over
the air. Similarly, analog recordings may be protected by using
our DFT methods against loss, destruction, noise, or equipment
failure.

A different class of applications is for high-speed (several
Gbps) transmission systems that may be transmitting digital
data, but their speed precludes efficient digital implementation
of diversity coding. Consider the application of our method
to the wavelength division multiplexed (WDM) lightwave
communication system shown in Fig. 3 [5]. In this case,
the baseband signals are digital, and each modulates a laser.
The generated lightwave signals are combined optically us-
ing a star coupler at the transmitter. At the receiver, the
heterodyning is performed optically, and bandpass filtering
and signal detection are carried out electrically. In [1], we
proposed the use of finite field erasure channel codes for
transmitter or receiver failures, and polarization dispersion
for this application. Here, we propose the use of analog
codes for protection to avoid high-speed (multi Gbps) digital
circuitry. In Fig. 3, the signals d;(t), - --,dn(t) that modulate
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Fig. 4. Electrical implementation of the analog encoder of the binary signals
di(t).---.dn(t) for the WDM example.
lasers at frequencies f1,-- -, fi are digital, whereas the signal

c1(t) = di(t) + --- + dn(t) that modulates the laser at
frequency fy.1 is discrete-valued, but we treat it as analog.
In the case of a failure in one of the data channels, say
dy(t), the failed channel can be recovered at the receiver as
e1(t)—da(t)—- - -—dn(t). This is an interesting example where
our analog diversity codes are used to protect discrete-time
binary signals by generating a discrete-amplitude, continuous-
time signal. Note that we can generalize this point-to-point
topology into a multipoint-to-multipoint topology as in [1].

We present two implementations of analog coders that
realize the linear combination of binary baseband signals. The
first is an electrical implementation, and is shown in Fig. 4. The
switches are actuated by the binary signals dy(t),---,dn ()
that can be either O or 1. The output v,(t) is given as

di(t) dn{t)
vo(t) =V R (:t R Ry )

By appropriately choosing V, Rr, Ri,---, Rn, and whether
to use positive or negative polarization for the constant volt-
age sources with magnitude V, any real combination of
dy(t),---,dn(t) can be formed. Note that at the transmitter
the resistors R;,---, Ry are fixed since they are used for
encoding. At the receiver, they should change value according
to which channels have failed. This functionality can be
realized by using voltage controlled resistors.

The second implementation of the analog combiner uses
optoelectronic technology and is shown in Fig. 5. In this
implementation, signal sources d;(¢),---,dy(t) drive an ar-
ray of lasers, each signal modulating one laser. The lasers
illuminate a mask whose opaqueness is varied, according to
the linear combination coefficients in the transform. Using
focusing optics, the light through the mask is collected on
a photodiode, whose output signal is a linear combination
of di(t),---,dn(t) where the coefficients are determined by
the mask. Note that this method restricts the coefficients to
positive real numbers. To realize both positive and negative
coefficients, two such photodiodes and two rows in the mask
are used. One row and one photodiode are dedicated to the
positive coefficients in the linear combination, and the other
to the negative coefficients. Then, the outputs of the two
photodiodes are subtracted from each other to form the desired
real linear combination of the signal sources. Thus, for a
complex number, four rows and four photodiodes are needed.
By stacking up photodiodes and rows of the interconnectivity
mask, the product of the signal vector with a complex matrix

- % @n
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Fig. 5. Optoelectronic implementation of the analog encoder for the WDM
example. In this figure, Re[ci(t)] = a1di(t) — a2d2(t) = asds(t).
Im [c1(¢)] and the real and imaginary components of c;(t) for 2 < j < M
are obtained similarly,

can easily be computed. The mask to be used at the transmitter
can be obtained using a fixed film. For the receiver, spatial
light modulators whose opaqueness can be varied via control
signals (which are not shown) can be used. This method is used
in optical neural computers to implement adaptive weights
in conjunction with a learning mechanism such as the back-
propagation algorithm [6]. The advantage of this technique is
the ability to perform large matrix products easily, fast, and at
high frequencies without running into inductive or capacitive
problems as might be the case for the technique in Fig. 4.

IV. SIGNAL ESTIMATION FOR ANALOG DIVERSITY CODING

Since the decoding operation correlates noise belonging to
different channels, the analog diversity coding scheme in the
previous sections suffers from noise enhancement when the
transmission medium is noisy. We now describe a signal esti-
mation approach to combat channel noise and thereby improve
the performance of the analog diversity coding system. With
this method, the linear operation performed at the decoder
involves all of the healthy data and parity channels, as opposed
to N healthy channels, where N is the number of information-
bearing channels, as in the scheme in the previous sections.
This approach provides an averaging of the noise, reducing
the effective noise power on each recovered channel.

