EMBEDDING MESHES INTO THE STAR-CONNECTED CYCLES INTERCONNECTION NETWORK

MARCELO MORAES DE AZEVEDO, NADER BAGHERZADEH
Department of Electrical and Computer Engineering – University of California – Irvine, CA 92717

SHAHRAM LATIFI
Department of Electrical and Computer Engineering – University of Nevada – Las Vegas, NV 89154

ABSTRACT

The star-connected cycles (SCC) graph was recently proposed as an attractive interconnection network for parallel processing, using a star graph to connect cycles of nodes. This paper presents embeddings of p-dimensional meshes into an n-dimensional SCC graph ($1 \leq p \leq n$), which have load 1, expansion 1, and dilation ranging from 1 to $3 + 2 [(n - 1)/2] + 2 [n/4]$ (the dilation varies among mesh dimensions). We show that, despite the fact that the dilation of our embeddings increases with n, a small communication slowdown can be obtained if high-bandwidth links are used within the cycles of the SCC graph.

KEYWORDS

Interconnection networks, mesh embedding, parallel processing, star-connected cycles graph.

INTRODUCTION

The star graph is considered an interesting interconnection network for parallel processing, featuring smaller degree and diameter than a hypercube of comparable size (Akers et al., 1987). However, star graphs pose some difficulties for implementing large scalable parallel computers, which is due to their variable-degree topology. A bounded-degree variant of the star graph, which is referred to as the star-connected cycles (SCC) graph, was recently introduced to overcome such difficulties (Latifi et al., 1993). SCC graphs require only three I/O ports per node, are suitable for area-efficient VLSI layouts, can efficiently execute algorithms such as broadcasting, and capture many of the attractive characteristics of star graphs (Latifi et al., 1995).

This paper presents a technique by which SCC graphs can run a broad class of algorithms originally devised for mesh-connected parallel computers (e.g., numerical analysis, image processing, sorting, and matrix algorithms). We do so by simulating a p-dimensional mesh into an n-dimensional SCC graph via an embedding. Through the remainder of this section, we give general definitions of embeddings and their related parameters.

Definitions

Let G_p be a p-dimensional graph with hierarchical structure, such that G_p+1 is obtained recursively from c_p copies of G_p. Several graphs belonging to the class of Cayley graphs have this recursive
decomposition property, such as the hypercube and the star graph (Akers and Krishnamurthy, 1989). The links connecting the c_p copies of G_p that exist within G_{p+1} are referred to as $(p + 1)^{\text{th}}$-dimension links. We denote the set of nodes and the set of links of G_p by $V(G_p)$ and $E(G_p)$, respectively. An embedding of G_p into H_n, which we denote by $F : G_p \mapsto H_n$, is a mapping of $V(G_p)$ into $V(H_n)$ and of $E(G_p)$ into paths of H_n. G_p and H_n are respectively referred to as the guest and the host of F (Leighton, 1992). The node image of F is $F(G_p) = \{ F(u) : u \in V(G_p) \}$. The load of F is the maximum number of nodes of G_p that are mapped to any single node of H_n, and is denoted by $\lambda(F)$. The expansion of F is $X(F) = |V(H_n)|/|V(G_p)|$. The dilation of F is $d(F) = \max\{ \text{dist}_{H_n}(F(u), F(v)) : (u, v) \in E(G_p) \}$, where dist$_{H_n}(a, b)$ is the distance in H_n between two vertices a and b of H_n. The dilation of F along the jth dimension of G_p is $d_j(F) = \max\{ \text{dist}_{H_n}(F(u), F(v)) : (u, v) \in E_j(G_p) \}$, where $E_j(G_p)$ denotes the set of jth-dimension links of G_p, $1 \leq j \leq p$. Hence, $d(F) = \max\{ d_j(F) : 1 \leq j \leq p \}$. F is a variable-dilation embedding if for at least two different dimensions j, k of G_p, $d_j(F) \neq d_k(F)$. The dilation vector of F is $d(F) = [d_1(F), d_2(F), \ldots, d_p(F)]$. The average dilation of F is:

$$d_{\text{avg}}(F) = \frac{1}{p} \sum_{j=1}^{p} d_j(F)$$ (1)

