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Abstract

Accurate branch prediction and instruction fetch predic-
tion of a microprocessor are critical to achieve high perfor-
mance. For a processor which fetches and executes multi-
ple instructions per cycle, an accurate and high bandwidth
instruction fetching mechanism becomes increasingly im-
portant to performance. Unfortunately, the relatively small
basic block size exhibited in many general-purpose applica-
tions severely limits instruction fetching. In order to achieve
a high fetching rate for wide-issue superscalars, a scalable
method to predict multiple branches per block of sequen-
tial instructions is presented. Its accuracy is equivalent to a
scalar two-level adaptive prediction. Also, to overcome the
limitation imposed by control transfers, a scalable method
to predict multiple blocks is presented. As a result, a two
block, multiple branch prediction mechanism for a block
width of 8 instructions achieves an effective fetching rate
of 8 instructions per cycle on the SPEC95 benchmark suite.

1 Introduction

The goal of a superscalar microprocessor is to execute
multiple instructions per cycle. Instruction-level parallelism
(ILP) available in programs can be exploited to realize this
goal [4]. Unfortunately, this potential parallelism will never
be utilized if the instructions are not delivered for decoding
and execution at a sufficient rate [9]. A high performance
fetching mechanism is required.

Conditional branches create uncertainty in fetching in-
structions, which can cause severe performance penalties if
not accurately predicted. Also, when a control transfer is
detected, its target address must be predicted in order to
avoid a stall. Even with perfect dynamic branch predic-
tion, predicting one branch per cycle drastically limits per-
formance, due to small basic block sizes. Multiple branch
predictions and multiple target addresses need to be pre-
dicted in a single cycle in order to overcome this limitation

and achieve a high fetching rate [10].
Researchers have shown how to accurately predict con-

ditional branches. Yeh and Patt introduced a two-level adap-
tive branch prediction. It uses previous branches’ history
to index into a Pattern History Table (PHT). They report a
97% branch prediction accuracy [14]. Calder and Grunwald
proposed the Next Line Set (NLS), which predicts the next
instruction cache line and set to fetch [1]. Both the PHT
and NLS were designed for a scalar processor and only at-
tempt to fetch one instruction per cycle. Yeh also showed
how to perform multiple branch prediction using the PHT
and a branch address cache [11]. Unfortunately, the cost
of this implementation grew exponentially. In this paper,
however, we present a scalable mechanism to perform mul-
tiple branch and multiple block prediction using the PHT
and NLS concepts.

Seznec et. al. [8] recently introduced an innovative way
to fetch multiple (two) basic blocks. Their idea is to always
use the current instruction block information to predict the
block following the next instruction block. Its accuracy is as
good as a single block fetching and requires little additional
storage cost. The major drawback, as the authors explain,
is that the prediction for the second block is dependent on
the prediction from the first block (the tag-matching is se-
rialized). Our scheme, however, is able to predict multiple
blocks in parallel without such a dependency.

A basic block is defined to be instructions between
branches, whether they are taken or not taken. We refer
to a block simply as a group of sequential instructions up to
a predefined limit, � , or up to the end of a line. Instructions
after the first control transfer in a block are not used. A line
of instructions refers to the group of instructions physically
accessed in the instruction cache. The size of a line may be
greater than or equal to the block width � .

We first present a method to predict multiple branches in
a single block of instructions. Then we present a method
to predict the addresses of two blocks in a single cycle.
Next, we evaluate the performance of predicting multiple
branches and blocks. Finally, we give cost estimates.



2 Multiple Branch Prediction

Yeh and Patt introduced a two-level correlated branch
prediction for conditional branches [12] capable of predict-
ing one branch per cycle. They also proposed a method for
multiple branch prediction [11]. Multiple branches can be
predicted in a single cycle by looking up an entry in the
PHT using the global history register and also looking up
the entries for the two possible outcomes (branch taken or
branch not taken) for the first prediction. If three predic-
tions are required, then four additional entries are looked
up. This process grows exponentially based on the number
of conditional branches predicted.

