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Abstract- This paper presents a detailed empirical study and analyti-
cal derivation of voltage wave-form and energy dissipation of global
lines driven by CMOS drivers. It is shown that at high clock frequencies
where the output voltage at the termination point of the transmission line
may not reach its steady state value during the clock period, it is possible
to reduce energy dissipation while meeting a DC noise margin by driver
sizing. This is in sharp contrast with the steady state analysis, which
states that driver size has no impact on the energy dissipation per output
change. In addition, we propose a new design metric which is the prod-
uct of energy, delay and some measure of ringing in lossy transmission
lines. In particular, this paper provides closed-form expressions for the
energy dissipation, 50% propagation delay and the percentage of maxi-
mum undershoot when the circuit exhibits an under-damped behavior.
This metric is used during the driver sizing problem formulation for min-
imum energy-delay-ringing product.

1. Introduction

New Advances in CMOS technologies has tremendously
improved the integration capability and the speed of operation
and reduced the amount of energy consumed per signal transi-
tion. Technology scaling with 30% reduction in minimum feature
size per generation results in: (1) gate delay reduction by 30%,
(2) doubling of the number of transistors that fit in the same sili-
con area (3) energy reduction per transition by 30% to 65%
depending on the degree of accompanying supply voltage scal-
ing. These technology-induced improvements, coupled with
advances in circuits and microarchitecture design, are expected to
continue to support and to sustain the Moore’s law until year
2014 [1].

The interconnect structure of a one-billion transistor die will
deliver signal and power to each transistor on the chip, provide
low-skew and low-jitter clock to latches, flip-flops and dynamic
circuits, and also distribute data and control signals throughout
the chip [2]. Providing the required global connectivity through-
out the whole chip demands long on-chip wires that introduce
large loading effects on the drivers. These global wires should
deliver high frequency signals (presently at approximately 1.5-
2.5GHz) to various circuits. This implies that global wires exhibit

transmission line effects. So far, the well-known 0.5C V? model
has been used as an interconnect energy model, where C includes
the capacitance of the interconnect and the capacitance of the
both, the driver and the driven circuits and V is the supply voltage
level. This model, however, fails to accurately predict the inter-
connect energy dissipation in the current range of clock frequen-
cies, where the signal transients do not usually settle to a steady
state value due to small clock periods [3].

Consider the circuit shown in Figure 1. If the output voltage
reaches the full supply rail level before the signal-level transition,
then the energy dissipation per output transition is equal to

0.5CV?. From the basic circuit theory, the output of the circuit
shown in Figure 1 is either under-damped or over-damped
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Fig. 1: A CMOS inverter driving RLC circuit

(cf- Figure 2). For the under-damped case, if the input starts to
change when the output is in the overshoot region, the total
energy dissipation per output transition will be larger than

0.5CV2.1f, on the other hand, the input changes when the output
is in the undershoot region, then the energy dissipation is less

than 0.5CV?. As for the over-damped case, the time-domain
behavior is simple due to the monotonic nature of voltage wave-
forms [4].

In this paper, we provide empirical evidence as well as
detailed closed-form analytical expressions for the energy dissi-
pation of a lossy transmission line which is driven by a CMOS
inverter and is terminated by a CMOS load. We show that this
circuit configuration exhibits behavior similar to the simple
example circuit depicted in Figure 1, and therefore, it is possible
to reduce energy dissipation, or a given clock frequency by driver
sizing. The effect of driver sizing is to change the output behavior
(from over-damped to under-damped or vice versa). By careful
selection of W/L ratio of the line driver, we may thus reduce the
overall energy dissipation of the line and line driver. This is
accomplished by forcing the input transition to initiate when the
output is in the undershoot region (for the under-damped case), or
by forcing the input transition to take place when the output has
met the DC noise margin, but not yet reached the steady state (for
over-damped case).
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Fig. 2: Under-damped and over-damped response

Of course, there are critical design metrics that need to be
taken into consideration during the driver sizing, such as propa-
gation delay and the ringing. We, therefore, present a driver siz-
ing technique that minimizes energy-delay-ringing product.
Section 2 gives an overview of a second-order RLC circuit, RLC-
7, that accurately models the frequency response of a lossy trans-



mission line over a wide range of frequencies. Section 3 dis-
cusses the voltage and energy characteristics of an interconnect
driven by CMOS inverter and the dominant transistor and inter-
connect parameters that will affect the voltage and energy dissi-
pation. Section 4 gives a new methodologies to find closed-form
expressions for the energy dissipation, 50% propagation delay
and the percentage of maximum undershoot when the circuit
exhibits an under-damped behavior. This metric is used during
the driver sizing problem formulation for minimum energy-
delay-ringing product in 0.18um technology [5]. Section 5
shows the results. Finally, conclusions are provided in Section 6.