BACKGROUND

The Star Graph (S_n)

An n-dimensional star graph (S_n) contains $n!$ nodes which are labeled with the $n!$ possible permutations of n distinct symbols. A node $\pi = p_1p_2 \ldots p_n$ is connected to $(n - 1)$ distinct nodes, which are respectively labeled with permutations $\pi_i = p_1p_2 \ldots p_{i-1}p_ip_{i+1} \ldots p_n$, $2 \leq i \leq n$ (i.e. π_i’s label is obtained by exchanging the first and the i^{th} symbol of π’s label) (Akers et al., 1987; Akers and Krishnamurthy, 1989). The link connecting π and π_i is an i^{th}-dimension link of S_n.

The Star-Connected Cycles Graph (SCC_n)

An n-dimensional SCC graph (SCC_n) is obtained by replacing each node of S_n with a ring of $(n - 1)$ nodes, namely a supernode. The connections between nodes inside the same supernode are referred to as local links. Each supernode is connected to $(n - 1)$ adjacent supernodes, using lateral links according to the topology of S_n. Figure 1 shows SCC_4. Although not shown in Fig. 1, we assume that an i^{th}-dimension lateral link is labeled i. The nodes in each ring are identified by a label (i, π), where $2 \leq i \leq n$ and π is a permutation of n symbols (in this paper, we use as symbols the integers $\{1, 2, 3, \ldots, n\}$). Then, two nodes (i, π) and (i', π') are connected by a link $((i, \pi), (i', \pi'))$ in SCC_n iff either: 1) $(i, \pi), (i', \pi')$ is a local link, i.e. $\pi = \pi'$ and $\min(|i - i'|, n - 1 - |i - i'|) = 1$, or 2) $(i, \pi), (i', \pi')$ is a lateral link, i.e. $i = i'$ and π differs from π' only in the first and i^{th} symbols, such that $\pi(1) = \pi'(1)$ and $\pi(i) = \pi'(i)$ ($\pi(1)$). SCC_n is a regular, vertex-symmetric graph containing $|V(SCC_n)| = (n - 1) \cdot n!$ nodes. The degree of SCC_n is $\delta(SCC_n) = n - 1$ (for $n \leq 3$), and $\delta(SCC_n) = 3$ (for $n \geq 4$). The diameter of SCC_n is (Latifi et al., 1993):

$$\phi(SCC_n) = \begin{cases} 6, & \text{if } n = 3 \\ \frac{1}{2} \left[\frac{n - 1}{2} \right]^2 + \frac{3(n - 1)}{2} + 2 \left[\frac{n}{2} \right], & \text{if } n \neq 3 \end{cases}$$ (2)

Basic Considerations about Routing in SCC

Routing between two nodes (i, π) and (i_d, π_d) in SCC_n is equivalent to routing from (i, π_d) to (i_d, π_1), where $\pi_d = \pi_i^{-1}\pi_d$; $\pi_1 = 123 \ldots n$, and π_d^{-1} is the inverse or reciprocal of permutation π_d, such that $\pi_d \cdot \pi_d^{-1} = \pi_1$ (Akers and Krishnamurthy, 1989; Latifi et al., 1993).
Fig. 1: The SCC_n graph

