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Wireless Sensing: Applications

Lots of applications
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Wireless Sensing: Platforms

Lots of platforms

Motes: 8 or 16 bit 
sensor devices

32-bit embedded 
single-board 
computers
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Wireless Sensing Research

Processor Platforms Radios Sensors

Operating Systems
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Lots of research!



5

… some of it from our Lab
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But, there is a problem!

Six pages of 158 pages
of code from a wireless structural data

acquisition system called Wisden

Programming these 
networks is hard!
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Three Responses

Event-based programming on an OS that supports 
no isolation, preemption, memory management 
or a network stack is hard.

Therefore, we need OSes that support preemption 
and memory management, we need virtual 
machines, we need higher-level communication 
abstractions.

OS/Middleware
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Three Responses

Tiny sensor nodes (motes) are resource-
constrained, and we cannot possibly be re-
programming them for every application.

Therefore, we need a network architecture that 
constrains what you can and cannot do on the 
motes.

Networking
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Three Responses

Today, we’re programming sensor networks in the 
equivalent of assembly language.

What we need is a macroprogramming system, 
where you program the network as a whole, and 
hide all the complexity in the compiler and the 
runtime

Programming 
Languages
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Three Responses

Programming 
Languages

OS/Middleware NetworkingThe Tenet 
Architecture

The Pleaides
Macroprogramming

System
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The Tenet 
Architecture

Omprakash Gnawali, Ben Greenstein, Ki-Young Jang, August Joki, Jeongyeup Paek, 
Marcos Vieira, Deborah Estrin, Ramesh Govindan, Eddie Kohler, 

The TENET Architecture for Tiered Sensor Networks,
In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (Sensys), November 2006. 
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The Problem
Sensor data fusion within the network

… can result in energy-efficient implementations

But implementing collaborative fusion on the 
motes for each application separately
… can result in fragile systems that are hard to program, 

debug, re-configure, and manage

We learnt this the hard way, through many trial 
deployments 
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An Aggressive Position
Why not design systems without sensor data 

fusion on the motes?

A more aggressive position: Why not design an 
architecture that prohibits collaborative data 
fusion on the motes?

Questions:
How do we design this architecture?
Will such an architecture perform well?

No more on-mote 
collaborative fusion
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Tiered Sensor Networks

Motes
Low-power, short-range radios
Contain sensing and actuation

Masters
32-bit CPUs (e.g. PC, Stargate)
Higher-bandwidth radios
Larger batteries or powered

Enable flexible deployment 
of dense instrumentation

Provide greater network 
capacity, larger spatial reach

Many real-world sensor network 
deployments are tiered

Real world deployments at,
Great Duck Island (UCB, [Szewczyk,`04]),
James Reserve (UCLA, [Guy,`06]),
Exscal project (OSU, [Arora,`05]),
…

Future large-scale sensor network 
deployments will be tiered
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Tenet Principle

Multi-node data fusion functionality and multi-node 
application logic should be implemented only in the 
master tier. The cost and complexity of implementing 
this functionality in a fully distributed fashion on motes 
outweighs the performance benefits of doing so.

Aggressively use tiering to simplify system !
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and may return responses

Tenet Architecture

Motes process data, 

No multi-node fusion at the mote tier

Masters control motes

Applications run on masters, 
and masters task motes
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What do we gain ?
Simplifies application development

Application writers do not need to write or debug 
embedded code for the motes
– Applications run on less-constrained masters
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What do we gain ?
Enables significant code re-use across 

applications

Simple, generic, and re-usable mote tier
– Multiple applications can run concurrently with 

simplified mote functionality

Robust and scalable network subsystem
– Networking functionality is generic enough to support 

various types of applications
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More bits communicated than necessary? Communication over longer hops?