Although this method retains the accuracy of the orig-
inal scalar prediction, we have found that this exponential
lookup is not necessary and is wasteful. Our solution is
a scalable expansion of Yeh’s original two-level adaptive
branch prediction. All of his schemes involve finding pat-
tern history information to predict a single branch using a 2-
bit up/down saturating counter. We expand this pattern his-
tory to contain information not for one branch instruction,
but for an entire block of potential branch instructions. For
example, if eight instructions per block are being fetched,
a PHT entry will contain eight 2-bit counters, one for each
position in a block. One important difference is updating
the global history register (GHR) or branch history register
(BHR). Instead of being updated after the prediction of each
individual branch, it is updated after the prediction for the
entire block. For example, if three branches are predicted
not taken, not taken, taken, then the GHR/BHR is shifted to
the left three bits and a “001” inserted. All of Yeh’s orig-
inal variations may be expanded in this manner, except his
per-addr variation now becomes a per-block variation.

Figure 1 is a block diagram of a multiple branch pre-
diction fetching mechanism. While the instruction cache
is reading the current block of instructions, the instruction
fetch mechanism at a minimum must predict the index of
the next line to retrieve from the instruction cache. The
complete address may be determined later. Therefore, an
efficient method to predict target addresses is to use an NLS
table. We modify and expand it to be indexed by the in-
struction block address and contain target lines for an entire
block of instructions. Alternatively, a Branch Target Buffer
(BTB) may be used [6]. The BTB, however, is also modi-
fied to be indexed and checked against the instruction block
address and contain target addresses for an entire block of
instructions. The NLS or BTB may be viewed as � separate
tables accessed in parallel, which predict the target address
for each of the � possible branch exit positions. The actual
target address, if any, is selected at a later time. We call
an NLS or BTB which predicts targets for a whole block a
target array.

In addition, the branch type information is no longer con-
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Figure 1. Block diagram of a multiple branch
prediction fetching mechanism

tained in the NLS table, but in a separate block instruction
type (BIT) table. We have discovered that in superscalar
fetch prediction, knowing what type of instructions are in
a block is the most critical piece of information. Each BIT
entry contains two bits of information for each instruction in
a cache line. This BIT information may be pre-decoded and
contained in the instruction cache itself. Depending on im-
plementation considerations, a separate array with a faster
access time may be required. If a separate table is used, the
BIT table may be smaller than the number of lines in the
instruction cache at the expense of performance.

At a minimum, the BIT information for each instruction
in a fetch block must contain at least two bits to represent
that an instruction is either not a branch, a return instruc-
tion, a conditional branch, or other types of branches. If
we expand this to three bits per instruction, it can contain
additional information about conditional branches with tar-
gets adjacent to the current line, referred to as near-block
targets. The offset into the line may be quickly added with
a
�����

��� -bit adder as soon as the branch offset is ready. As a
result, near-block target addresses do not need to be stored
in the target array, and the size of the target array can be
reduced.

Given the starting position in the line fetched, BIT and
PHT block information, the instruction fetch control logic
uses the instruction type information to find the first uncon-
ditional branch or conditional branch predicted to be taken
based on its pattern history. The next line to be fetched is
then selected from a multiplexer whose input contains the
current line, previous line, following line, two lines after the
current line, the top of the return address stack (RAS) [5],
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and the � possible targets from branches in a block. The
BIT types and resulting prediction sources are summarized
in Table 1.

Table 1. BIT Types and Prediction Sources
Instruction Type Prediction Source

0 0 0 Non-branch Fall-through PC
0 0 1 Return Return Stack
0 1 0 Other branches Always use Target Array
0 1 1 Conditional branch, Target Array entry or Fall-

long target through, depending on PHT
1 0 0 Cond. branch, prev line Current line - line size
1 0 1 Cond. branch, same line Current line
1 1 0 Cond. branch, next line Current line + line size
1 1 1 Cond. branch, next line+1 Current line + 2 * line size

The processor should keep track of the target address of
each conditional branch that is predicted not taken. In the
case it was mispredicted, the correct block may be imme-
diately fetched the following cycle after branch resolution.
Otherwise, an additional cycle is required to read the target
address from the target array.