2. Equivalent Model for Lossy Transmission
Line

At the current clock frequencies, the propagation delay of a sig-
nal traveling through the chip global wires is comparable to its
time of flight. In other words, the line length is comparable to
the propagated signal wave-length, A, which is on the order of
0.6-2.1cm. This implies that transmission line properties at the
interconnect must be accounted for [6]. Solutions to Maxwell’s
equations for the electric and magnetic fields around two paral-
lel conductors (one carrying the signal, the other acting as the
current return path) provide the current and voltage wave-forms.
The solution is completely determined in terms of the character-
istic impedance, Z,, and the propagation constant,y, where:

Z, = r+5L and v= J(r+sl)-cs (€))]
cs

and r, [, and c are line resistance, inductance, and capacitance per unit
length of the interconnect line, respectively. Consider a single lossy
transmission line which is driven by a CMOS inverter as shown
in Figure 3. The driving point impedance of this transmission
line is obtained by using the voltage and current wave-form
resulting in the following equations at the input:
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where h is the line length. In CMOS VLSI circuits, the load
impedance, Z;, is normally a capacitive load which can be writ-
ten as 1/sC;. This is because the interconnect normally drives a
CMOS circuit element whose input impedance is purely capaci-
tive. According to Eq.(2), the input impedance of a transmission
line is a non-linear function of the frequency. Unfortunately,
direct substitution of this non-linear expression into the energy
equation (which is the integral of the voltage-current product)
does not yield a closed-form expression for the energy dissipa-
tion of the lossy transmission line. Yet, it is possible to simplify
Eq.(1) and obtain an accurate expression for the energy dissipa-
tion as described by the following observation.

2.1 First-Order Truncation

If the transitions of the input wave-form are sufficiently spaced
apart so as to allow the output wave-form to come very close to
its steady state response, then the total energy delivered by the
input source can be obtained by using the driving-point imped-
ance of the circuit evaluated at low frequencies. This observa-
tion is utilized here to simplify Eq.(2). We approximate tanh(...)
at low frequencies by expanding its Taylor expansion around
s=0 and truncating higher order terms. The first order Taylor
expansion of tanh(yh) is Yh. This leads to the following approxi-
mate rational function [4]:
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Fig. 3: A lossy transmission line driven by a CMOS
inverter along with the circuit representation for an infinite
small segment 4X along the line
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where C;,, ,, is the total interconnect capacitance including the
area of fringing capacitance as well as the coupling capacitance
to neighboring lines. Using Eq. (3), a series RLC circuit is syn-
thesized as shown in Figure 4 where L,, and R, are defined as
follows:
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where R, is the line resistance and L;,, ,, is the total inductance
of the lossy line. L;,, . is calculated by summing self inductance

of the line and all mutual inductances between that line and
other lines considering the direction of the current flow through
the lines.

2.2 Second-Order Truncation

The second-order truncation of the Taylor series expansion of
tanh(yh) is [4]:

_ sinh(yh) 2yh
tanh('Yh)— COSh('Yh) 2+Yzh2
This leads to the following relationship [4]:

2470+ (thz L}

et
2+YH +(2—’—"——’—"——)
G

, for small values of Isl.

_ 1]
Z""‘x:_h B -CLS

It would be instructive and useful to drive a stable circuit
realization whose impedance is expressed by Eq.(5). It is easily
proven that for a lossy transmission line whose driving-point
impedance at lower frequencies is expressed by Eq.(5), a new
stable RLC-7x equivalent circuit realization with an identical
input impedance can be synthesized. The circuit structure is
depicted in Figure 4.b. C;£, C;F, and C;F are related to the actual
energy RLC-m model capacitances of the line and the load
through the following relationships [4]:
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Figure 5 shows the magnitude response of the driving-point

admittance of a lossy transmission line which is electromagneti-

cally coupled to a similar line [4]. The line electrical parameters
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Fig. 4: A lossy transmission line and its equivalent circuit
representations

are also indicated in Figure 5. First, the circuit is simulated
using star-HSPICE. Eq.(2) is then utilized and the magnitude
response of the admittance function is calculated. As indicated
in Figure 5, the results obtained by HSPICE and by Eq.(2) are
exactly the same and are indistinguishable from each other.