Challenges

Fusion

Not an issue
Typically the diameter of the mote tier 
will be small
Can compensate by more aggressive 
processing at the motes

In most deployments, there is a 
significant temporal correlation 

Mote-local processing can achieve 
significant compression

… but little spatial correlation 
Little additional gains from mote tier 
fusion

Mote-local processing provides 
most of the aggregation benefits.

The costs will be small, as we shall see…
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System Overview

Tasking Subsystem Networking Subsystem

Tasking
Language Task Parser Tasklets and 

Runtime
Reliable

TransportRouting Task 
Dissemination

Tenet System

How to disseminate tasks 
and deliver responses?How to express tasks?
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Tasking Language
Linear data-flow language allowing flexible 

composition of tasklets
A tasklet specifies an elementary sensing, actuation, or 

data processing action
Tasklets can have several parameters, hence flexible
Tasklets can be composed to form a task

• Sample(500ms, REPEAT, ADC0, LIGHT) Send()

No loops, branches: eases construction and 
analysis
Not Turing-complete: aggressively simple, but supports 

wide range of applications

Data-flow style language natural for sensor data processing
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Task Composition
CntToLedsAndRfm

SenseToRfm

With time-stamp and seq. number

Get memory status for node 10

If sample value is above 50, send sample data, node-id and time-stamp

Wait Count Lights Send

Sample Send

CountStampTime SendSample

MemStats SendAddress NEQ(10) DeleteIf

Sample LT(50) DeleteATaskIf Address StampTime Send
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The Tenet Stack
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Application Case Study: PEG
Goal

Compare performance 
with an implementation 
that performs in-mote 
multi-node fusion

Pursuit-Evasion Game
Pursuers (robots) 
collectively determine 
the location of evaders, 
and try to corral them
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Mote-PEG vs. Tenet-PEG

Pursuer

Evader Detected

Re-task the motesTask the motes

Evader

Pursuer

Evader Detected

Evader

Leader Election

Leader

Mote-PEGTenet-PEG



26

Error in Position Estimate Reporting Message Overhead

PEG Results
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PEG Results

Latency is nearly identical

A Tenet implementation of an application can 
perform as well as an implementation with     

in-mote collaborative fusion
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N
W

Real-world Tenet deployment on 
Vincent Thomas Bridge

570 ft

120 ft

30 ft

Mote

Master

Ran successfully for 24 hours
100% reliable data delivery
Deployment time: 2.5 hours

Total sensor data received: 860 MB
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Interesting Observations

Fundamental mode
agrees with previously
published measurement

Faulty sensor!

Consistent modes
across sensors
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Summary

ApplicationsSimplifies application development

Networking SubsystemRobust and scalable network

Tasking SubsystemRe-usable generic mote tier

Simple, generic and re-usable system



31

Software Available
Master tier

Cygwin
Linux Fedora Core 3
Stargate
MacOS X Tiger

Mote tier
Tmote Sky
MicaZ
Maxfor
Mica2
Imote-2 (in progress)

http://tenet.usc.edu
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The Pleaides
Macroprogramming

System

Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, Ramesh Govindan, 
Reliable and Efficient Programming Abstractions for Wireless Sensor Networks,

Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2007.
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What is Macroprogramming?
Conventional sensornet programming

Node-local program written in nesC

Compiled to mote binary
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What is Macroprogramming?
Central program that specifies 

application behavior

Node-local program written in nesC

Compiled to mote binary

Compiler

Runtime+

Simplifies programming by offloading concurrency, reliability, and 
energy efficiency to the compiler and runtime
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Change of Perspective
intint valval LOCAL;LOCAL;

void main() { void main() { 
node_listnode_list all = all = get_available_nodesget_available_nodes(); (); 
intint max = 0; max = 0; 

for (for (intint i = 0, i = 0, nodenode n = n = get_nodeget_node(all(all, i); , i); 
n != n != --1; 1; 
n = n = get_nodeget_node(all(all, ++i)) { , ++i)) { 

if (if (val@nval@n > max) > max) 
max = max = val@nval@n; ; 