Table 2 is an example showing a line of instructions and
the result of prediction. The type of instruction, BIT infor-
mation code, and PHT entry values are given. The starting
position corresponds to the beginning of a block. The exit
position is where an instruction transfers control. For each
possible starting position, the exit position, next line select
prediction, target used for a misprediction, and the new pre-
diction used after a misprediction are shown. NLS( � ) indi-
cates that the target address for the exit position � is selected
from the NLS target array. For instance, if the starting po-
sition is 4, the exit position is 5 where a conditional branch
is predicted to be taken and the NLS at position 5 is used
for the target address. If the branch is mispredicted, the re-
turn address stack is used as the target for the next block.
Since the pattern history indicates a “second chance” bit,
the prediction will not change the next time the branch is
encountered.

3 Multiple Block Prediction

Once an instruction which transfers control is encoun-
tered, no more instructions in a block may be used. Another
cycle is required to fetch from a different line in the instruc-
tion cache. This is a barrier to fetching a large number of
instructions in a single cycle. Hence, what is needed is the
capability to fetch multiple blocks at the same cycle. The
problem is determining which blocks to fetch each cycle.

Fetching two blocks per cycle requires predicting two
lines per cycle. In order to accomplish this prediction com-
pletely in parallel, only the address of the two lines currently
being fetched may be used as a basis for prediction. Us-
ing the PC from the last block currently being fetched, the

first line can be predicted using methods from the previous
sections. The difficulty arises in predicting the following
(second) line. Yeh and Patt used a branch address cache to
give all possible starting basic block addresses based on the
current PC [11]. Depending on the branch prediction, the
appropriate addresses were selected. The drawback again
is the branch address cache grows exponentially with the
number of branch predictions.

The underlying problem with predicting two lines to
fetch is that the prediction for the second line is dependent
on the first. Hence, the PHT and BIT information for the
second line cannot be fetched until the first line has been
predicted and the new PC and GHR have been determined.
The solution to this problem is essentially to predict our pre-
diction. The end result of using the BIT and PHT for pre-
diction is a multiplexer selector. Therefore, because the BIT
and PHT information for the second block prediction are not
available, we store the multiplexer selection bits of a previ-
ous prediction for that block into a select table (ST). The
select table is indexed by the exclusive-or of the GHR and
the current PC block address [7]. This index is the same as
the index into the PHT for the prediction of the first block.
The select value read from the select table is used to directly
control the multiplexer for the second block prediction. A 3-
bit selector can be used with a block width of four ( ����� ).
Four bits are required for ����� .

3.1 Single Selection

Figure 2 is a block diagram of a dual block prediction
fetching mechanism. It has two multiplexors to select the
next two lines to fetch. The first selection is calculated from
the PHT and BIT information. The second selection comes
from the select table. To accurately predict target addresses,
a dual target array is used. It provides � target addresses for
the first target and � target addresses for the second target.
The address of the second block currently being fetched is
used as the index into both target arrays. Although the NLS
must have two target arrays, a BTB may use its tag to indi-
cate the target number (block one or two).

Undesirable duplication of target addresses is inherent
to the dual target array. A branch’s target address could be
stored in both target arrays. Also, it may be represented in
the second target array multiple times, since a branch may
have multiple predecessor blocks. This duplication, how-
ever, does not significantly reduce its accuracy compared to
a single target array.

