Strategic Learning and Dynamics in Networking and Computing Games

Mihaela van der Schaar

Electrical Engineering, UCLA Multimedia Communications and Systems Lab http://medianetlab.ee.ucla.edu/

Challenges for next-generation networks

Current status

- PHY layer innovations significant capacity improvements
- Source coding innovations proliferation of a variety of applications
- MAC, network and transport layers often based on simplistic assumptions about users, ad-hoc rules, available information etc.

Key observations

- Collaborative communication/networking OK for sensor nets, but most applications lack incentives for collaboration
- Network and computing resources shared among heterogeneous, intelligent users
- Strategic behaviors of users try to maximize their own utilities (even if this impacts the performance of other users)
- Dynamic environment not only channels/paths, but also source characteristics, application requirements, and
- Informational decentralization: information required for resource management is decentralized (info is private to the users)

Illustrative example – Resource management in Current WLANs

- MAC protocol in IEEE 802.11a/b/g and e
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- Underlying assumption for protocol design
 - Users are not strategic
 - Users have to follow protocol rules (e.g. CSMA/CA)
 - Users have to declare their resource requirements truthfully (e.g. in pollingbased channel access – 802.11e HCF or 802.11a PCF)
 - · Users have to collaborate with each other

Problem 1: Violates individual rationality of users and there are no incentives for users to adhere to these rules
 Problem 2: Rules can be easily violated by simply adjusting communication algorithms' parameters, while still being protocol compliant; Often impossible to differentiate between users experiencing high traffic load/bad channel conditions, dumb users, and malicious users -> private information
 UCLA

Existing resource management solutions assume non-strategic wireless users

Emphasis on fairness, not on incentives for truthful declaration

- Generalized Processor Sharing (GPS) [Gallager, 1993]
- Air-fair polling
- Cross-layer resource allocation schemes
 - Longest Queue receives Highest Possible Rate (LQHPR) [Yeh, 2003]
 - Cross-layer resource allocation by exploiting the packet priority and channel diversity [Zakhor, 2002][Scaglione, vdSchaar, 2005]
 - Utility-based resource allocation for multimedia applications [Girod 2006][Park, vdSchaar, 2006][Su, vdSchaar, 2007]

Consequence: Tragedy of commons

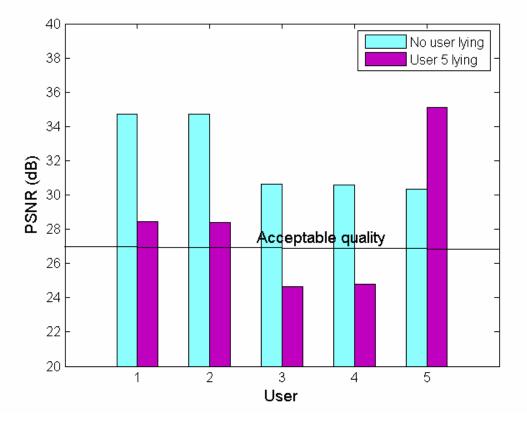
- 802.11e Resource Allocation [vdSchaar, 2004, 2006]
- CSMA/CA in 802.11 WLAN [Cagalj, 2005][Konorski, 2006]
- R. W. Lucky, IEEE Spectrum, 2006

What happens if users are strategic?

- CSMA/CA is vulnerable to selfish users using back-off attacks
- Selfish users gain significantly higher utility in IEEE 802.11e HCF protocol

User 1: Foreman User 2: Foreman User 3: Coastguard User 4: Coastguard User 5: Mobile

Channel: average SNR=23dB with variation 5dB



UCLA Solutions?

Related research work (brief summary, not complete)

- Distributed power control [Cioffi][Poor][Pottie][Bambos]
- Dynamic spectrum access [Honig][Berry][Jordan][Liu]
- Routing/networking games [Lazar][Low]
- Mechanism design for wired networks [Lazar][Johari][Parkes]
- Bargaining games [Liu][MacKenzie]
- Network utility maximization for collaborative and/or homogeneous users [Chiang][Srikant]
- Existence of equilibriums in communication games, i.e. descriptive rather than constructive [Goodman][Poor][Johari, Goldsmith][Liu]
- Equilibrium selection/design and methods for getting to that equilibrium are key [Lazar][Altman]

Limitations of existing works/ Issues considered in our research

Information decentralization

- private information
- information history depends on the user's observations/protocols
- strategic message exchanges
- common knowledge may differ

• Different types of non-collaborative behavior

- self-interested users
- malicious users
- dumb users (do not optimize their cross-layer strategies efficiently)

• Different strategies for playing the game

- foresighted vs. myopic users
- risk neutral, adverse

• Dynamics

- environment, but also other users (coupling between users)
- Heterogeneity
 - utility, experienced dynamics (traffic/loading, channels), complexity, (bounded) rationality
- Users can learn -> not single-agent, but multi-agent learning