In the next step, the magnitude response of the driving-point
admittance of the equivalent RLC-7 circuit is calculated.
According to Figure 5, this circuit accurately represents the
driving-point admittance of a lossy coupled transmission line in
lower frequencies up to 32GHz.

Therefore, the energy calculations using the RLC-7 circuit
yield expressions that are exactly equal to those of the actual
coupled lossy line. Finally the magnitude response of the driv-
ing-point admittance of the equivalent RLC circuit is calculated
and compared with those of RLC-nt equivalent circuit and the
lossy coupled line, as is also shown in Figure 5. The RLC-7 cir-
cuit models the lossy line more accurately than the RLC circuit
in a broader range of frequencies.
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Fig. 5: The magnitude response of the driving-point admit-
tance of an electromagnetically coupled lossy transmission
line obtained using HSPICE simulation, using the direct sim-
ulation of Eq.(1), and by replacing the line with its equivalent
RLC-r circuit, and with its equivalent RLC circuit

Using the same second-order truncations for voltage transfer
function, which can be written as:
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Section 3 provides a discussion about how the energy, delay
and ringing of a circuit changes with driver sizing. Section 4

provides comprehensive analysis of delay and energy dissipa-
tion of the lossy transmission lines driven by CMOS inverters.

3. Output Voltage and Energy Dissipation as
a Function of Driver

Consider a transmission line which is driven by a CMOS
inverter and is terminated by a CMOS load. The output voltage
wave-form at the load varies significantly as a function of driver
W/L ratio. In practice, the output behavior may change from an
over-damped response towards an under-damped response. In
other words, although the steady state output voltage values are
the same, the transient wave-forms are drastically different
depending on the electrical parameters of the line and line
driver. Note that energy dissipation varies as a function of the
clock cycle time. If the output wave-form has not reached its
steady state at the clock edges, the amount of energy dissipation
in the clock cycle may be lower (if in the undershoot region) or
higher (if in the overshoot region, when exhibiting under-
damped behavior) compared to the steady state value of

0.5CV2.

V., variations for four different driver W/L ratios are shown

in Figure 6. Figure 7 shows the energy dissipation variation per
clock period for different driver W/L ratios.

Vout

1%
—_

L Tt S bl i e e e Al e A

I | T O N B

Y| 7 v |

o [ S R O H R D R I

% ;

-5 Sy A/ gy

[} I I I I | | | | |

RPN S VA4S e e C__ 1 _J_-_C_T-I1I__20

= 7 ;] | T T T T 1

g, / I | | I | I | | I

5 ) ) (R s i

5 [\ I | | | | | WiL=6 |,

2 LS /’T"’\”’T”T”’F”T”’\”’7%;}::%;’\
= — -

B I I I I I I I wios |

g a1 R e e A e A B T I

= | | | | | | | | | |

05 —4—— - — = —— A —— e ——f ———— - —— 4 — — ]

I I I I I I I I I I

0 1 1 1 1 1 1 1 1 1 |

0 01 02 03 04 05 06 07 08 09 1

Clock Period x10”

Fig. 7: Energy dissipation in a clock cycle as a function of
the clock period for four different driver W/L ratios

Therefore, by changing the W/L ratio of the driver we can
change the characteristics of the output voltage and thereby, the
amount of energy dissipation per clock period. There are three
crucial design metrics to consider:

1. Energy dissipation in a clock period
2. 50% propagation delay of V,

out
3. Degree of undershoot in an under-damped response which

should be less than the noise margin (in a low-to-high tran-
sition, the noise margin is approximately Vrl )



From Figure 6, we observe that the over-damped response
does not exhibit ringing, but exhibits a large delay. The under-
damped response has lower delay, but may cause DC noise mar-
gin violations. Nonetheless, the 50% propagation delay is not a good
metric for an under-damped system due to the existence of damped
oscillations. To take the effect of the circuit delay into account, we
propose a new metric. For the over-damped response since all
the wave-forms are monotonically rising or falling wave-forms,
the best performance metric is the energy-50% delay product.
However, for the under-damped response the delay must incor-
porate the settling time of the oscillations as well as the percent-
age of maximum undershoot for noise-margin violations. To
come up with a unique metric for both the under-damped and
over-damped responses, we use the energy-50% delay-
(I +undershoot%) product. Considering “I+undershoot%” as
ringing factor, we call the cost function, “EDR product”. Figure
8 shows the EDR product per clock cycle of an inverter driving
a lossy transmission line with a pure capacitive load termina-
tion. The small incremental positive slope of the EDR product
metric with respect to the W/L is due to the direct relationship
between the energy and the diffusion capacitance of the device.