A routing algorithm that finds the shortest path between two nodes (i, π_i) and (i_d, π_d) in SCC_n is described in (Latifi et al., 1995). Such an algorithm computes a path $P(\ell_1 \mapsto \ell_f)$, which alternates between intracycle and intercycle routing (these are respectively accomplished by local and lateral links). The ordered sequence of lateral links within $P(\ell_1 \mapsto \ell_f)$ is denoted by $R(\ell_1 \mapsto \ell_f) = (\ell_1, \ell_2, \ldots, \ell_f)$. Hence, starting at supernode π_i, $P(\ell_1 \mapsto \ell_f)$ visits supernodes $\pi_i, \ell_1, \pi_j, \ell_2, \ldots, \pi_d$. $P(\ell_1 \mapsto \ell_f)$ has a cost of:

$$|P(\ell_1 \mapsto \ell_f)| = f + d(i, \ell_1) + \sum_{j=1}^{f-1} d(\ell_j, \ell_{j+1}) + d(\ell_f, i_d),$$

where $d(i, j) = \min(|i - j|, n - 1 - |i - j|)$ denotes the number of local links that are traversed between the i^{th} and the j^{th} nodes of a supernode.

EMBEDDING AN n-DIMENSIONAL MESH INTO SCC_n

In this section, we consider the embedding of an n-dimensional mesh (M_n) into SCC_n. Later, we show how the results of this section can be adapted to produce embeddings of meshes having fewer than n dimensions.

Mapping Technique

M_n is defined to be an n-dimensional mesh of size $|V(M_n)| = 2 \times 3 \times 4 \times \cdots \times (n-1)\times n \times (n-1)$. The nodes of M_n are labeled with an n-integer vector $\omega = m_1 m_2 \ldots m_n$, $0 \leq m_j < s_j$, where s_j is the width of M_n along its j^{th} dimension:

$$s_j = \begin{cases} j + 1, & \text{for } 1 \leq j \leq n - 1 \\ j - 1, & \text{for } j = n \end{cases}$$

Two nodes \(\omega = m_1, m_2 \ldots m_n \) and \(\omega' = m'_1, m'_2 \ldots m'_n \in V(M_n) \) are adjacent along the \(j \)th dimension of \(M_n \) if \(m_k = m'_k, \forall k \neq j \), and either \(m_j = m'_j + 1 \) or \(m_j = m'_j - 1 \). We assume that \(M_n \) does not have wrap-arounds.

The embedding of \(M_n \) into \(SCC_n \) is accomplished by Alg. 1, which maps a mesh node \(\omega = m_1, m_2 \ldots m_n \) onto an image SCC node \((i, \pi) = (i, p_1, p_2 \ldots p_n) \). Our algorithm is inspired by that proposed by Ranka et al. for embedding an \((n - 1)\)-dimensional mesh into \(S_n \) (Ranka et al., 1993).

\[
\text{meshToSCC}(i, \pi) = \left\{ \begin{array}{l}
\text{int } j, k, \text{ temp;}
\text{for } (j = 1; j \leq n; j = j + 1) \text{ } p[j] = j;
\text{for } (j = 1; j < n; j = j + 1)
\text{for } (k = 0; k < m[j]; k = k + 1) \{ \text{temp } = p[j - k];
\text{p[j - k]} = p[j - k + 1];
\text{p[j - k + 1]} = \text{temp; }
\}
\text{i } = m[n] + 2;
\}
\text{Alg. 1: Mapping of } \omega \in V(M_n) \text{ onto } (i, \pi) \in V(SCC_n)
\]

Algorithm 1 stores \(\omega \) and \(\pi \) in vectors \(m[n] \) and \(p[n] \), respectively. After initially setting \(\pi \) to \(12 \ldots n \), Alg. 1 processes the first \((n - 1)\) coordinates of \(\omega \) as follows. Let the transposition of the symbols occupying the \(r \)th and the \(s \)th positions in \(\pi \) be denoted in cyclic format by \((r s) \). Table 1 lists the transpositions used by Alg. 1 along the first \((n - 1)\) dimensions of the mesh. Note that if the \(j \)th coordinate of \(\omega \) is \(m_j \), then the \(j \)th iteration of the externally nested for loop selects only the first \(m_j \) transpositions of the sequence corresponding to dimension \(j \) (i.e., \((j (j + 1)), (j - 1) j, \ldots, (j - m_j + 1) (j - m_j + 2))\)). Finally, the \(n \)th coordinate of \(\omega \) (i.e., \(m_n \)) is directly mapped onto \(i \) via the assignment \(i = m_n + 2 \). Figure 2 shows the embedding of \(M_4 \) into \(SCC_4 \), which is produced by Alg. 1.