Design space for next-generation networks

Rules

Currently 😕

Fairness – no consideration of resulting utility Homogeneous users considered No incentives to truthfully declare resource requirements/ rewards No jamming prevention

Desired ©

Resource management policies

- should be adapted based on the available resources, participating users, social decisions

- should consider the environment dynamics and users' heterogeneity– actions, strategies, utilities

Design space for next-generation networks

Actions & Strategies

Actions

- protocol compliant
- unique algorithms in various

layers allow users' differentiation

Strategies – for selecting actions

- -depend on the available info
- -foresighted/myopic
- -malicious/altruistic
- -risk-loving/risk-adverse

Strategies – probability of selecting various actions In non-collaborative network environments, users do not want to use pure strategies, but rather use *mixed strategies*!

Design space for next-generation networks Available information

Information (heterogeneous)

-information is private

-incomplete information about other network entities (their actions, strategies, utilities, beliefs, etc.)

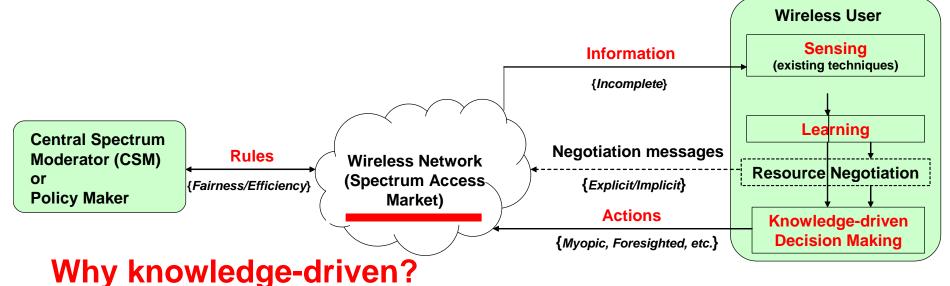
- common knowledge

-dynamic environment => time-varying information

Next-generation network design (NSF Career 2004)

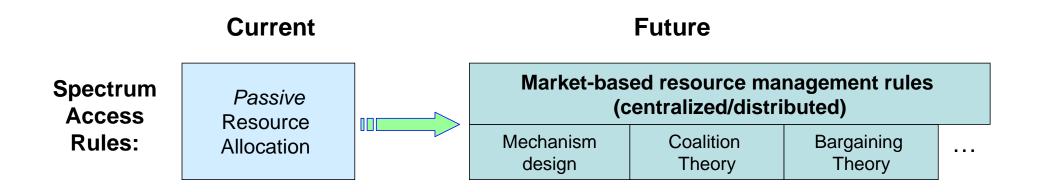
- Model users as strategic agents playing a dynamic, stochastic game aimed at dividing network and/or computing resources
- The game is played with incomplete information
- Users can learn their environment (source and channel characteristics, but also competing users!) based on the available information, their utilities and limited computational abilities ->

Foresighted (feedforward) rather than feedback adaptation



Knowledge acquisition involves complex cognitive processes: sensing, learning, communication, association and reasoning. [Wikipedia]

Creating dynamic resource markets/games



Mechanism design [Fu, vdSchaar, 2006, 2007] Coalition theory [Park, vdSchaar, 2007] Bargaining [Park, vdSchaar, 2006] Utility-driven resource allocation [Scaglione, vdSchaar, 2005][Chen, vdSchaar, 2006][Su, vdSchaar, 2007]

Criteria for design & construction of dynamic resource markets/games

- Resource types
- One-shot versus multi-stage games
- Stochastic vs. repeated games
- Centralized vs. decentralized (who enforces the rules?)
- Social decisions (fairness rules)
- Budget-balanced vs. money-making resource allocation
- Consider what information the users' possess
- Selection/design of suitable equilibrium concepts
- Implementation

Proposed generalized stochastic game [Fu, vd Schaar, 2006, 2007]

Formally, the generalized stochastic game is defined as a tuple $(\mathcal{I}, \mathcal{S}, \mathcal{W}, \mathcal{A}, \mathcal{B}, P_s, P_w, \mathcal{R})$, where

 \mathcal{I} is the set of agents (SUs), i.e. $\mathcal{I} = \{1, ..., M\}$,

 \mathcal{S} is the set of state profiles of all SUs, i.e. $\mathcal{S} = \mathcal{S}_1 \times \cdots \times \mathcal{S}_M$ with \mathcal{S}_i being the state set of SU i,

 \mathcal{W} is the set of network resource states,

 \mathcal{A} is the joint external action space $\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_M$, with \mathcal{A}_i being the external action set of SU *i*,

 \mathcal{B} is the joint internal action space $\mathcal{B} = \mathcal{B}_1 \times \cdots \times \mathcal{B}_M$, with \mathcal{B}_i being the internal action set of SU *i* to transmit delay-sensitive data,