As shown in Figure 8, EDR product changes for different
driver W/L ratios and also it is dependent to clock period accord-
ing to Figure 7. Figure 8 shows that for a determined intercon-
nect width, always there is an optimum driver W/L which
minimizes the EDR product. The key to minimize EDR product
is to find output wave-form and energy dissipation which will
be discussed in section 4.
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Fig. 8: EDR product variation per clock period for different
interconnect widths and driver W/L ratios

4. Driver Sizing for Optimum EDR Product

4.1 Analytical Derivation of Output Voltage and Energy
Dissipation

Authors of [4] attempted to find the optimum driver size for
minimizing the EDR product. However, because they could not
find a unified closed-form expression for energy, delay and ring-
ing, they were not able to obtain an analytical solution for the
optimum drive size. In contrast, in this paper, we provide a
closed-form driver sizing solution that minimizes the EDR prod-
uct.

Consider the circuit in Figure 3, which is composed of an
inverter driving a lossy transmission line. The load is another
CMOS gate that is connected to the output port of the lossy
transmission line. The electromagnetic coupling effects are
treated the same way as discussed in Section 2. Due to the
changes in the operation regions of the NMOS and PMOS tran-
sistors of the line driver during the low-to-high and high-to-low

transitions of the driver’s output, we must distinguish between
low-to-high and high-to-low transitions at the output. The
PMOS transistor is conducting and provides a low-impedance
conduction path from the supply to the load. During the high to
low transition at the output, the NMOS transistor is in the “ON”
position and no additional energy is transferred out of the power
supply.

We calculate the energy transferred out of the power supply
during a low-to-high transition. This energy is the total energy
dissipated per clock period of a CMOS gate that drives another
CMOS circuit through a lossy coupled transmission line. The
energy delivered by the power supply through the gate in a low-
to-high transition of the output is specified as follows:

T
Evgrar = |2 Vop ()1 (8)

where [I;,(t) is the current flowing from the power supply to the
load and through the PMOS transistor during the low-to-high
transition of the output. The current is obtained using the driv-
ing-point admittance of the circuit:

1%
I,(s) = %Ym(s) )

where Y;,(s) is the driving-point admittance seen from the power
supply to the source connection of the PMOS transistor of the
driver. Figure 9 shows the equivalent simplified model of the
circuit shown in Figure 3.
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Fig. 9: Equivalent circuit for the transmission line driven
by a CMOS inverter

Considering C; ;;#=C+Cyp if we write the transfer func-
tion of the circuit, we have:
(8) a2s2 +a;s+ag

Vour _
= (10)

Vin(®) b3s3 + b2s2 +bys+b,

where:
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From Eq.(10) it is seen that the system is represented using a
third-order transfer function equation. It is hard to derive a
closed-form expression for energy and delay of a such a system.
On the other hand, for different interconnect lengths and driver
W/Ls, the output voltage of the circuit behaves like a second-
order circuit over the frequency range of interest. Several exper-
iments using practical geometrical values of an interconnect and



line driver in CMOS VLSI circuits prove that the magnitude of
b3s3 appeared in the transfer function is small compared to other

coefficients during frequencies of interest. The results are
shown later. Then, we can neglect the effect of b3 and use the

approximation as shown below:

2
V,u(8) _ a,s” +as+ag
Vi, ()

: an
bys™ + b s+ b,

Consequently, we can approximate the third-order circuit
with a second order circuit and find closed-form expressions for
the output wave-form and the energy of the system. This
approximation follows the circuit behavior very well in deep
sub-micron technologies. As an example, Figure 10 shows the
approximated output wave-forms for two different lengths and
driver W/Ls, when we apply step function to the input of the
driver. For different interconnect lengths and driver W/Ls, the
average error between actual output and approximated output
wave-forms is shown in Figure 11. The errors between real out-

put voltage (V,,,,) and approximated output voltage (V*ou,) are
calculated as below:
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Fig. 10: The comparison between real output voltage and
approximated one for both under-damped and over-
damped cases

The average error for all the data from 2050 simulation
results is 0.93% in 3 different frequency ranges, 1GHz,
1.66Ghz, and 2GHz. The maximum error was 3.4%. Therefore,
instead of solving the problem as a third order transfer function,
we can indeed use the equivalent second-order formulation and
find the output wave-form. Similarly for /;,, we have:

1) dys’+dys +dys

Vin$) b5’ 4 bys” + b s+ by

13)

