
1

Programming Sensor Networks:
A Tale of Two Perspectives

Ramesh Govindan
ramesh@usc.edu

Embedded Networks Laboratory
http://enl.usc.edu

2

Wireless Sensing: Applications

Lots of applications

3

Wireless Sensing: Platforms

Lots of platforms

Motes: 8 or 16 bit
sensor devices

32-bit embedded
single-board
computers

4

Wireless Sensing Research

Processor Platforms Radios Sensors

Operating Systems

Localization Time Synchronization Medium Access Calibration

Collaborative Signal Processing

Data-centric Routing Data-centric Storage

Querying, Triggering

Aggregation and Compression

Collaborative Event Processing

M
on

ito
rin

g
Se

cu
rit

y

Programming Systems

Lots of research!

5

… some of it from our Lab

Architecture

Multi-hop wireless network

Centralized
Program

Annotated
Localized

Binary

Kairos preprocessor
+ language compiler

Program Kairos runtime

Thread
of

control

sync
read/write

Cached Objects

Managed Objects

Queue Manager

Requests Replies

Sensor Node
Program Kairos runtime

Thread
of

control

sync
read/write

Cached Objects

Managed Objects

Queue Manager

Requests Replies

Sensor Node

Link + distribute
to runtime

Program Kairos runtime

Thread
of

control

sync
read/write

Cached Objects

Managed Objects

Queue Manager

Requests Replies

Sensor Node
Program Kairos runtime

Thread
of

control

sync
read/write

Cached Objects

Managed Objects

Queue Manager

Requests Replies

Sensor Node

Link + distribute
to runtime

Link + distribute
to runtime

Macro-programming

Structural Health Monitoring

Routing and
Data Dissemination

Data-Centric Storage

Measurements and
Testbeds

6

But, there is a problem!

Six pages of 158 pages
of code from a wireless structural data

acquisition system called Wisden

Programming these
networks is hard!

7

Three Responses

Event-based programming on an OS that supports
no isolation, preemption, memory management
or a network stack is hard.

Therefore, we need OSes that support preemption
and memory management, we need virtual
machines, we need higher-level communication
abstractions.

OS/Middleware

8

Three Responses

Tiny sensor nodes (motes) are resource-
constrained, and we cannot possibly be re-
programming them for every application.

Therefore, we need a network architecture that
constrains what you can and cannot do on the
motes.

Networking

9

Three Responses

Today, we’re programming sensor networks in the
equivalent of assembly language.

What we need is a macroprogramming system,
where you program the network as a whole, and
hide all the complexity in the compiler and the
runtime

Programming
Languages

10

Three Responses

Programming
Languages

OS/Middleware NetworkingThe Tenet
Architecture

The Pleaides
Macroprogramming

System

11

The Tenet
Architecture

Omprakash Gnawali, Ben Greenstein, Ki-Young Jang, August Joki, Jeongyeup Paek,
Marcos Vieira, Deborah Estrin, Ramesh Govindan, Eddie Kohler,

The TENET Architecture for Tiered Sensor Networks,
In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (Sensys), November 2006.

12

The Problem
Sensor data fusion within the network

… can result in energy-efficient implementations

But implementing collaborative fusion on the
motes for each application separately
… can result in fragile systems that are hard to program,

debug, re-configure, and manage

We learnt this the hard way, through many trial
deployments

13

An Aggressive Position
Why not design systems without sensor data

fusion on the motes?

A more aggressive position: Why not design an
architecture that prohibits collaborative data
fusion on the motes?

Questions:
How do we design this architecture?
Will such an architecture perform well?

No more on-mote
collaborative fusion

14

Tiered Sensor Networks

Motes
Low-power, short-range radios
Contain sensing and actuation

Masters
32-bit CPUs (e.g. PC, Stargate)
Higher-bandwidth radios
Larger batteries or powered

Enable flexible deployment
of dense instrumentation

Provide greater network
capacity, larger spatial reach

Many real-world sensor network
deployments are tiered

Real world deployments at,
Great Duck Island (UCB, [Szewczyk,`04]),
James Reserve (UCLA, [Guy,`06]),
Exscal project (OSU, [Arora,`05]),
…

Future large-scale sensor network
deployments will be tiered

15

Tenet Principle

Multi-node data fusion functionality and multi-node
application logic should be implemented only in the
master tier. The cost and complexity of implementing
this functionality in a fully distributed fashion on motes
outweighs the performance benefits of doing so.