 P_s is a transition probability function defined as a mapping from the current state profile $s \in \mathcal{S}$, corresponding joint external actions $a \in \mathcal{A}$ and internal actions $b \in \mathcal{B}$ and the next state profile $s' \in \mathcal{S}$ to a real number between 0 and 1, i.e. $P: \mathcal{S} \times \mathcal{A} \times \mathcal{B} \times \mathcal{S} \mapsto [0,1]$,

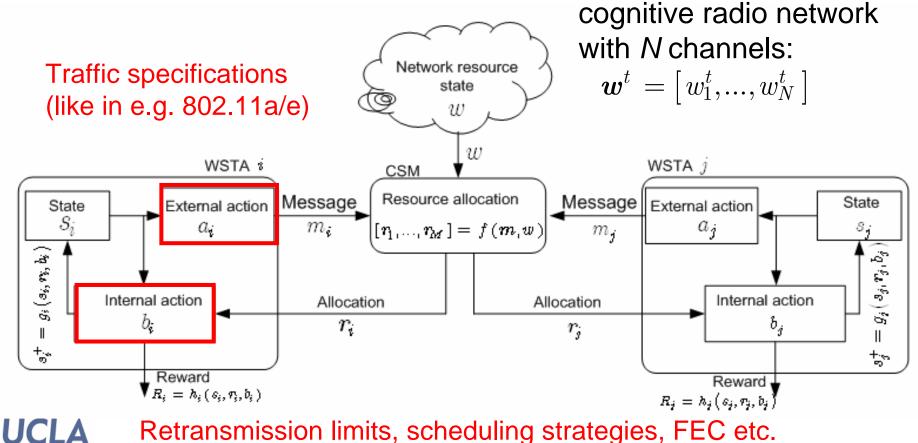
 P_w is a transition probability function defined as a mapping from the current resource state $w \in \mathcal{W}$ and the next state $w' \in \mathcal{W}$ to a real number between 0 and 1, i.e. $P: \mathcal{W} \times \mathcal{W} \mapsto [0,1]$.

 \mathcal{R} is a reward vector function defined as a mapping from the current state profile $s \in \mathcal{S}$ and corresponding joint external and internal actions $a \in \mathcal{A}$ and $b \in \mathcal{B}$ to an M-dimensional real vector with each element being the reward to a particular agent, i.e. $\mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{B} \mapsto \mathbb{R}^M$.

Centralized general stochastic game model

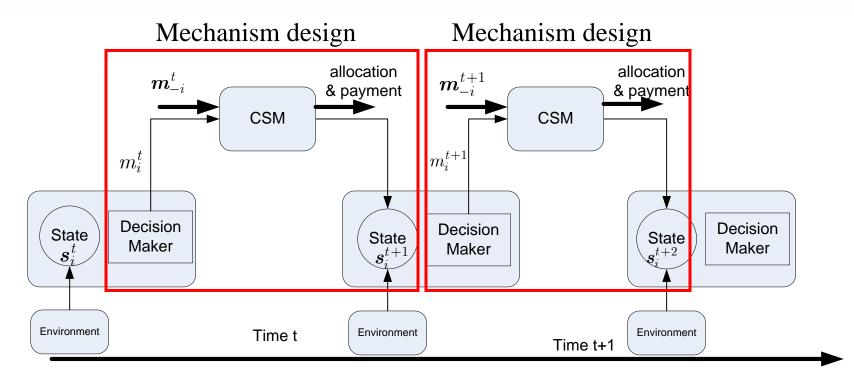
Numerous networking/computing games:

- Networks: 802.11 nets polling based, Cellular nets, Cognitive radio nets
- Computing systems: multi-tasks systems etc.



Retransmission limits, scheduling strategies, FEC etc.

Evolution of multi-user interaction



Mechanism design

-Solutions: VCG, pricing mechanism, generalized auctions etc.

- -Informational and complexity requirements
- -Equilibrium selection: Nash, dominant etc.
- -Incentives for truthful revelation

Centralized general stochastic game – moderator side (example)

- After each wireless user submits a bid vector m^t_i = a^t_i, and CSM performs two computations:
 (i) channel allocation and (ii) payment computation
 r^t = (z^t, τ^t) = Ω(a^t, w^t)
- Social welfare (fairness): $\boldsymbol{z}^{t,opt} = \arg \max_{\boldsymbol{z}^t} \sum_{i=1}^M \tilde{h}_i \left(a_i^t, \boldsymbol{z}_i^t, w \right)$

utility function of user i as known by the CSM

Taxation – assume second price auction

[Klemperer, 1999][Sun, Modiano, Zheng, 2006]

