
Counter Braids: A novel counter architecture

Joint work with:
Yi Lu, Andrea Montanari, Sarang Dharmapurikar and Abdul Kabbani

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997. Balaji PrabhakarBalaji Prabhakar

Stanford University

2

Overview

• Counter Braids
– Background: current approaches

• Exact, per-flow accounting
• Approximate, large-flow accounting

– Our approach
• The Counter Braid architecture
• A simple, efficient message passing algorithm

– Performance, comparisons and further work

• Congestion notification in Ethernet
– Overview of IEEE standards effort

3

Traffic Statistics: Background
• Routers collect traffic statistics; useful for

– Accounting/billing, traffic engineering, security/forensics
– Several products in this area; notably, Cisco’s NetFlow, Juniper’s cflowd, Huawei’s

NetStream

• Other areas
– In databases: number and count of distinct items in streams
– Web server logs

• Key problem: At high line rates, memory technology is a limiting factor
– 500,000+ active flows, packets arrive once every 10 ns on 40 Gbps line
– We need fast and large memories for implementing counters: v.expensive

• This has spawned two approaches
– Exact, per-flow accounting: Use hybrid SRAM-DRAM architecture
– Approximate, large-flow accounting: Use heavy-tailed nature of flow size distribution

4

Per-flow Accounting

• Naïve approach: one counter per flow

F1
F2

Fn

43

4

15

LSB MSB

44

4

15

LSB MSB

• Problem: Need fast and large memories; infeasible

5

An initial approach
Shah, Iyer, Prabhakar, McKeown (2001)

• Hybrid SRAM-DRAM architecture
– LSBs in SRAM: high-speed updates, on-chip
– MSBs in DRAM: less frequent updates; can use slower speed, off-chip DRAMs

F1
Fl2

Fn

35
4

15

SRAM DRAM

Interconnect
-- Speed: L/S

Counter Mgmt
Algorithm

• The setup
– Line speed = SRAM speed = L; Interconnect speed = DRAM speed = L/S
– Adversarial packet arrival process

• Results
1. The counter management algorithm Longest Counter First is optimal

2. Min. num. of bits for each SRAM counter:

6

Related work
• Ramabhadran and Varghese (2003) obtained a simpler version of the LCF

algorithm
• Zhao et al (2006) randomized the initial values in the SRAM counters to

prevent the adversary from causing several counters to overflow closely

• Main problem of exact methods
– Can’t fit counters into single SRAM
– Need to know the flow-counter association

• Need perfect hash function; or, fully associative memory (e.g. CAM)

SRAM DRAM

Interconnect
-- Speed: L/SCMA SRAM

FIFO

F1
Fl2

Fn

7

Approximate counting
• Statistical in nature

– Use heavy-tailed (often Pareto) distribution of network flow sizes
– Roughly, 80% of data brought by the biggest 20% of the flows
– So, it makes sense to quickly identify these big flows and count their packets

• Sample and hold: Estan et al (2004) propose sampling packets to catch
the large “elephant” flows and then counting just their packets
– Significantly simpler, but approximate

Large flow?

Packets off of
the wire

Yes

No
Counter

Array

• This approach spawned a lot of follow-on work
– Given the cost of memory, it strikes an excellent trade-off
– Moreover, the flow-to-counter association problem is manageable

8

Summary

• Exact counting methods
– Space intensive
– Complex

• Approximate methods
– Focus on large flows
– Not as accurate

9

Our approach
• The two problems of exact counting methods solved as follows

1. Large counter space
– By “braiding” the counters

2. Flow-to-counter association problem
– By using multiple hash functions and a “decoder”

• Braiding

1

2

35

3

1

LSBs Shared
MSBs

10

Incrementing

1
2

35

4

2

1
2

35

3

2

1
2

35

4

2

1
2

35

4

2

1
2

35

4

2

1
2

35

4

2

11

Counter Braids for Measurement
(in anticipation)

Elephant Traps
Few, deep counters

Mouse Traps
Many, shallow counters

Status bit
Indicates overflow

12

Flow-to-counter association
• Multiple hash functions

– Single hash function leads to collisions
– However, one can use two hash functions and use the redundancy

to recover the flow size

1

2

35

3

0

3

40

3

15

1

2

35

3

2

6

36

3

455

• Find flow sizes from counter values; i.e. solve C = MF
– Need a decoding algorithm
– It’s performance: how much space? what decoding accuracy?

13

Optimality

• This is interesting because C is a linear, incremental function of the
data, F
– By contrast, the Lempel-Ziv compressor, which is also optimal, is a non-

linear function of data
– However, the ML decoder is NP-hard in general; need something simpler

• Counter Braids are optimal, i.e.
– When using the maximum likelihood (ML) decoder, the space needed for the

counters reaches the entropy lower bound

• The ML decoder
– Let F1, …, Fk be the list of all solutions to C = MF
– FML is that solution which is most likely

14

The Count-Min Algorithm
• Let us first look at this algorithm is due to Cormode and Muthukrishnan

– Algorithm:
• Hash flow j to multiple counters, increment all of them
• Estimate flow j’s size as the minimum counter it hits

– The flow sizes for the example below would be estimated as: 6, 2, 3, 36, 45

1

2

35

3

2

6

36

3

455

• Major drawbacks
– Need lots of counters for accurate estimation
– Don’t know how much the error is; in fact, don’t know if there is an error

• We shall see that applying the “Turbo-principle” to this algorithm gives
terrific results

15

Decoder 2: The MP estimator

• An Iterative Message Passing Decoder
– For solving the system of (underdetermined) linear equations: C = MF
– Messages in the t th iteration

• from counter a to flow i: estimate of flow i ’s size by counter a based on
messages from flow’s other than i

• from flow i to counter a: flow i ’s estimate of its own size based on
messages from counters other than a

16

The MP Estimator

• Note: Count-min is just the first iteration of the algorithm if initial flow
estimates are 0

17

Properties of the MP Algorithm

• Anti-monotonicity: With initial estimates of 1 for the flow sizes,

Flow index

Flow size

• Note: Because of this property, estimation errors are both
detectable and have a bound!