When there is noise in the channel, the recovery via (3)
or via (15) results in noise enhancement. For example, for
M =1, and when a data channel fails, say &y, it is recovered
as

N N N
dk‘ = de + ng — Z (dk + nk) = dkl — Z n  (22)
k=1 k=1 k=0

Rtk ktky

where nj is the noise on the kth channel, 1 < k¥ < N, and
ng is the noise on the protection channel. When the noise is
distributed independently and identically with zero mean and
variance ‘731 from channel to channel, the output noise power
in the recovered link k; will be equal to No2, a large increase
from o2. In general, under the independence and the identical
distribution assumption, the average noise in the recovered
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links will be

%ag_d - —IIVE(& —dHd-d)
= 2O UGT by ) CE )] 29
where we defined
9k,
G, kg bn = g:c2 , 24
Ik,

and used H to represent the complex conjugate transpose, and
tr the trace of a matrix. d is the right hand side of (3), which
in the presence of channel noise is not equal to d.

When n < M link failures occur, the approach in Section
II uses exactly n of the parity channels for recovery. In the
case of no noise, data in the remaining A/ — n channels are
redundant, and can be ignored. When there is noise, however,
data in these channels can be used to reduce the noise power
and thereby enhance the signal. Assume that n < M lines
have failed, and the links k1, ko, -, kx4 ar—n are active. The
received vector is

€=Gp, ko kyin_dT 1 (25)

where e and » have N + M — n members, and
Gy ks, knpm—n 18 as defined in (24). Based on e, we
want to recover d, i.c., choose a d optimally close to d in
some sense. The criterion of closeness, that is, on which sense
we choose d determines the decoder.

A. Least Squares Estimation

First, consider estimation of d from e in the least squares
sense. In this case, we require that the estimate minimize

Gy, ks, ks ne o — el

= (Gku k2w-~ykN+M7n& - e)H(lev k2v<-<ykN+M—n[i - e)' (26)

Note the absence of the expectation operator in (26). In
fact, we do not assume we know any statistics about the
problem. We only assume that we have some observation e,
and we fit some data d to it such that when d is transformed
via Gi, k,,...kn, m—n it 18 close to our observation e. By
straightforward minimization with respect to d, (26) yields the
optimum estimate in the least squares sense:

d= (G{c.ll, Icz,,..,IcAHM,"le,krz,---,kNJrMfN)_1
e (27)

H
'Gku k2ynknNt M—n

which is equal to the well-known least squares solution for
the noisy observations of an overdetermined set of linear
equations. For the method to work for any n < M failures,
the inverse in (27) should always exist. It is well-known
that A¥ A is nonsingular if the columns of A are linearly
independent [7]. It has been proved in [3] that any N rows
of Gk, ka,... kw41 are linearly independent, in other words
that G, k,,...kx1a— is Of full rank. Therefore, the columns
of G,  k,,...knyn_n are linearly independent, consecutively
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the matrix Gfl, Kaveon it —n OF1, k2o in g - o 1S AlWAYS NON-
singular for any 1 < k3 < ka < -+ < kyya—n < N+ M,
n < M, and the estimate in (27) is well-defined. In this case,
when the noise is independently and identically distributed
with zero mean and variance o2 from channel to channel, the
average noise after estimation is

1 1 - -
Nag_d = B~ d)f(d - d)
1 -
= Narzttr[(GkHl,kz,...,lcN+M,nGk1,’C2 ----- kN+M—n) 1]'

(28)

Note that when n is zero-mean, the least squares estimate is
unbiased (i.e. (Fd = Ed).

The method can be used to enhance the signal even when
there are no link failures, that is, when n = 0. In this case,
due to (4), GFG can be decomposed as

GG =1+PP. (29)
This matrix can be inverted using the matrix inversion lemma
and noting that
pPH = NI (30)
since the rows of P are a set of orthogonal basis vectors for
', which yields

1

—— _pip
N+1

(GG =1- 31

On the other hand, the ith row, jth column entry of PHEP can
be calculated as

M-1

ey 1 - WE-9M
@PHP)y; =Y Wi s (32)
= 1-Wi
Therefore, (28) becomes
1, 2 M
NOha=on (1 - N_—H> (33)

Equation (33) shows that using the signal estimation in (27),
the reduction in noise power increases linearly with M for
1 <M< N.If M = N, by transmitting every dz on two
separate channels and averaging the received signals one can
reduce the noise power in each data channel by a factor of one
half. On the other hand, note from (33) that when M = N,
the method of (27) results in a noise power reduction of
(N + 1)-fold.