(CH+CHs+1 V()
Vo ()

int

E 2
Ly (C3+Cs R

E 2 E
L;,Cos +R;, Cys+1

where:
E E _E E _E_E
dy = L, (Cy 4irCo + € 4igfC3 + C5C3)
E E _E E _E_E
dy = Ry, (Cy 4iCo + €y 4iyC3 + €5 C3)
E E
dp = Cpap+ G

If we substitute the approximated transfer function in
Eq.(11) in Eq.(13), we obtain:

Iin(s) _
Vin(s) -

2
dys”+d;s

. (14)
bys™+bs+b,

At this point, we have found equivalent second order equa-
tions for both 7;, and V,,,. Then based on equations (11) and

(14), the closed-form expressions for /;, and V,,; are as follows:

A. Over-damped Response
V(D) = Vpp(1+e ¥ (k;sinh (1) + kycosh(a,1))) (15)

Energy = (Cf,diff+ Cf) VéD— VéD - efm(k3 sinh () + k,cosh(,1))

where:

d,rd;o
Ay o4 o) f - (2_1 k=2(1_2)
kl = qu(O)n(a—z—a)—a—z) 2 a, ('On a 3 o, d2 (l)n

by by 22
ky = —d, mn=J;2 0t=2—b2 W, = Jjo -,

a;, b; and d; are coefficients of the transfer functions.
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Fig. 11: Average error between real output wave-form and
approximated wave-form

B. Under-damped Response

V, (1) = V(1 +e “ (k sin(@)r) + kycos (@) (16)

Energy = (Cf,dl-ff+ CV =V - € (kysin(w,t) + kycos (@,1))

where the expressions k;, kp, k3 ky @n o are the same as

described above and
(2 2 2
0, = ,j0,-o

4.2 Analytical Derivation of Delay and Ringing

In the case of under-damped, we have ringing. To find the opti-
mum point in EDR product, we need to find the 50% delay and
ringing, too. Per reference [7], 50% delay can be calculated by
computing the first four moments of the voltage transfer func-
tion, accurately. The first four moments of the voltage transfer
function are:

a7

D D D
my = 1, my = _(Rintc3 +Rds(cl,diff+ C3D
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my =mp —C3 (Lint+RdsRintC1,diff)

D D D
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D 2
+Rint(RdsC1, diff) }

Using these moments iin reference [7] delay equations, we can
find an accurate value for 50% propagation delay.

There is no ringing for over-damped case, while the ringing
of the under-damped response, at the point the output wave-
form reaches its first minimum, is given by:

4T
Vout(uT)

Ringing = 1 + ———— (18
VDD

4.3 Driver Sizing for Optimum EDR Product
Using equations (15)-(18), we can calculate the EDR product for
a circuit. Consider Ry=kg/Wp and Cyp=kcWp, where kg and k¢
are constants that are dependent on the technology, and Wp, is
the driver size. The optimum driver sizing solution is solved by
solving the following non-linear equation:

d

EDRP) = 0 19
d(WD)( ) 19)

5. Experimental Results

Comparison between our analytical predictions for delay and
energy with HSPICE simulations are reported in Figures 12 and
13, respectively. From these experiments, it can be seen that for
different interconnect widths and driver sizes, our delay equa-
tion exhibits very high accuracy (i.e., only 1.7% average error)
and that the energy equation shows a mere 4.3% average error.
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Fig. 12: The comparison between 50% propagation delay

and the obtained formulation for both under-damped and
over-damped cases

6. Conclusion

This paper presented accurate expressions for the interconnect
energy dissipation and propagation delay in high performance
ULSI circuits. We showed that at high clock frequencies, where
the output voltage at the termination point of a transmission
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Fig. 13: The comparison between real energy and approxi-
mated one for both under-damped and over-damped cases

line, does not reach its steady state value during the clock
period, it is possible to reduce energy dissipation while meeting
a DC noise margin by driver sizing. It was shown that this phe-
nomenon is mostly due to the voltage behavior of the transmis-
sion line at its termination point which may correspond to either
under-damped or over-damped behavior. More precisely, if the
clock period is chosen such that the output voltage for the
under-damped case is in its overshoot region, then energy dissi-
pation per transition in the clock cycle will be higher than

0.5CV?. On the other hand, if the output voltage is in the under-
shoot region when the clock changes, the energy dissipation per

transition in the clock cycle will be lower than 0.5CV?. Of
course for the over-damped case, energy is always less than or

equal to 0.5CV?. In addition, we propose a new design metric
which is the product of energy, delay, and ringing in lossy trans-
mission lines. This metric is used during the driver sizing prob-
lem formulation.
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