<table>
<thead>
<tr>
<th>Dimension ((j))</th>
<th>Sequence of transpositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1\ 2))</td>
</tr>
<tr>
<td>2</td>
<td>((2\ 3\ 1\ 2))</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(n - 1)</td>
<td>((n - 1\ n\ n - 2\ n - 1) \cdots (1\ 2))</td>
</tr>
</tbody>
</table>

Algorithm 1 embeds \(M_n \) into \(SCC_n \) with load 1 and expansion 1, which respectively ensures that: 1) the amount of processing load in the nodes of \(SCC_n \) is the same as in \(M_n \), and 2) no nodes in \(SCC_n \) are left unused. The bounded-degree topology of the \(SCC_n \) graph makes it difficult to obtain embeddings with small dilation (in fact, the dilation of our embedding of \(M_n \) into \(SCC_n \) grows with \(n \)). However, as discussed later, a small communication slowdown can still be achieved if the local links of \(SCC_n \) have high bandwidth in comparison to the lateral links.

Dilation

Before we can derive an expression for the dilation, a few definitions and lemmas are necessary. A path \(P(\ell_1 \leftrightarrow \ell_f) \) in \(SCC_n \) is normal if it uses a sequence of lateral links \(R(\ell_1 \leftrightarrow \ell_f) = (\ell_1, \ell_2, \ldots, \ell_f) \), such that \(d(\ell_k, \ell_{k+1}) = 1, \forall k, 1 \leq k < f \). Note that Eq. 3 reduces to \(|P(\ell_1 \leftrightarrow \ell_f)| = 2f - 1 + d(i, \ell_1) + d(\ell_f, i_d) \) if \(P(\ell_1 \leftrightarrow \ell_f) \) is normal.

Normal paths use a minimum number of local links. Unfortunately, the existence of a normal path
between two arbitrary nodes \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \) is not guaranteed. However, normal paths exist between the images of any two nodes \(\omega, \omega' \) which are adjacent along the \((n-1)\)th dimension of \(M_n \).

The following three lemmas give the distances between the images of two nodes \(\omega, \omega' \in V(M_n) \), respectively when: 1) \(\omega, \omega' \) are adjacent along the \(n \)th dimension of \(M_n \), 2) \(\omega, \omega' \) are adjacent along the \((n-1)\)th dimension of \(M_n \), and 3) \(\omega, \omega' \) are adjacent along the \(j \)th dimension of \(M_n \), \(j < n-1 \). Proofs for these lemmas are given in (Azevedo et al., 1995), and are not presented here due to space limitations.

Lemma 1 Let two nodes \(\omega, \omega' \in V(M_n) \) be adjacent along the \(n \)th dimension of \(M_n \), and let the images of such nodes, as computed by Alg. 1, be respectively \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \in V(SCC_n) \). \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \) are connected by a single local link in \(SCC_n \).

Lemma 2 Let two nodes \(\omega, \omega' \in V(M_n) \) be adjacent along the \((n-1)\)th dimension of \(M_n \), and let the images of such nodes, as computed by Alg. 1, be respectively \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \in V(SCC_n) \). \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \) are connected by a normal path of cost at most \(3 + 2 \lceil n/2 \rceil \), which contains a sequence of either 1 or 3 lateral links.

Lemma 3 Let two nodes \(\omega, \omega' \in V(M_n) \) be adjacent along the \(j \)th dimension of \(M_n \) (\(j < n-1 \)), and let the images of such nodes, as computed by Alg. 1, be respectively \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \in V(SCC_n) \). \(\langle i, \pi \rangle \) and \(\langle i', \pi' \rangle \) are connected by a (not necessarily normal) path of cost at most \(3 + 2 \lceil (n-1)/2 \rceil + 2 \lceil n/4 \rceil \), which contains a sequence of either 1 or 3 lateral links.