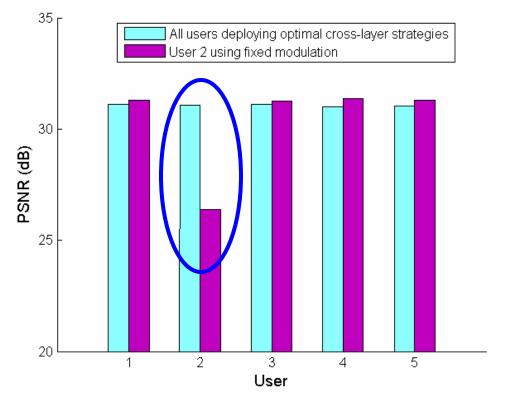
$$\tau_{i}^{t} = \sum_{\substack{j=1, \\ j\neq i}}^{M} \tilde{h}_{j}\left(a_{j}^{t}, \boldsymbol{z}_{j}^{t, opt}, w\right) - \max_{\substack{\boldsymbol{z}_{-i}^{t} \\ j\neq i}} \sum_{\substack{j=1, \\ j\neq i}}^{M} \tilde{h}_{j}\left(a_{i}^{t}, \boldsymbol{z}_{i}^{t}, w\right)$$

Truthful revelation?

For one-shot games in wireless communication games (e.g. one-time resource allocation, like in 802.11e HCF), we proved that [F.Fu, vdSchaar, 2006]

- Optimal strategy is to adopt the best anticipated cross-layer strategy and reveal the "true" type (utility function)
- Optimal strategy is dominant ③, and thus, it can be chosen without knowing other users' strategies
- Why is dominant strategy equilibrium desirable?
 - No need to know other users' actions/strategies -> can use single agent learning
- For multi-stage games everything gets more interesting ©

Illustrative Results – Impact of wireless users "smartness" (selected algorithms and cross-layer optimization)



All users are transmitting Foreman video sequences. Channel: average SNR=23dB with variation 5dB

How to play the stochastic game?

- History & observation
 - History: $h^t = \{s^0, w^0, a^0, b^0, z^0, \tau^0, ..., s^{t-1}, w^{t-1}, a^{t-1}, b^{t-1}, z^{t-1}, \tau^{t-1}, s^t\} \in \mathcal{H}^t$
 - Observation :

 $oldsymbol{o}_{i}^{t} = \{oldsymbol{s}_{i}^{0}, w^{0}, oldsymbol{a}_{i}^{0}, oldsymbol{s}_{i}^{0}, oldsymbol{z}_{i}^{0}, oldsymbol{\tau}_{i}^{0}, ..., oldsymbol{s}_{i}^{t-1}, oldsymbol{a}_{i}^{t-1}, oldsymbol{b}_{i}^{t-1}, oldsymbol{z}_{i}^{t-1}, oldsymbol{\tau}_{i}^{t-1}, oldsymbol{s}_{i}^{t-1}, oldsymbol{s}_{i}$

• Policy
$$\pi_i^t : \mathcal{O}_i^t \mapsto \mathcal{A}_i \times \mathcal{B}_i \quad [a_i^t, b_i^t] = \pi_i^t(\mathbf{o}_i^t)$$

 $\boldsymbol{\pi}_i = (\pi_i^0, \dots, \pi_i^t, \dots)$, $\boldsymbol{\pi}^t = (\pi_1^t, \dots, \pi_M^t) = (\pi_i^t, \boldsymbol{\pi}_{-i}^t)$

- Reward: $R_i^t(s_i^t, \boldsymbol{r}_i^t, b_i^t) = u(s_i^t, \boldsymbol{z}_i^t, b_i^t) + \tau_i^t \longrightarrow R_i^t(s_i^t, \boldsymbol{o}_i^t, b_i^t)$
- Discounted reward: $Q_i^t((\pi_i^t, \pi_{-i}^t) \mid \boldsymbol{s}^t, w^t) = \sum_{k=t}^{\infty} (\alpha_i)^{k-t} R_i^k(s_i^k, \boldsymbol{o}_i^k, b_i^k)$,
- Best response: $\beta_i(\boldsymbol{\pi}_{-i}^t) = \arg \max_{\pi_i} Q_i^t((\pi_i^t(\boldsymbol{\pi}_{-i}^t) \mid \boldsymbol{s}^t, w^t))$

Key challenge

- An SU may not exactly know the other SUs' actions and models, and it cannot know their private information
- Thus, an SU *can only predict the dynamics (uncertainties)* caused by the competing SUs based on its observations from past interactions

For instance, in wireless networks:

Private information (e.g. characteristics of the application traffic, channel gain or channel conditions - SINR, etc.)

Network information (e.g. network resource states, primary users etc.)

Opponents information (e.g. states and possible actions of the opponents)

How to solve this problem? Multi-agent learning!