Aggressively use tiering to simplify system !

16

and may return responses

Tenet Architecture

Motes process data,

No multi-node fusion at the mote tier

Masters control motes

Applications run on masters,
and masters task motes

17

What do we gain ?
Simplifies application development

Application writers do not need to write or debug
embedded code for the motes
– Applications run on less-constrained masters

18

What do we gain ?
Enables significant code re-use across

applications

Simple, generic, and re-usable mote tier
– Multiple applications can run concurrently with

simplified mote functionality

Robust and scalable network subsystem
– Networking functionality is generic enough to support

various types of applications

19

More bits communicated than necessary? Communication over longer hops?

Challenges

Fusion

Not an issue
Typically the diameter of the mote tier
will be small
Can compensate by more aggressive
processing at the motes

In most deployments, there is a
significant temporal correlation

Mote-local processing can achieve
significant compression

… but little spatial correlation
Little additional gains from mote tier
fusion

Mote-local processing provides
most of the aggregation benefits.

The costs will be small, as we shall see…

20

System Overview

Tasking Subsystem Networking Subsystem

Tasking
Language Task Parser Tasklets and

Runtime
Reliable

TransportRouting Task
Dissemination

Tenet System

How to disseminate tasks
and deliver responses?How to express tasks?

21

Tasking Language
Linear data-flow language allowing flexible

composition of tasklets
A tasklet specifies an elementary sensing, actuation, or

data processing action
Tasklets can have several parameters, hence flexible
Tasklets can be composed to form a task

• Sample(500ms, REPEAT, ADC0, LIGHT) Send()

No loops, branches: eases construction and
analysis
Not Turing-complete: aggressively simple, but supports

wide range of applications

Data-flow style language natural for sensor data processing

22

Task Composition
CntToLedsAndRfm

SenseToRfm

With time-stamp and seq. number

Get memory status for node 10

If sample value is above 50, send sample data, node-id and time-stamp

Wait Count Lights Send

Sample Send

CountStampTime SendSample

MemStats SendAddress NEQ(10) DeleteIf

Sample LT(50) DeleteATaskIf Address StampTime Send

23

The Tenet Stack

24

Application Case Study: PEG
Goal

Compare performance
with an implementation
that performs in-mote
multi-node fusion

Pursuit-Evasion Game
Pursuers (robots)
collectively determine
the location of evaders,
and try to corral them

25

Mote-PEG vs. Tenet-PEG

Pursuer

Evader Detected

Re-task the motesTask the motes

Evader

Pursuer

Evader Detected

Evader

Leader Election

Leader

Mote-PEGTenet-PEG

26

Error in Position Estimate Reporting Message Overhead

PEG Results

0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 R

ep
or

ts

0 1 2 3 4 5 6

Positional Error

Mote-PEG
Tenet-PEG

Comparable positional
estimate error

Comparable reporting
message overhead

0

50

100

150

200

250

300

350

400

m
sg

/m
in

Mote-PEG Tenet-PEG

min
avg
max

27

PEG Results

Latency is nearly identical

A Tenet implementation of an application can
perform as well as an implementation with

in-mote collaborative fusion

28

N
W

Real-world Tenet deployment on
Vincent Thomas Bridge

570 ft

120 ft

30 ft

Mote

Master

Ran successfully for 24 hours
100% reliable data delivery
Deployment time: 2.5 hours

Total sensor data received: 860 MB

29

Interesting Observations

Fundamental mode
agrees with previously
published measurement

Faulty sensor!

Consistent modes
across sensors

30

Summary

ApplicationsSimplifies application development

Networking SubsystemRobust and scalable network

Tasking SubsystemRe-usable generic mote tier

Simple, generic and re-usable system

31

Software Available
Master tier

Cygwin
Linux Fedora Core 3
Stargate
MacOS X Tiger

Mote tier
Tmote Sky
MicaZ
Maxfor
Mica2
Imote-2 (in progress)

http://tenet.usc.edu

32

The Pleaides
Macroprogramming

System

Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, Ramesh Govindan,
Reliable and Efficient Programming Abstractions for Wireless Sensor Networks,

Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2007.