The second multiplexer shown in Figure 2 is dependent
on the output of the first multiplexer. An addition to deter-
mine the fall-through address of the first prediction or other
near-block targets is required. Although the addition of a
line index is relatively small, if timing is critical, each of
the � targets from the first target array and the RAS can cal-
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Table 2. Next line prediction example based on starting position
Position in block 0 1 2 3 4 5 6 7
instruction type shift branch add jump sub branch move return
BIT value 000 100 000 010 000 011 000 001
PHT value XX 10 XX XX XX 11 XX XX
exit position 1 1 3 3 5 5 7 7
select prediction line-- line-- NLS(3) NLS(3) NLS(5) NLS(5) RAS RAS
target on misprediction NLS(3) NLS(3) N/A N/A RAS RAS N/A N/A
select replacement NLS(3) NLS(3) N/A N/A NLS(5) NLS(5) N/A N/A

culate the fall-through (and possibly near target(s)) indexes
before the first block selector is ready. The fall-through
adder used as input for the second multiplexer can now be
replaced with a multiplexer which selects the correct pre-
computed fall-through address from the first target.

The RAS sends the top of its stack to the input of the first
multiplexer. For the second multiplexer, if the first block
performs a call, the RAS input is bypassed with the address
after the exit address of the first block. If the first block per-
forms a return, the RAS sends the second address off the
stack. Otherwise, the top of the stack is sent to the sec-
ond multiplexer. In addition, the target array should encode
whether or not its target is a result of a call, so that proper
return bypassing can take place.
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Figure 3. Pipeline stage diagram for dual
block prediction

Figure 3 displays the pipeline stages involved in the dual
block prediction. The first stage is the prediction of the next
two blocks (b

�
denoted block #

�
). The selector for the

first predicted block is computed from BIT and PHT infor-
mation. The second block is predicted by reading the select
table. The second stage fetches the two blocks. It also ver-
ifies the select prediction in the previous stage against the
PHT and BIT information which is now available. If the
prediction is different, then a misselect has occurred. The
previous prediction is replaced with the new prediction in
the select table, and the new block is fetched. Also dur-
ing the second stage, the predicted target address of the first
block is checked against the calculated branch offset or im-
mediate branch from the previous block (misfetch). The
third stage checks for a misfetch of the second block.

From the pipeline diagram, we observe two problems.
One problem is with the updating of the GHR. The GHR
can reflect the outcome of the first block prediction, but for
the second block prediction, there is no information about
the number of conditional branches predicted or their out-
come. Therefore, a select table entry needs to contain pre-
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diction information to update the GHR. This can be accom-
plished by using

�����
��� bits to represent the number of not

taken branches and one bit to represent either a fall-through
case or a taken branch. The second problem is with near-
block select prediction of the second block. It does not give
information about the offset into the line. As a result, up
to

�����
��� extra bits are needed to provide this information,

or there may be enough time to calculate the line offset af-
ter its source block has been read. Alternatively, one could
choose not to use near-block targets to avoid this problem.
The GHR and position prediction (if any) are verified at the
same time as the select prediction.

3.2 Double Selection

The selection prediction can be used on the first block as
well as the second block. We refer to selection prediction of
both blocks as double selection. Figure 4 is a block diagram
of multiple block prediction using double prediction. Dou-
ble prediction increases the misselect penalty. However, the
benefit is the removal of BIT storage altogether. The in-
struction type is decoded after the line has been fetched.
The select table is still indexed by the GHR

� ���
starting

address, but it is now a dual select table, providing selec-
tors for both multiplexors. Timing concerns regarding the
calculation of the selector for the first target no longer exist.
The potential for timing problems from the adders between
the multiplexers is significantly reduced. Selector and GHR
prediction bits for both blocks are required, although the
starting position prediction for the second block is no longer
needed.

Figure 5 is a pipeline diagram using double selection.
The first stage predicts the next two blocks from the dual
select table. The second stage fetches the two blocks, and
verifies the first block’s select prediction and target address.
The third stage verifies the second block’s select prediction
and target address.

3.3 Misprediction

The penalties for the different types of possible mispre-
dictions are listed in Table 3. It is assumed that it takes four
cycles to resolve a branch after it has been fetched. For the
first block, if there are remaining instructions required to
be re-fetched after a conditional branch was mispredicted
taken, then it will take an additional cycle. A misprediction
on the second block always requires another cycle. There
is a one cycle misselect or GHR mispredict penalty using a
single select on the second block.