What information should be learnt?

$$\pi_i^* = rg\max_{\pi_i} Q_i\left(\pi_i, \boldsymbol{\pi}_{-i} \mid s_i, \boldsymbol{s}_{-i}, \boldsymbol{w}
ight)$$

To solve this optimization, the following information is required by SU i:

- 1. the state transition model of SU *i*, $p(s_i^{t+1} | s_i^t, a_i^t, \boldsymbol{a}_{-i}^t, b_i)$;
- 2. the state transition model of other SUs, $p(s_j^{t+1} | s_j^t, a_j^t, a_{-j}^t, b_j), \forall j \neq i$;
- 3. the state of other SUs, s_{-i} ;
- 4. the policy of other SUs, π_{-i} ;
- 5. the network resource state w.

Multi-agent learning - definition

We define a **learning algorithm** \mathcal{L}_i as:

$$\left[a_{i}^{t}, b_{i}^{t}\right] = \pi_{i}^{t}\left(s_{i}^{t}, B_{\boldsymbol{s}_{-i}}^{t}, B_{\boldsymbol{\pi}_{-i}}^{t}, B_{w}^{t}\right)$$

Output of the multi-user interaction game:

$$\Omega^t = Game(\boldsymbol{s}^t, \boldsymbol{a}^t, w^t)$$

Observation of SU *i*

$$o_i^t = O\left(s_i^t, \Omega_i^t, b_i^t\right)$$
 ,

where *O* is the observation function which depends on the current state, the current game output and the current internal action taken.

Policy update:

$$\pi_i^{t+1} = \mathcal{F}_i(\pi_i^t, o_i^t, I_{-i}^t)$$

 ${\ensuremath{\mathcal{F}}}$ is the update function about the belief and policies

 I_{-i}^{t} is the exchanged information with the other SUs

Beliefs about the other SUs' states s_{-i} , policies π_{-i} and the network resource state w:

$$B_{\pi_{-i}}^{t+1} = \mathcal{F}_{\pi_{-i}} \left(B_{\pi_{-i}}^{t}, o_{i}^{t}, I_{-i}^{t} \right) \quad , \ B_{w}^{t+1} = \mathcal{F}_{w} \left(B_{w}^{t}, o_{i}^{t}, I_{-i}^{t} \right), \ B_{s_{-i}}^{t+1} = \mathcal{F}_{s_{-i}} \left(B_{s_{-i}}^{t}, o_{i}^{t}, I_{-i}^{t} \right)$$
UCLA

Value of Learning [F.Fu,vdSchaar, 2007]

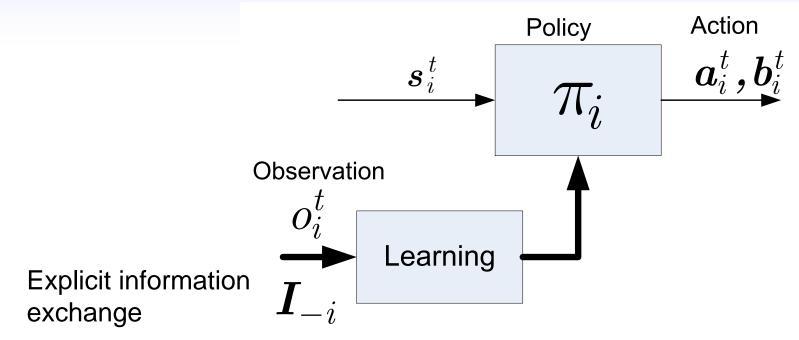
$$\mathcal{V}^{\pi_i^{\mathcal{L}_i(\boldsymbol{o}_i,\boldsymbol{I}_{-i})}}(T) = \frac{1}{T} \sum_{t=1}^T R_i^t(\pi_i^{\mathcal{L}_i(\boldsymbol{o}_i,\boldsymbol{I}_{-i})})$$

where the reward R_i^t depends on both the learning approach \mathcal{L}_i and on the observation o_i^t and information exchanged I_{-i}^t

For instance, given the same observation o_i^t and exchanged information I_{-i}^t , if the time average rewards of two algorithms \mathcal{L}'_i and \mathcal{L}''_i satisfy $\mathcal{V}^{\pi_i^{\mathcal{L}'(o_i,I_{-i})}}(T) > \mathcal{V}^{\pi_i^{\mathcal{L}''(o_i,I_{-i})}}(T)$, then we say that learning algorithm \mathcal{L}'_i is better than \mathcal{L}''_i

How much to learn for a desired performance (utility)? [Y. Su, vdSchaar, 2008]

Multi-agent learning - illustration

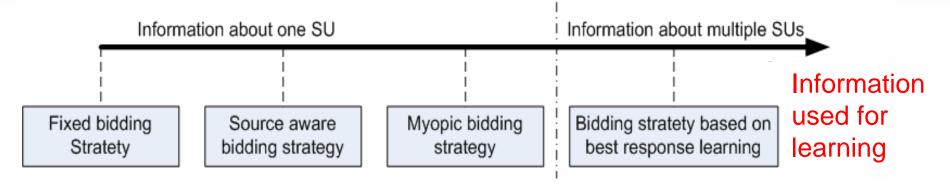


Solutions depend on the information availability:

- Reinforcement learning (no explicit modeling of other users) [Fu, vdSchaar, 2007]

- Fictitious Play (explicit modeling of other users – needs to know what actions opponents took, but not their strategies) [Shiang, vdSchaar, 2007]

Illustrative results for bidding and learning strategies



• Fixed bidding strategy π_i^{fixed} : this strategy generates a constant bid vector during each stage of the auction game, irrespective of the state that SU *i* is currently in and of the states other SUs are in.