It becomes apparent from Lemmas 1, 2, and 3 that Alg. 1 produces a variable-dilation embedding of \(M_n \) into \(SCC_n \), which is characterized by the following theorem:

Theorem 1 Algorithm 1 produces a variable-dilation embedding \(F : M_n \rightarrow SCC_n \), which has load \(\lambda(F) = 1 \), expansion \(X(F) = 1 \), dilation \(d_j(F) \) along the \(j \)th dimension of \(M_n \), average dilation \(\overline{d}_e(F) \), and dilation \(d(F) \), where:

\[
d_j(F) = \begin{cases}
3 + 2 \left\lfloor \frac{n - 1}{2} \right\rfloor + 2 \left\lfloor \frac{n}{4} \right\rfloor, & \text{if } 1 \leq j < (n-1) \\
3 + 2 \left\lfloor \frac{n}{2} \right\rfloor, & \text{if } j = n - 1 \\
1, & \text{if } j = n,
\end{cases}
\]
\[d(F) = 3 + 2 \left\lfloor \frac{n - 1}{2} \right\rfloor + 2 \left\lfloor \frac{n}{2} \right\rfloor, \quad \text{and} \quad d_{av}(F) = \frac{1}{n} \sum_{j=1}^{n} d_j(F) \]

Table 2 lists the dilation vector and the average dilation of our embedding of \(M_n \) into \(SCC_n \), for \(3 \leq n \leq 7 \). Note that, among the embeddings depicted in Table 2, a smaller dilation is obtained along the \((n - 1)\)th-dimension of \(M_n \) than along dimensions 1 through \((n - 2)\), in the cases \(n = 5 \) and \(n = 7 \). This result is due to the use of normal sequences of lateral links (see Lemma 2).

| \(n \) | \(M_n \) | \(|V(M_n)|\) | Dilation vector \((d(F))\) | Average dilation \((d_{av}(F))\) |
|---|---|---|---|---|
| 3 | \(2 \times 3 \times 2 \) | 12 | \([5, 5, 1]\) | 3.67 |
| 4 | \(2 \times 3 \times 4 \times 3 \) | 72 | \([7, 7, 7, 1]\) | 5.50 |
| 5 | \(2 \times 3 \times 4 \times 5 \times 4 \) | 480 | \([9, 9, 9, 7, 1]\) | 7.00 |
| 6 | \(2 \times 3 \times 4 \times 5 \times 6 \times 5 \) | 3600 | \([9, 9, 9, 9, 9, 1]\) | 7.67 |
| 7 | \(2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 6 \) | 30240 | \([11, 11, 11, 11, 9, 1]\) | 9.29 |

Embedding p-Dimensional Meshes into SCC \((1 \leq p < n)\)

In what follows, we discuss how one can extend the technique described in the previous section to produce embeddings of \(p \)-dimensional meshes into \(SCC_n \), \(1 \leq p < n \).

We initially consider the case \(p = n - 1 \). Let \(M_{n-1}^{j,k} \) be the \((n - 1)\)-dimensional mesh obtained by unfolding \(M_n \) in snakelike order along dimensions \(j \) and \(k \). \(j \) and \(k \) are selected to produce a single dimension \(jk \) in \(M_{n-1}^{j,k} \), such that the width of \(M_{n-1}^{j,k} \) along \(jk \) is \(s_j \times s_k \). \(M_{n-1}^{j,k} \) has \((n - 1) \cdot n!\) nodes, and can be embedded with load 1 and expansion 1 into \(SCC_n \) as follows. We first transform the node labels of \(M_{n-1}^{j,k} \) into node labels of \(M_n \), according to the order chosen to unfold \(M_n \). Once that has been accomplished, Alg. 1 is used to produce an embedding whose dilation along dimension \(jk \) of \(M_{n-1}^{j,k} \) is \(\max(d_j,d_k) \). This is justified by the fact that nodes that are adjacent in \(M_{n-1}^{j,k} \) along dimension \(jk \) are originally adjacent in \(M_n \) along either dimension \(j \) or dimension \(k \). The dilation along any dimension \(\ell \) of \(M_{n-1}^{j,k} \), \(\ell \neq jk \), is as given by Theor. 1.