With a double selection prediction, the first block has a
one cycle penalty while the second block takes two cycles.
Since a misselect is detected during or immediately after
the instructions have been fetched, instructions that would

NLS or BTB

Dual Target

Array

Select

Table

i-cache

line size

Return

Address

Stack

-

i-cache

line size

MUX

for

Next (First) Instruction

Fetch Line

+

n

MUX

for

Next (Second) Instruction

Fetch Line

-

+

(target 1)

n

(target 2)

(target 1)

(target 2)

Current (Second)

Instruction

Fetch Line

Branch

History

XOR

address

Figure 4. Block diagram for dual block predic-
tion using double selection

Fetch

b1 & b2

Check

b2 for

misfetch

Fetch

b3 & b4

Fetch

b5 & b6

Check

b4 for

misfetch

Check

b6 for

misfetch

Cycle 0Cycle 0 Cycle 1Cycle 1 Cycle 2Cycle 2 Cycle 3Cycle 3

Verify

b1

select

Verify

b2

select

Verify

b4

select

Verify

b6

select

Verify

b3

select

Verify

b5

select

Cycle 4Cycle 4

Stage 0Stage 0

Stage 2Stage 2

Stage 1Stage 1

Check

b1 for

misfetch

Check

b3 for

misfetch

Check

b5 for

misfetch

Select

b1 & b2

prediction

Select

b3 & b4

prediction

Select

b5 & b6

prediction

Figure 5. Pipeline stage diagram for dual
block prediction using double selection

5



have been discarded on a taken branch become valid, and
no re-fetch cycle is needed. A misfetch takes one cycle for
the first block and two cycles for the second block to detect.

Since multiple blocks are being fetched using different
cache lines, a multiple banked instruction cache is required.
Since two lines are fetched simultaneously, they may map
into the same cache bank. Should a conflict arise, the sec-
ond line is read the next cycle.

Table 3. Misprediction Penalties
Misprediction Single Select Double Select�����

blk ���
�

blk
�����

blk ���
�

blk
Conditional branch 	�
 5 	�
 5
Return 4 5 4 5
Misfetch indirect 4 5 4 5
Misfetch immediate 1 2 1 2
Misselect N/A 1 1 2
GHR N/A 1 1 2
BIT 1 1 N/A N/A
I-cache bank conflict 0 1 0 1
* Add one cycle if instructions remain and need to be re-fetched.

In order to facilitate recovery from a mispredicted
branch, each conditional branch is assigned a bad branch
recovery (BBR) entry, which provides information on how
to update branch prediction tables and provide a new target.
The processor must create this entry and keep track of it as
the branch moves down the pipeline. Table 4 lists a descrip-
tion and sizes of the fields in a recovery entry. A recovery
entry is created when the block which contains a conditional
branch is predicted using BIT and PHT information. When
a prediction is made for a conditional branch, another pre-
diction is made for that block assuming its original predic-
tion is incorrect. If a branch is predicted not taken, then
the alternate target address is the branch’s target address. If
it is predicted taken, then the alternate address is the next
control transfer or fall-through address in its block (see the
example in Table 2). The alternate target address is entered
into the recovery entry. In addition, a replacement selector
and new GHR are generated.

Table 4. Bad Branch Recovery Entry
Bits Description
1 Block 1 or 2
1 Predicted taken or not taken.
1 Second chance.
8-12 PHT index.
2n PHT block (optional).
8-12 Corrected GHR.
8-11 Replacement selector.
10/30 Corrected i-cache index or full addr.

The recovery entry may also contain the entire PHT
block that reflects a successful pattern history update for
each branch in the block up to the current branch. After the
last branch in a block has been successfully resolved, it uses

this field to update the PHT to reflect a correct prediction.
When a branch is mispredicted, it is modified to reflect an
incorrect prediction (by using the original second chance
information) and written to the PHT. If the PHT is not up-
dated by using a PHT block field, then the pattern history
for a branch has to be updated using a read/modify/write
cycle to the PHT block for each individual branch when it
is resolved.

If the branch does not have a “second chance” when it is
mispredicted, then the pre-computed selector from the bad
branch recovery entry is written into the select table.