- Source-aware bidding strategy π_i^{source} : this strategy generates various bid vectors by considering the dynamics in source characteristics (based on the current buffer state), but not the channel dynamics.
- Myopic bidding strategy π_i^{myopic} : this strategy takes into account both the environmental disturbances and the impact caused by other SUs. However, it does not consider the impact on its future rewards.
- Bidding strategy based on best response learning $\pi_i^{\mathcal{L}_i}$: This strategy is produced using the presented learning, which considers both the environmental dynamics and the impact on the future reward.

Illustrative results

Coastguard video sequence, 500 ms delay

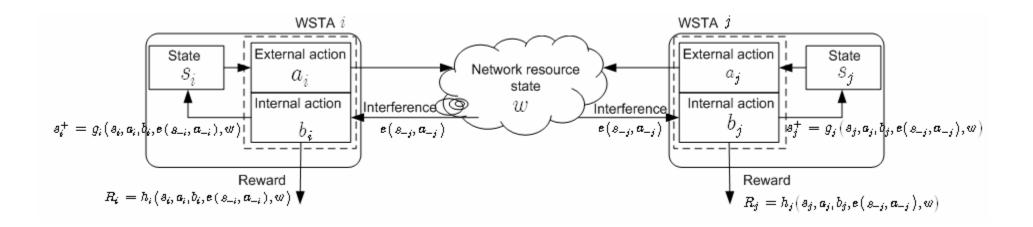
	Didding	SU 1			SU 2						
	Bidding Strategies	Video Quality (PSNR)	Average tax	Average reward	Video Quality (PSNR)	Average tax	Average reward				
Scenario 1	$\pi_1^{fixed}, \pi_2^{myopic}$	25 dB	0.1222	2.6337	36 dB	0.5495	1.5105				
Scenario 2	$\pi_1^{source}, \pi_2^{myopic}$	26 dB	0.3147	2.4915	33 dB	0.6048	1.6116				
Scenario 3	$\pi_1^{myopic}, \pi_2^{myopic}$	29 dB	0.4669	1.9767	30 dB	0.3763	1.7837				
Scenario 4	$\pi_1^{\mathcal{L}_1}, \pi_2^{myopic}$	35 dB	0.6923	1.7428	27 dB	0.4197	2.2967				

Performance of competing SUs with various bidding strategies

Distributed stochastic games

Numerous networking/computing games:

- Networks: power control games, contention games etc.
- Computing systems: peer-to-peer, multi-tasks systems etc.



E.g. in power control games:

external action can be the selected power allocation,

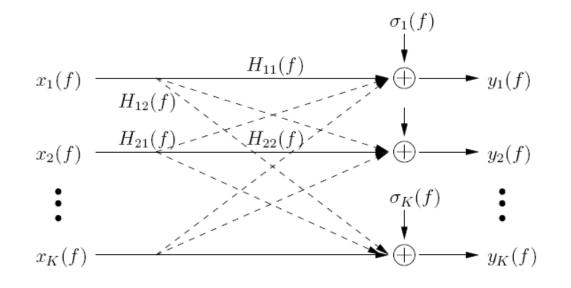
internal action can be the selected modulation and channel coding scheme

Distributed games - Illustrative results

Multi-user power control problem
 Interference-limited multi-user communication systems
 Frequency-selective channels
 Transmit PSD design

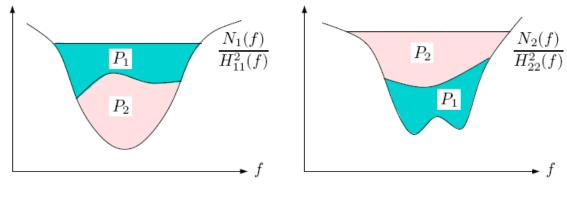
Goal

Maximize selfish users' rates



Existing solutions

Solution – Iterative waterfilling (W. Yu, J. Cioffi, 2002)