18

When does the sandwich close?
• Using the “density evolution” technique of Coding Theory, one can show

that it suffices for m > c*n, where
 c* =

– This means for heavy-tailed flow sizes, where there are approximately 35%
1-packet flows, c* is roughly 0.8

• In fact, there is a sharp threshold
– Less than that many counters means you cannot decode correctly, more is

not required!

19

Above Threshold (= 72,000)
100,000 flows and 75,000 ctrs

Fr
ac

tio
n

of
 fl

ow
s

in
co

rre
ct

ly
de

co
de

d

Iteration number

Count-min’s error reduced
Illustration of the Turbo-principle

20

Below Threshold
100,000 flows and 71,000 ctrs

Fr
ac

tio
n

of
 fl

ow
s

in
co

rre
ct

ly
de

co
de

d

Iteration number

21

The 2-stage Architecture: Counter Braids

-- First stage: Lots of shallow counters

-- Second stage: V.few deep counters

-- First stage counters hash into the
second stage; an “overflow” status bit
on first stage counters indicates if the
counter has overflowed to the second
stage

-- If a first stage counter overflows, it
resets and counts again; second stage
counters track most significant bits

-- Apply MP algorithm recursively

Elephant Traps
Few, deep counters

Mouse Traps
Many, shallow counters

22

Performance of the MP Algorithm
• Interested in absolute error as a function of flow size

– Pareto flow sizes
– Entropy = 1.96 bits
– Max flow size = 7364
– Number of flows = 100,000

23

Counter Braids vs. the Single-stage
Architecture

Entropy

24

Internet trace simulations
• Used two OC-48 (2.5 Gbps) one-hour contiguous traces collected

by CAIDA at a San Jose router.

• Divided traces into 12 5-minute segments. Each segment has 0.9
million flows and 20 million packets in trace 1, and 0.7 million
flows and 9 million packets in trace 2.

• We used total counter space of 1.28 MB.

• We ran 50 experiments, each with different hash functions. There
were a total of 1200 runs. No error was observed.

25

Comparison

 Hybrid Sample-and-Hold Counter

Braids

Purpose All flow sizes Elephant Flows All flow sizes

Number of

flows

900,000 98,000 900,000

Memory Size

(SRAM)

for counters

4.5 Mbit

(31.5 Mbit in

DRAM + counter-

management

algorithm)

1 Mbit 10 Mbit

Memory Size

(SRAM)

flow-to-counter

association

>25 Mbit

(infeasible)

1.6 Mbit Not needed

Error Exact Fractional
 Large: 0.03745%

Medium: 1.090%

Small: 43.87%

Lossless

recovery.

Pe ~ 10^(-7)

26

Conclusions for Counter Braids

• Cheap and accurate solution to the network traffic
measurement problem
– Message Passing Decoder
– Counter Braids

• Initial results showed that the performance was quite good

• Further work
– Multi-stage generalization of Counter Braids
– Analyze MP algorithm
– Multi-router solution: same flow passes through many routers

Congestion Notification in Ethernet:
Part of the IEEE 802.1 Data Center Bridging

standardization effort

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997. Balaji PrabhakarBerk Atikoglu, Abdul Kabbani, Balaji Prabhakar

Stanford University

Rong Pan
Cisco Systems

Mick Seaman

28

Backgrond

• Switches and routers send congestion signals to end-systems
to regulate the amount of network traffic.
– We distinguish two types of congestion.

• Transient: Caused by random fluctuations in the arrival rate of
packets, and effectively dealt with using buffers and link-level pausing
(or dropping packets in the case of the Internet).

• Oversubscription: Caused by an increase in the applied load either
because existing flows send more traffic, or (more likely) because new
flows have arrived.

– A congestion notification mechanism is concerned with dealing
with the second type of congestion.

– We’ve been involved in developing QCN (for Quantized
Congestion Notification), an algorithm which is being studied as a
part of the IEEE 802.1 Data Center Bridging group for deployment
in Ethernet

29

Congestion control in the Internet

• In the Internet
– Various queue management schemes, notably RED, drop or mark

packets using ECN at the links
– TCP at end-systems uses these congestion signals to vary the

sending rate
– There exists a rich history of algorithm development, control-

theoretic analysis and detailed simulation of queue management
schemes and congestion control algorithms for the Internet
• Jacobson, Floyd et al, Kelly et al, Low et al, Srikant et al, Misra et al,

Katabi et al …
• The simulator ns-2

30

Switched Ethernet vs Internet
• Some significant differences …

1. There is no end-to-end signaling in the Ethernet a la per-packet acks in the
Internet
• So congestion must be signaled to the source by switches
• Not possible to know round trip time!
• Algorithm not automatically self-clocked (like TCP)

2. Links can be paused; i.e. packets may not be dropped
3. No sequence numbering of L2 packets
4. Sources do not start transmission gently (like TCP slow-start); they can

potentially come on at the full line rate of 10Gbps
5. Ethernet switch buffers are much smaller than router buffers (100s of KBs

vs 100s of MBs)
6. Most importantly, algorithm should be simple enough to be implemented

completely in hardware

• An interesting environment to develop a congestion control algorithm
• QCN derived from the earlier BCN algorithm
• Closest Internet relatives: BIC TCP at source, REM/PI controller at switch