This reasoning can be immediately extended to the case \(p < n - 1 \). For example, an \((n - 2)\)-dimensional mesh can be obtained by unfolding \(M_{n-1}^{j,k} \) along any two dimensions, and so on. An example which depicts the embedding of \(M_3^{2,2} \) (i.e., a mesh of size \(6 \times 4 \times 3 \)) into \(SCC_4 \) is given in (Azevedo et al., 1995).

Communication Slowdown

In this section, we compare embeddings of \(n \)-dimensional meshes into SCC and star graphs. We estimate the communication slowdown of each particular embedding by taking into account its dilation and the bandwidth of the links of the host graph.

We note that our comparison evaluates embeddings which employ graphs of similar (but not equal) size. Namely, we compare: 1) our embedding of \(M_n \) into \(SCC_n \), where \(|V(M_n)| = |V(SCC_n)| = (n - 1) \cdot n! \), and 2) the embedding of \(\overline{M}_n \) into \(S_{n+1} \), where \(\overline{M}_n \) is an \(n \)-dimensional mesh of size \(|V(\overline{M}_n)| = |V(S_{n+1})| = 2 \times 3 \times \cdots \times (n + 1) = (n + 1)! \). We denote these embeddings respectively by \(F \) and \(\overline{F} \). \(\overline{F} \) is described in (Ranka et al., 1993), and has load 1, expansion 1, and constant dilation 3.
As explained in (Latifi et al., 1995), SCC graphs can use high-bandwidth parallel buses in the local links, at the expense of a minimum increase in the layout complexity. The layout of the lateral links, however, is characterized by similar wiring constraints found in high-dimensional networks such as the star graph and the hypercube. Hence, lateral links must often be implemented with narrower-bandwidth communication links.

Because local links have a dominant contribution to $d_j(F)$ when $1 \leq j < n$ (see Eq. 5, Lemma 2, and Lemma 3), F’s communication slowdown is largely minimized if high-bandwidth links are used within the supernodes. We denote the bandwidth of the local and lateral links of an SCC graph by $B_{loc}(SCC_n)$ and $B_{lat}(SCC_n)$, respectively, and define $\nu = B_{loc}(SCC_n)/B_{lat}(SCC_n)$. Although the links of S_{n+1} are constrained by a more complex layout than the lateral links of SCC_n, we assume in our comparison that the bandwidth of the links of S_{n+1} is also $B_{lat}(SCC_n)$.

An evaluation of the actual communication slowdown produced by either F or \hat{F} must take into account the bandwidth of the links in M_n and \hat{M}_n, respectively. Because our goal is to compare host graphs, it suffices to select a reference bandwidth for the links of M_n and \hat{M}_n (we choose $B_{lat}(SCC_n)$). We denote \hat{F}’s communication slowdown by $\eta(\hat{F})$, and use the estimate $\eta(\hat{F}) = \hat{d}(\hat{F}) = 3$. Because F is a variable-dilation embedding, we define $\eta_j(F)$ and $\eta_{avr}(F)$ to be respectively: 1) the communication slowdown produced by F along the jth dimension of M_n, and 2) the average communication slowdown produced by F. Given our previous assumptions, $\eta_j(F)$ and $\eta_{avr}(F)$ can be estimated by (Azevedo et al., 1995):

\[
\eta_j(F) = \begin{cases}
3 + \frac{2}{\nu} \left[\frac{n-1}{2} \right] + \frac{2}{\nu} \left[\frac{n}{4} \right], & \text{if } 1 \leq j < (n-1) \\
3 + \frac{2}{\nu} \left[\frac{n}{2} \right], & \text{if } j = n-1 \\
1/\nu, & \text{if } j = n
\end{cases}
\]