$$P_1^{(0)}(f) \to P_2^{(0)}(f) \to P_1^{(1)}(f) \to P_2^{(1)}(f) \to \cdots$$

Nash equilibrium: competitive optimal

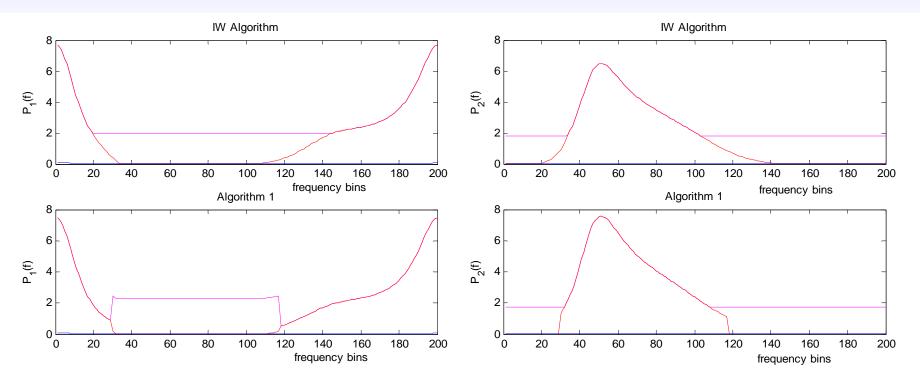
Convergence is achieved by iterative water-filling

Can we do better? How?

A New Perspective on Multi-user Power Control Games in Interference Channels [Y. Su, vdSchaar,2007]

- Iterative Waterfilling =>Myopic users -> Nash equilibrium
- Foresighted strategy in determining the transmit PSD -> Stackelberg equilibrium
 - Bi-level programming formulation
 - A low-complexity sub-optimal approach based on the necessary KKT conditions

Illustrative results



Substantial performance improvements for both foresighted and myopic users ! ⁽ⁱ⁾

How to achieve this result using learning?

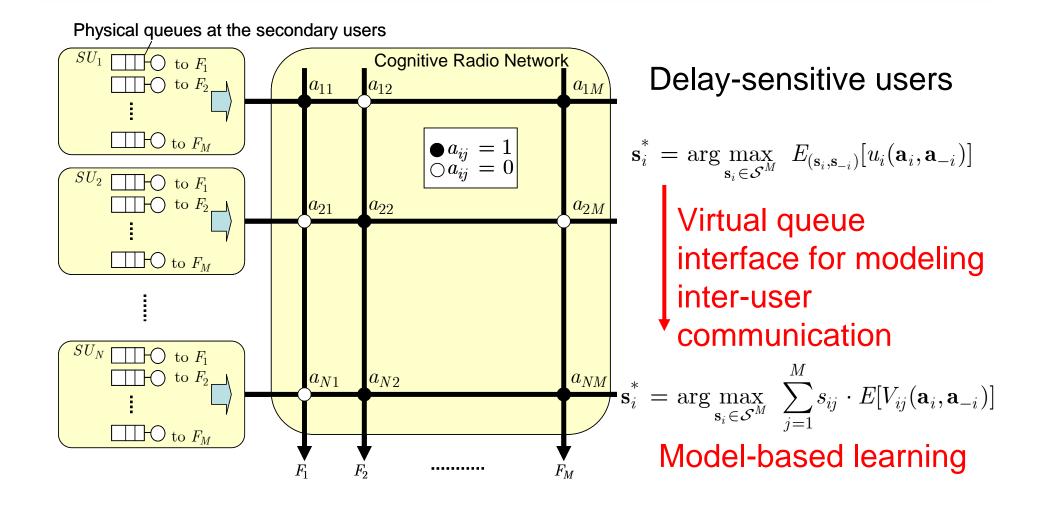
Preliminary results for different learning schemes in repeated power control games

	Adopted schemes	SU	Reward (Kbit/joule)	Average reward
		1 2	519.0 195.2	
	Myopic scheme	3	530.6	890.15
		4 5	2073.0 1132.9	
	AR learning scheme	1	555.2	
Adaptive		2 3	113.5 345.6	1005.6
Reinforcement (AR)		4	2830.2	100000
		5	1183.7	
Adaptive	AA learning scheme	1 2	529.3 475.6	
Action Learning (AA)		3	476.8	1069.3
		4 5	2831.2 1033.3	

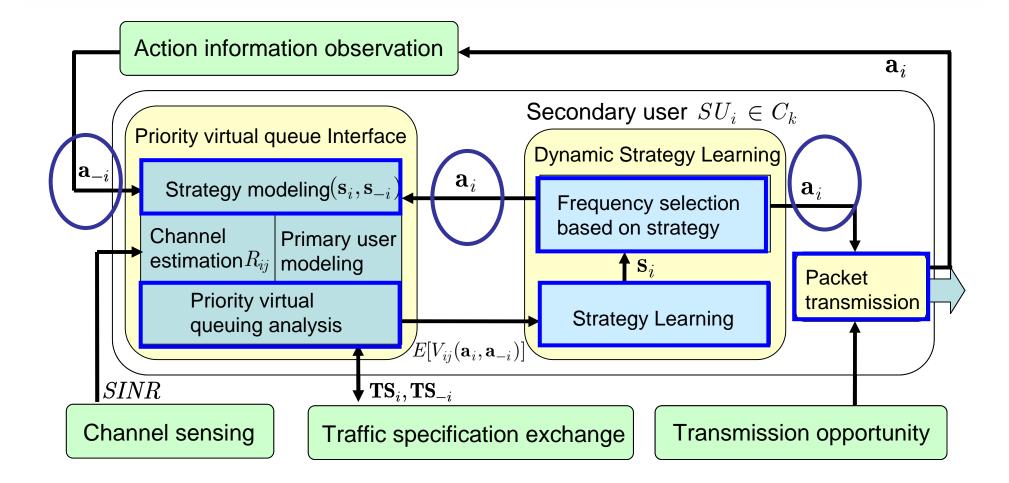
Simulation results using different learning techniques