} } 
} } 

Easily recognizable maximum 
computation loop
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Pleiades: Contributions
The Pleaides programming language

Centralized as opposed to node-level
Automatic program partitioning and                 

control-flow migration
Minimizes energy

Easy-to-use and reliable concurrency             
primitive
Ensures consistency under concurrent execution

Mote-based implementation
Evaluated several realistic applications
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for

Pleiades Constructs
Node-local variable

Central variable

List of nodes in network

Network Node

Access node-local variable at nodeConcurrent-for loop 

cfor execution corresponds to some
sequential execution of the loops 

iterations (serializability)

cfor (int i = 0, node n = get_node(all, i); 
n != -1; 
n = get_node(all, ++i)) { 

if (val@n > max) 
max = val@n; 

} 
} 

int val LOCAL;

void main() { void main() { 
nodelistnodelist all = all = get_available_nodes(); (); 
int int max = 0; max = 0; 
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Pleiades: Main Challenges
The Pleiades Compiler and 

Runtime

ConcurrencyPartitioning
How to efficiently partition 
code and migrate control-

flow during program 
execution

How to achieve serializability
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Program Execution
Control-flow migration as 

well as data movement 

Control-flow migration

Access node-local variables 
from nearby nodes

val@n1 = a;
n3 = val@n2;

val@n3 = b;
val@n4 = c;

Nodecut
n1

n2

n3

n4

How does the compiler partition 
code into nodecuts?

How does the runtime know where 
to execute each nodecut? 

void main() { void main() { 
………………
val@n1 = a;
n3 = val@n2;
val@n3 = b;
val@n4 = c;
………

} 

Sequential 
Program

Uses the property that the location 
of variables within a nodecut is 

known before its execution

Attempts to find lowest 
communication node, based on 

location of variables in the nodecut
and topology information
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Cfor Execution

start

1

2

3

6

4

5

end

all = get_available_nodes()

max = 0

n = get_first(all) 

False True

False
True

max = temp@n

if(temp@n > max)

if(n!=NULL)

n = get_next(all) 

start

1

2

3

6

4

5

end

all = get_available_nodes()

max = 0

n = get_first(all) 

False True

False
True

max = temp@n

if(temp@n > max)

if(n!=NULL)

n = get_next(all) 
Nodecut encountering a cfor 
forks a thread for each 
iteration

Approach: Distributed locking, with 
multiple reader/single writer locks

Challenge: To ensure serializability 
during concurrent execution

On completion, cfor 
iterations send DONE 

message to originating node
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Implementation and Evaluation

Compiler built as an extension to the CIL 
infrastructure for C analysis and     
transformation

Pleiades compiler generates nesC code
Pleiades evaluated on TelosB motes
Experience with several applications:  

pursuit-evasion, car parking, etc.
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Pursuit-Evasion in Pleiades

Pleiades-PEG vs. nesC-PEG
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Summary

The Pleaides Compiler

ConcurrencyPartitioningAutomated nodecut generation and 
dynamic control-flow migration

Programmer-directed concurrency 
and compiler-generated locking
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Which is Better?

Programming 
Languages

Networking
The Tenet 

Architecture

The Pleaides
Macroprogramming

System
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Head-to-Head
Tenet Pleaides

Expressivity Low, by design High

Cuteness Low: Some interesting 
protocol design 

questions, but focus is 
on simplicity

High: Lots of 
interesting compiler 

optimization questions, 
consistency models

Time-to-
develop

~ 3 student years ~ 3 student years

Papers 2 3, potential for more
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Head-to-Head
Tenet Pleaides

Missing 
Components

Sleep scheduling, 
security

Any-to-any routing, 
energy management, 

robustness

Maturity Seen two deployments, 
have external users

Code still needs much 
handholding

What I believe 
in

√

What I like √
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http://enl.usc.edu