Table 3 compares estimates for the communication slowdown produced by embeddings of n-dimensional meshes into S_{n+1} and SCC_n. Values for $\eta_{avr}(F)$ are computed from Eq. 6, assuming that $\nu = n$. Such an assumption tries to reflect the fact that, as n grows, the size of both S_{n+1} and SCC_n increases rapidly, augmenting the layout complexity of the lateral links. As a consequence, the ratio ν is expected to increase as well. A more precise investigation on the dependence of ν with n lies outside the scope of this paper, and is the object of future research combining the VLSI layout and link bandwidths of the SCC graph. In fact, we suspect that ν actually grows at an even faster rate than the assumption $\nu = n$ adopted in this paper.

Table 3: Communication slowdown of embeddings of n-dimensional meshes into S_{n+1} and SCC_n

| n | \hat{F} into M_3 into S_4 | F into SCC_3 | $|V(S_{n+1})|$ | $|V(SCC_n)|$ | $\eta(\hat{F})$ | $\eta_{avr}(F)$ |
|-----|--------------------------------|-----------------|--------------|---------------|-----------------|-----------------|
| 3 | \hat{M}_3 into S_4 | M_3 into SCC_3 | 24 | 12 | 3 | 2.56 |
| 4 | \hat{M}_4 into S_5 | M_4 into SCC_4 | 120 | 72 | 3 | 3.06 |
| 5 | \hat{M}_5 into S_6 | M_5 into SCC_5 | 720 | 480 | 3 | 3.32 |
| 6 | \hat{M}_6 into S_7 | M_6 into SCC_6 | 5040 | 3600 | 3 | 3.36 |
| 7 | \hat{M}_7 into S_8 | M_7 into SCC_7 | 40320 | 30240 | 3 | 3.53 |

Table 3 indicates that SCC_n can be an attractive host for mesh embeddings, which is not immediately evident from the dilation figures shown in Table 2. As depicted in Table 3, SCC_n and S_{n+1} can in fact present similar performance as far as mesh embeddings are concerned. Other interesting criteria are used to compare SCC and star graphs in (Latifi et al., 1993; Latifi et al., 1995).
CONCLUSION

This paper presented an embedding of an n-dimensional mesh (M_n) into an SCC_n graph, which has load 1, expansion 1, and variable dilation (the dilation varies from 1 to $3 + 2[(n - 1)/2] + 2[n/4]$, according to the dimensions of the mesh). Our results indicate that both the dilation $d(F)$ and the average dilation $d_{avr}(F)$ of our embedding grow with n. From $n = 3$ to $n = 7$, for example, $d(F)$ grows from 5 to 11, while $d_{avr}(F)$ grows from 3.67 to 9.29. The dependency of $d(F)$ and $d_{avr}(F)$ on n is caused by the bounded-degree topology of the SCC graph and its routing characteristics. In contrast, n-dimensional meshes can be embedded into S_{n+1} with constant dilation 3 (Ranka et al., 1993).

The dilation $d(F)$ of our embedding is derived from a worst-case analysis, which reveals paths containing at most 3 lateral links and $2[(n - 1)/2] + 2[n/4]$ local links. Hence, lateral links have a fixed contribution to the dilation of the embedding, making our approach similar to that of (Ranka et al., 1993) in that respect. Noting that the topology of the SCC graph favors implementations using high-bandwidth buses in the local links, we showed that SCC and star graphs can achieve similar communication slowdowns when used as hosts for mesh embeddings.

An extension of our embedding of M_n into SCC_n was also presented in this paper, which addressed the more general case of embeddings of p-dimensional meshes into SCC_n, for $1 \leq p < n$.

REFERENCES