If a misprediction occurs for the second block, then any
remaining instructions from the first block are fetched along
with a new second block target retrieved from the recovery
entry. On the other hand, if the misprediction occurs for
the first block, an extra cycle may be required to fetch any
remaining instructions from the previous block.

4 Performance

The performance of different variations of multiple
branch and block prediction was determined by running the
SPEC95 benchmark suite on the SPARC architecture. The
suite was compiled using the SunPro compiler with stan-
dard optimizations (-O). Programs were simulated using the
Shade instruction-set simulator [2]. Each program ran for
the first one billion instructions.

All the results presented use a block width of eight
( � � � ). Single selection is used for dual block prediction
unless otherwise noted. The results presented only use a
global adaptive branch prediction scheme using one global
blocked pattern history table. The default size of a select
table is 1024 entries, which corresponds to a GHR length
of 10 bits. The size of the RAS is 32 entries. It was as-
sumed the processor would always have enough bad branch
recovery entries available. Instruction cache misses were
not simulated, i.e., a perfect instruction cache was assumed.
The only consideration for the instruction cache were the
line size and bank conflicts. A line size equal to the block
width was used, and the instruction cache was split into
eight banks. Also, by default, near-block prediction is not
used.

The default target array is a 256-entry NLS array. The
set prediction was not simulated. Therefore, the results pre-
sented for the NLS configuration are really a direct-mapped
tag-less BTB. The performance of a real NLS is affected by
the instruction cache configuration. For a performance and
cost comparison of an NLS verses a BTB, please refer to
[1].

We compare the performance of different types of mul-
tiple branch and block architectures using two metrics, as
used by Yeh and Patt [13]. The first is the branch execution
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penalty,
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If we assume the other parts of the processor are ideal, we
can compute the effective instruction fetch rate,
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The BEP gives information regarding performance and the
interaction between the many different types of penalties as
listed in Table 3. Nevertheless, all the types of penalties are
recorded. Overall performance is best understood from the
effective instruction fetch rate. One cannot directly com-
pare a scalar BEP with a superscalar BEP or a multi-block
BEP since higher penalties are overcome by increased num-
ber of instructions per successful fetch block.

Also, when fetching two blocks per cycle of potentially
eight instructions each, up to sixteen instructions may be re-
turned in one cycle. Consequently, the effective instruction
fetching rate,

����� �
can be greater than � . If an eight is-

sue processor is used, then extra instructions returned can
be buffered [10]. When the raw two block rate is greater
than � , the issue unit will usually receive, and average close
to, � instructions per request. Of course, a simpler config-
uration to satisfy issue unit constraints in such a situation
would be to use two blocks of four instructions each. This
would still yield an excellent fetching rate.

4.1 Conditional Branch Accuracy

To begin with, the conditional branch accuracy of a
blocked PHT for multiple branch prediction was evaluated.
The branch history length varied from 6 to 12, and the re-
sults were compared to a scalar PHT. The scalar scheme
used a per-addr PHT with 8 PHTs to give it equal size of a
blocked PHT for � � � . Figure 6 displays the branch mis-
prediction rates (line) and the improvement over a scalar
PHT (bar). The difference in accuracy between the scalar
and blocked schemes across all variations were small, and
the accuracy favored the blocked PHT scheme for most pro-
grams. The accuracy of SPECint95 averaged 91.5% while
the accuracy of the SPECfp95 averaged 97.3%, using a
GHR length of 10. In this case, the blocked PHT had a bet-
ter accuracy by a few hundredths of a percent for SPECfp95
and a few tenths of a percent for SPECint95.