UCLA Stackelberg (perfect info.) Average Reward: 1250

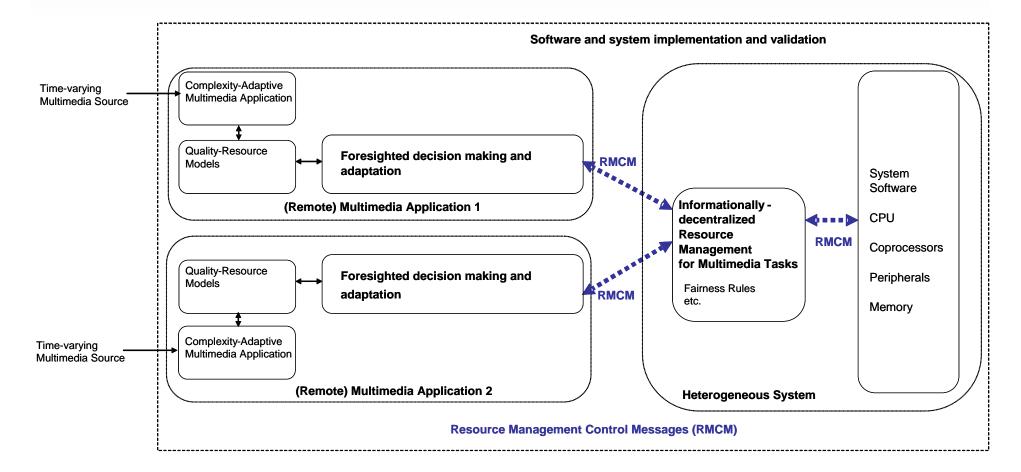
Distributed and dynamic resource management with information exchanges [H. Shiang, vdSchaar, 2007]



Dynamic Strategy Learning



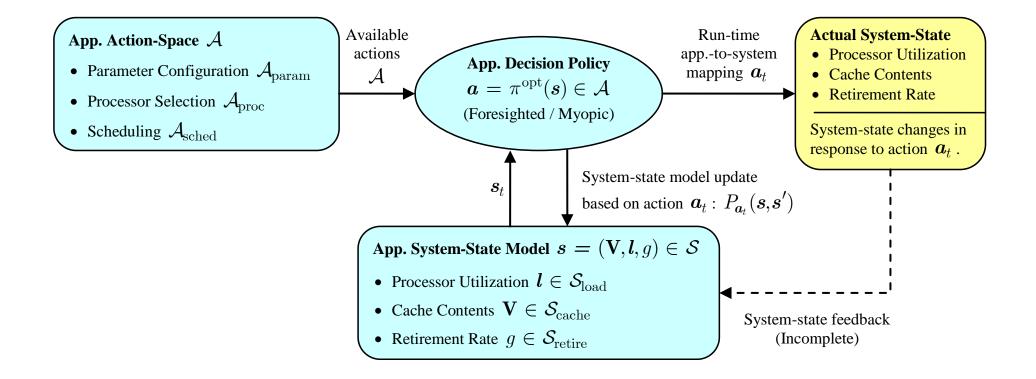
Foresighted adaptation and learning in computing games



[Foo, vdSchaar, 2006,2007,2008][Akyol, vdSchaar, 2006] [vdSchaar, Andreopoulos, 2005]

Illustration of how the application decision policy takes actions based on the system-state model,

and how these actions impact the actual system state



Our Goal

Add a new dimension to multi-user networks/systems by explicitly considering strategic users, dynamics, heterogeneity and information availability

- Opens opportunities for new theoretical foundations and algorithm designs, new metrics needed
- Significant performance improvements
- Backwards compatible with existing protocols
- Simple system designs for building next-generation dynamic, robust and trustable networks

Multimedia Communications and Systems Laboratory

See our research at: http://medianetlab.ee.ucla.edu

Current Ph.D. Students Fangwen Fu Hyunggon Park Hsien-Po Shiang Brian Foo Nicholas Mastronarde Zhichu Lin Yi Su

Current M.Sc. Students Wenchi Tu