When there are link failures, that is, when n > 0, there will
be some reduction in noise power similar to (33). However,
an analytical calculation of this reduction is difficutt. It can
be numerically calculated as the ratio of (28) to (23). In Fig.
6, we plot the results of this calculation for 1 < N < 30,
M=4and 1 <n<M-1 Forn=»M, (28) reduces to
(23), and the two methods result in the same decoding matrix,
and therefore, the same noise power.
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Fig. 6. Reduction in noise power after estimation using the least squares
estimate for M = 4.

B. “Best” Linear Unbiased Estimate

Note that the least squares estimate in (27) does not require
any knowledge of the signal or the noise statistics. The avail-
ability of these statistics improves the estimate. In particular,
when the constraint that the estimate be unbiased and efficient,
i.e., that the error variance in each of the members of d is
minimum is imposed, one obtains the so-called best linear
unbiased estimate (8]

I H —1 -1
d= (Glm.kg ..... k;\urM_an le‘k"Zy---ka+I\1—n)

Rle (34)

20eens ENtM-n

where Ry, is the autocorrelation matrix of the noise, Rp
EnnT. Note that only noise statistics, and not the data
statistics are needed in (34). For identically and independently
distributed noise, the estimates in (27) and (34) are the same.
Otherwise, the estimate in (34) has the property of weighting
the contributions of samples with small noise power heavily
and those of large power lightly.

Note that in the term “best linear unbiased estimate,” “best”
is in the sense of minimizing the error norm when the signal
statistics are not known. When the signal statistics are known,
one can obtain better error norm performance as described
below.

C. Minimum Mean Squared Error Estimation

When the signal has zero mean and its autocorrelation
matrix Ry = Edd” is known, one can write

Ja-

By using the result for the best linear unbiased estimate (34),
the estimate for d in (35) can be obtained as [8]:

n

s (35)
0 -d
&: (R‘;l +GkHl,kg,...,kN+M,nR;IGk1,kz ----- kN+M«n)'1

'Gka' k2y~--1kN+M—nR7:le' (36)

This becomes, via the matrix inversion lemma

d=RG"(I-(G"RG +R,) G RGR ‘e 37)
= RaG¥ 1y ininsn(Chkarbn o RaGhy by i
+R,) e (38)
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where we have used G for Gk,  k,... ky. - in (37). Equation
(382 is the Wiener solution, i.e., the estimate that minimizes
E||d — d||?, equal to

d = E(de™)[E(ee™)]™! (39)

also known as the minimum variance estimate, or the minimum
mean squared error estimate.

We now would like to calculate the noise power after
estimation in the minimum mean squared error estimate when
there are no link failures, similarly to (33). Assuming that the
signal has zero mean and the autocorrelation matrix Ry = agl R
i.e., statistically independent from channel to channel, and the
noise has zero mean and the autocorrelation matrix R, = 021,
i.e., again, statistically independent from channel to channel,
(36) becomes

d b o3 H - H
= I P 4
03—{—0,21( +03+U%P ) G"e 0

2
__ % _ 04 Hp\qH
05 + 02 (I (N + 1)03 + o,ZLP P) e (4D

Using this result, (30), and (32), after some manipulation, one
obtains

2 2 4
1 _ 4 M( —;—g(NH))
—Nﬂz_d—ai 1+;d§ 1+_(1+;§:(N+1))2

42)
This result should be contrasted with (33), to which it reduces
when the signal-to-noise ratio SNR = 02/a2 goes to infinity.
By plotting (42), it can be seen that the noise power reduction
saturates around an SNR of 10 or 20. For larger SNR
values, the performance with the minimum mean squared error
estimate is the same as that with the least square estimate,
that is, there is no improvement gained by knowing the signal
statistics. For smaller values of SN R, however, the estimate
is weighted approximately by a factor of (1 + SNR™1)~1,
which reduces the noise power by estimation approximately
by the square of this factor.

As in the case of least squares estimation, an analytical
calculation of the reduction in noise power after estimation
is difficult in the case of minimum mean squared error
estimation. We provide a numerical evaluation, and plot the
results in Fig. 7. We assume the noise is independent from
channel to channel, has zero mean and variance ¢2; likewise,
we assume the signal is independent from channel to channel,
has zero mean and variance o2. The number of data channels
N varies between 1 and 30, and the number of parity channels
M is equal to 4. In this case, the reduction in noise power is
much more than in the case of least squares estimation. For
example, for N = 10, M = 4 and n = 1, the reductions in
noise power are 0.42 and 0.32 with least squares estimation
and minimum mean squared estimation, respectively. On the
other hand, for N = 10, M = 4 and n = 3, the reductions
in noise power are 0.17 and 0.0011 (i.e., a factor of 20 dB)
with least squares estimation and minimum mean squared
estimation, respectively.
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Fig. 7. Reduction in noise power after estimation using the minimum mean
squared error estimate for M = 4.