4.2 BIT

Correct instruction type information for a block is criti-
cal to making accurate predictions. Incorrect BIT informa-
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tion can still result in a correct prediction, but this possibil-
ity is reduced with larger block sizes. Different BIT table
sizes were simulated to evaluate its impact. Using single
block fetching, Figure 7 shows the BEP contribution from
inaccurate BIT information (bar). Also shown is the IPC f
(line). Small sized BIT tables result in poor performance.
Only until about 2048 entries does the percentage of BEP
drop below 5%. Therefore, for smaller sized instruction
caches, it may be more beneficial to store the BIT infor-
mation inside the instruction cache. Conversely, a separate
BIT table would be more cost effective because the one cy-
cle miss penalty of the BIT is much lower than an instruc-
tion cache miss. The rest of the results presented use two
blocks and assume BIT information is stored in the instruc-
tion cache.
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Figure 7. BIT Penalty and Performance
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4.3 Single vs. Double Selection

The performance of the select table depends on the
branch history length and the number of select tables used.
Multiple select tables are indexed by the starting position
from the current address. The correct target depends on the
entering position in a block, so multiple select tables help
identify which target should be selected. The least signifi-
cant bits of the starting address determine which select ta-
ble is used. Figure 8 shows the performance of dual block
prediction for single and double selection. The global his-
tory register length varies from 9 to 12. There can be 1, 2,
4, or 8 STs. However, there are not multiple PHTs. The
results demonstrate that increasing the number of STs im-
proves performance as well as increasing the branch his-
tory length. The extra penalties from using double selection
significantly reduced performance, roughly 10% for most
cases. Hence, single selection should be used if implemen-
tation considerations permit. Double selection significantly
improves, though, with more STs.
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Figure 8. Integer and Floating Point perfor-
mance using Single and Double Selection

4.4 Target Arrays

Target arrays can use a BTB or NLS. In addition, if a
near-block target is used, this will reduce the number of
immediate targets used in the target array. Table 5 shows
the percentage of BEP due to indirect and immediate mis-
fetches for SPECint95. The total BEP and IPC f are also
reported. The number of block entries is varied for both
NLS and a 4-way BTB using LRU replacement algorithm.
A BTB entry can be for the first or second target, while an
NLS entry has two separate targets. The data indicates that

eight NLS block entries are needed for comparable perfor-
mance of one 4-way BTB entry. About 70% of the condi-
tional branches are near-block targets. As a result of using
near-block encoding, the number of BTB or NLS entries
can be reduced in half for about the same performance.

Table 5. Indirect and Immediate Misfetch
Penalty Comparison for Different Target Ar-
ray Configurations

Target # blk near- %BEP misfetch BEP IPC f
Type entries block? imm. ind.
BTB 8 no 19.2 18.7 0.603 5.02
BTB 8 yes 10.6 16.3 0.520 5.40
BTB 16 no 12.6 15.1 0.523 5.32
BTB 16 yes 6.5 12.6 0.476 5.57
BTB 32 no 7.4 11.6 0.473 5.58
BTB 32 yes 3.6 9.6 0.446 5.73
BTB 64 no 4.0 9.6 0.447 5.72
BTB 64 yes 1.9 7.9 0.431 5.80
NLS 64 no 12.0 14.7 0.516 5.41
NLS 64 yes 6.7 13.1 0.480 5.54
NLS 128 no 8.3 12.3 0.481 5.53
NLS 128 yes 4.2 10.8 0.454 5.67
NLS 256 no 5.5 10.1 0.457 5.66
NLS 256 yes 2.7 8.7 0.438 5.77
NLS 512 no 3.8 9.2 0.444 5.74
NLS 512 yes 1.6 7.9 0.429 5.81

4.5 Instruction Cache Configurations

The performance can be dramatically improved if a dif-
ferent type of instruction cache configuration is used. Using
the same line size and block width of eight instructions, the
number of valid instructions in a block has been limited due
to misalignment. The target address of a control transfer can
be in the middle of a line, thus reducing the size of a block.
To increase the number of instructions per block (IPB), the
cache line size can be extended to 16 instructions [10]. Only
up to 8 instructions are returned as a block, but the proba-
bility less than 8 instructions are found has been reduced.
To solve this problem completely, a self-aligned cache can
combine two consecutive lines to form a block [3, 10]. If
a self-aligned cache is used though, the number of banks
should be doubled to offset the increase in bank conflicts,
since up to four lines are being simultaneously accessed to
return two blocks. Although there are no bank conflicts with
single block fetching, the extended and self-aligned caches
improve the instructions fetched per block (IFB) and overall
fetching performance.