33

What is Macroprogramming?
Conventional sensornet programming

Node-local program written in nesC

Compiled to mote binary

34

What is Macroprogramming?
Central program that specifies

application behavior

Node-local program written in nesC

Compiled to mote binary

Compiler

Runtime+

Simplifies programming by offloading concurrency, reliability, and
energy efficiency to the compiler and runtime

35

Change of Perspective
intint valval LOCAL;LOCAL;

void main() { void main() {
node_listnode_list all = all = get_available_nodesget_available_nodes(); ();
intint max = 0; max = 0;

for (for (intint i = 0, i = 0, nodenode n = n = get_nodeget_node(all(all, i); , i);
n != n != --1; 1;
n = n = get_nodeget_node(all(all, ++i)) { , ++i)) {

if (if (val@nval@n > max) > max)
max = max = val@nval@n; ;

} }
} }

Easily recognizable maximum
computation loop

36

Pleiades: Contributions
The Pleaides programming language

Centralized as opposed to node-level
Automatic program partitioning and

control-flow migration
Minimizes energy

Easy-to-use and reliable concurrency
primitive
Ensures consistency under concurrent execution

Mote-based implementation
Evaluated several realistic applications

37

for

Pleiades Constructs
Node-local variable

Central variable

List of nodes in network

Network Node

Access node-local variable at nodeConcurrent-for loop

cfor execution corresponds to some
sequential execution of the loops

iterations (serializability)

cfor (int i = 0, node n = get_node(all, i);
n != -1;
n = get_node(all, ++i)) {

if (val@n > max)
max = val@n;

}
}

int val LOCAL;

void main() { void main() {
nodelistnodelist all = all = get_available_nodes(); ();
int int max = 0; max = 0;

38

Pleiades: Main Challenges
The Pleiades Compiler and

Runtime

ConcurrencyPartitioning
How to efficiently partition
code and migrate control-

flow during program
execution

How to achieve serializability

39

Program Execution
Control-flow migration as

well as data movement

Control-flow migration

Access node-local variables
from nearby nodes

val@n1 = a;
n3 = val@n2;

val@n3 = b;
val@n4 = c;

Nodecut
n1

n2

n3

n4

How does the compiler partition
code into nodecuts?

How does the runtime know where
to execute each nodecut?

void main() { void main() {
………………
val@n1 = a;
n3 = val@n2;
val@n3 = b;
val@n4 = c;
………

}

Sequential
Program

Uses the property that the location
of variables within a nodecut is

known before its execution

Attempts to find lowest
communication node, based on

location of variables in the nodecut
and topology information

40

Cfor Execution

start

1

2

3

6

4

5

end

all = get_available_nodes()

max = 0

n = get_first(all)

False True

False
True

max = temp@n

if(temp@n > max)

if(n!=NULL)

n = get_next(all)

start

1

2

3

6

4

5

end

all = get_available_nodes()

max = 0

n = get_first(all)

False True

False
True

max = temp@n

if(temp@n > max)

if(n!=NULL)

n = get_next(all)
Nodecut encountering a cfor
forks a thread for each
iteration

Approach: Distributed locking, with
multiple reader/single writer locks

Challenge: To ensure serializability
during concurrent execution

On completion, cfor
iterations send DONE

message to originating node

41

Implementation and Evaluation

Compiler built as an extension to the CIL
infrastructure for C analysis and
transformation

Pleiades compiler generates nesC code
Pleiades evaluated on TelosB motes
Experience with several applications:

pursuit-evasion, car parking, etc.

42

Pursuit-Evasion in Pleiades

Pleiades-PEG vs. nesC-PEG

0

0.5

1

1.5

2

2.5

Lines of Code Avg. Error Latency Message
Overhead

Pleiades-PEG

nesC-PEG

43

Summary

The Pleaides Compiler

ConcurrencyPartitioningAutomated nodecut generation and
dynamic control-flow migration

Programmer-directed concurrency
and compiler-generated locking

44

Which is Better?

Programming
Languages

Networking
The Tenet

Architecture

The Pleaides
Macroprogramming

System

45

Head-to-Head
Tenet Pleaides

Expressivity Low, by design High

Cuteness Low: Some interesting
protocol design

questions, but focus is
on simplicity

High: Lots of
interesting compiler

optimization questions,
consistency models

Time-to-
develop

~ 3 student years ~ 3 student years

Papers 2 3, potential for more

46

Head-to-Head
Tenet Pleaides

Missing
Components

Sleep scheduling,
security

Any-to-any routing,
energy management,

robustness

Maturity Seen two deployments,
have external users

Code still needs much
handholding

What I believe
in

√

What I like √

47

http://enl.usc.edu