V. SUMMARY AND CONCLUSIONS

We described the optimal use of the DFT over the field of
complex numbers (in the sense of minimizing the number of
extra channels required), to perform analog diversity coding.
In particular, we have shown that the DFT can be used to
generate a continuous-amplitude maximum-distance separable
code over the field of complex numbers when the transform
kernel is a prime root of unity. This coding can be used to gen-
erate fault-tolerant communication networks for continuous-
or discrete-amplitude signals, as long as continuous-amplitude
parity channels are available. We have described electrical
and optoelectronic implementations of this code. The most
important advantage of this technique is in greatly simplifying
the encoders and decoders of diversity coding systems for
high-speed networks, such as fiber-optic WDM networks.
Furthermore, application of analog diversity coding to systems
with analog sources, such as telemetry systems is also possible.

We showed how straightforward signal estimation can en-
hance the performance of analog diversity coding systems in
the presence of channel noise by making use of the information
in the remaining M — n channels when n link failures occur
in an analog diversity coding system of N data channels. With
least squares estimation, and with an added complexity by a
factor of M/N multiply/add operations, the noise power after
estimation is reduced by about 3 dB for n = 1, or by about 10
dB or more for 1 < n < M, as compared to the case without
estimation. This approach does not require the statistics of the
signal or the noise be known. When the second order statistics
of the signal and the noise are known, the minimum mean
squared error estimation can be used to reduce the noise power
by more than 3 dB for n = 1, and by about 13 dB or more
for 1 < n < M as compared to the case without estimation,
without any added complexity. In particular, for n > 1, the
ratio of noise power with and without estimation is in the
negative tens of dB’s as N gets large.

ACKNOWLEDGMENT

We gratefully acknowledge discussions with H. Landau and
N. I. A. Sloane concerning our conjecture in the claim.

APPENDIX
Claim: let ( = €%, P a prime integer, and let
p1, P2, PN and qu, go,---,gn be integers in the range
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[0, P — 1] with p,, # pn, gm # ¢n for ;. % n. Then the
matrix, whose (j, k)th entry is (P34, 1 < 5 k < N, is
nonsingular.

Proof (due to R. Stanley [3]): Let D denote the determi-
nant det[¢P29%], 1 < j, k < N. Consider the determinant
det[23*], 1 < j, k < N. This is a polynomial in the variables
21, 22, ++, 2N, Which vanishes whenever z,, = z,, since
then two rows of the determinant coincide. Consequently, that
determinant has a factor the polynomial [T, (2 — 2;), 1 <
j, k < N, and the quotient is a polynomial in zy, z3,---. 2y
with integer coefficients. To see this explicitly. we can subtract
the top row from each of the others, and extract a factor 23 — 21
from the kth row. This yields as quotient the determinant
whose top row is 2%, 292, ... z9% and whose kth row is
(z* —21) /(21— 21), a polynomial with integer coefficients. In
this determinant, we now subtract the second row from each
subsequent row, and extract factors (z3 — z2)---(zxy — 29).
Continuing this procedure, we find

det [23*]

f] _ a, _ay an
e = ) ¢y tzp 2 (43)
Hj<k {2 — 7;) Z ! ~

with « denoting the multi-index (g, 9. --.y), and ¢, an
integer, as was desired. We can evaluate . ¢, in (43) by sub-
stituting z; = w’, 1 < j < N, whereupon the numerator on
the left becomes det [(w/)%] = det [(w? )’], a Vandermonde
det(.trminant equal to 9t tet ey T, <x (w9 —w%). On
letting w — 1, we thus find from (43)

R wi — o QG —q;
D o= Jim IT 5 = T =
i<k J<k k
On setting z; = (P, 1 < j < N, in (43) becomes
D/ ngk- (G’J —(P+ ). We will now derive a contradiction from
the vanishing of D. For as the denominator does not vanish,
we see that if D = 0, then
Zcucmﬁﬁ-mﬂz+'"+PAG.\ = 0. (44)
Consider now T(w) = z (:Qcmaﬁpzaz-v» CFPNON g poly-
nomial in w with integer coefficients, which, by (44) vanishes
at (. Since
L(w) = w4 wP 2wt (45)
is the polynomial of least degree over the integers vanishing
at ¢, it must be a factor of 1T'(w), and so
T(w) = Q(w)L(w) (46)
where Q(w) is a polynomial with integer coefficients. On
evaluating at w = 1 we find
> ea =T(1) = Q)P (47)
but this cannot happen, since, by (44), all the factors are in
the range [—(P — 1), (P - 1)]. This contradiction shows that
D # 0, and so establishes the Proposition.
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