With the extended and self-aligned caches, when branch
prediction is performed using the PHTs, the values wrap
around the PHT block. Also the target arrays must be cor-
respondingly extended or self-aligned. The performance of
these three cache types are compared using one and two
block fetching with single selection. The results are shown
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in Table 6, using 8 STs and a branch history length of 10.
Outstandingly, the self-aligned cache achieves 10.9 IPC f
for the floating point benchmarks. It averages over 8 IPC f
for the entire SPEC95 suite. The high performance is pri-
marily due to the increase in IFB. Also, the starting ad-
dress becomes more random which helps associate a se-
lect table and use it efficiently. The performance of the
extended cache type is between a normal and self-aligned
cache. Compared to single block prediction, dual block pre-
diction results in an effective fetching rate approximately
40% higher for integer programs and 70% higher for float-
ing point programs.

Table 6. Instructions per block (IPB) and IPC f
for different cache types

SPECint95 SPECfp95
cache line IPB IPC f IPB IPC f
type size bnks 1 blk 2 blk 1 blk 2 blk
normal 8 8 5.01 3.96 5.66 5.81 5.48 9.43
extend 16 8 5.30 4.12 5.87 6.03 5.65 9.80
align 8 16 5.99 4.53 6.42 6.76 6.33 10.88

Using a self-aligned cache, 8 STs, and a branch history
length of 10, Figure 9 shows the BEP of each program and
the contribution of BEP by each type of misprediction as
described in Section 3.3. The effective instruction fetch-
ing rate is inversely proportional to BEP. The most signifi-
cant BEP contribution is from misprediction of conditional
branches. Misselection is the next most significant contribu-
tion. Target array mispredictions are also a significant factor
in BEP. Some of the floating point programs performed ex-
ceedingly well. On the other hand, some integer programs
had a high BEP because of poor conditional branch predic-
tion.

5 Cost Estimates

Table 7. Simplified hardware cost estimates
Symbol Description
� block width�

history register length� number of PHTs� number of Select Tables�
number of NLS block entries�
size of line index� cache associativity�
number of BBR entries�
number of BIT block entries

Table Simple hardware cost estimate
PHT �
	 �

� 	��	 �
ST ��	 �

� 	 � 	� � � � ����� � �
NLS

� 	���	� � � � � �������
BIT

� 	��	 �
BBR

� 	�� � � � � � � � ������� �
� � � ���������

Table 7 lists a simplified hardware cost estimates for the
PHT, ST, NLS, and BIT tables. If we use a block width
of 8, a 32 KByte direct-mapped instruction cache, a 10-bit
history register, 1 PHT, 1 ST, 256 NLS entries, 1024 BIT
entries, and 8 BBR entries, the cost estimates evaluate to:

� PHT: 16 Kbits

� ST: 8 Kbits

� NLS: 20 Kbits

� BIT: 16 Kbits

� BBR: .3 Kbits

� single block total: 52 Kbits

� dual block, single select total: 80 Kbits

� dual block, double select total: 72 Kbits

As the number of instructions that can be predicted in a
block increase, the cost increases proportionally. In addi-
tion, it is possible to predict more than two blocks per cy-
cle. In that case, the cost grows proportionally to the num-
ber of blocks predicted. Another block prediction basically
requires another select table and target array, and another
read/write port to the PHT and BIT tables.

6 Conclusion

A scalable mechanism to predict multiple branches in a
single block was presented. Its conditional branch accuracy
is essentially the same as a scalar two-level adaptive branch
prediction of equal size. By recording previous predictions
in a select table, two blocks can be fetched in a single cycle.
Dual block prediction uses either a single or double select
table. Double selection may be used at the expense of a
slower fetching rate, but may be desirable in processors with
deep pipelines and extremely fast cycle times. An extremely
high rate can be achieved with a multiple branch and block
prediction mechanism.
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