Variable-Dilation Embeddings of Hypercubes into Star Graphs:
Performance Metrics, Mapping Functions, and Routing

Marcelo Moraes de Azevedo and Nader Bagherzadeh
Department of Electrical and Computer Engineering
University of California, Irvine – Irvine, CA 92717-2625

Shahram Latifi
Department of Electrical and Computer Engineering
University of Nevada, Las Vegas – Las Vegas, NV 89154-4026

Variable-Dilation Embeddings of Hypercubes into Star Graphs:
Performance Metrics, Mapping Functions, and Routing*

Marcelo Moraes de Azevedo†, Nader Bagherzadeh‡, and Shahram Latifi§

†Dept. of Electrical and Computer Engineering
University of California, Irvine
Irvine, CA 92717-2625
{mazevedo, nader}@ece.uci.edu
Tel: (714) 824-8720 FAX: (714) 824-2321
‡Dept. of Electrical and Computer Engineering
University of Nevada, Las Vegas
Las Vegas, NV 89154-4026
latifi@jbi.ee.unlv.edu
Tel: (702) 895-4016 FAX: (702) 895-4075

Abstract — We discuss the problem of embedding a k-dimensional hypercube Q(k) into an n-dimensional star graph S(n) with load 1. Communication along the i-th dimension of Q(k) uses paths of length at most d_i in S(n), where d_i is referred to as the dilation along dimension i of Q(k). We embed Q(k) into S(n) with variable-dilation, i.e. d_i varies with i rather than being a constant. Our embeddings are an attractive alternative to previously known techniques, producing small average dilation (i.e., the average length of a path in S(n) corresponding to a link of Q(k)) without sacrificing expansion. Using a custom simulation tool, we were able to characterize the congestion and average congestion of our embeddings under several combinations of mapping functions and routing algorithms in the star graph. To the best of our knowledge, these are the first embeddings of Q(k) into S(n) for which congestion results are known. Furthermore, our simulation results indicate that a small average congestion is induced on the links of S(n).

Key words — Graph embeddings, hypercubes, interconnection networks, routing, star graphs.

1 Introduction

The star graph [1] is regarded as an attractive interconnection network for parallel processing, featuring smaller degree and diameter than a hypercube [2] of comparable size. However, the earlier introduction of hypercube networks, along with their interesting properties, has led to the development of a number of hypercube-configured parallel computers [2], and of a rich library of hypercube-compatible algorithms [3]. Despite the fact that some parallel algorithms have also been specifically devised for the star graph (e.g., sorting [4], FFT [5]), we believe that the repertory of star graphs algorithms can be significantly increased via hypercube embeddings.

Embedding hypercubes into star graphs, however, is known to be a challenging task. Due to topological differences between the two networks (e.g., degree and minimum cycle length), it is difficult to obtain an embedding that simultaneously achieves small dilation and expansion1. The trade-off between dilation and expansion in embeddings of hypercubes into star graphs was first identified in the pioneer work by Nigam, Sahni, and Krishnamurthy [6].

*This research is supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil), under the grant No. 200392/92-1.
1Definitions for terms related to embeddings are given in Sec. 2.

1
In this paper, we propose an interesting solution to the problem, which is based on an embedding technique referred to as packing [7]. To achieve an embedding of a k-dimensional hypercube $Q(k)$ into an n-dimensional star graph $S(n)$, $k \geq (n - 1)$, we proceed as follows. We first embed a disjoint union $U = \bigcup_{j=0}^{2^{k-n+1}-1} Q_j(n - 1)$, which contains 2^{k-n+1} many copies of $Q(n - 1)$, into $S(n)$. These embedded copies are then hierarchically joined in $S(n)$ to form $Q(k)$. As shown later, this approach produces embeddings which achieve both small average dilation and expansion. Other advantages which stem from our techniques include the capability of using $S(n)$ to host additional hypercube embeddings (see [7] for more on this topic). Because all of our embeddings and packings have load 1 (i.e., a single node of $S(n)$ receives at most one mapping of a hypercube node), these extra hypercube embeddings employ nodes that are not used by the original embedding of $Q(k)$ into $S(n)$.

Two other important metrics for characterizing an embedding are referred to as congestion and average congestion. To the best of our knowledge, none of the previous works on embeddings of hypercubes into star graphs has investigated these properties. In part, this can be attributed to the difficulty in obtaining analytical results for these two measures. We addressed this problem by developing a custom simulation tool for our embeddings, which is capable of evaluating exact measures for congestion, average congestion, and average dilation. These and other performance metrics are computed according to a number of user-selected options, which include choices of node mapping functions for the embedding, and routing algorithms in the star graph. The paper illustrates some of the measures we obtained, pointing out the most promising combinations of mapping functions and routing algorithms. Our simulation results indicate that our variable-dilation embeddings have the added benefit of producing a small average congestion. Also included in the paper are analytical results that characterize our embeddings from the viewpoint of expansion, dilation, and dilation along each of the hypercube dimensions. Analytical upper bounds on average dilation are also given in this paper.

This paper is organized as follows. Sec. 2 defines performance metrics and the terminology used in the paper. Sec. 3 introduces some background information. Sec. 4 presents our variable-dilation embeddings and their corresponding analytical properties. Sec. 5 presents additional performance measures obtained via simulation. Sec. 6 concludes the paper.

2 Performance Metrics: Definitions and Terminology

Let $G(k)$ be a k-dimensional graph with hierarchical structure, such that $G(k + 1)$ is obtained recursively from $c(k)$ many copies of $G(k)$. Several graphs belonging to the class of Cayley graphs have this recursive decomposition property, such as the hypercube and the star graph [1, 2]. The links connecting the $c(k)$ copies of $G(k)$ that exist within $G(k + 1)$ are referred to as dimension $(k + 1)$ links.

We denote the set of nodes and the set of links of $G(k)$ by $V(G(k))$ and $E(G(k))$, respectively. An embedding of $G(k)$ into $H(n)$, which we denote by $f : G(k) \mapsto H(n)$, is a mapping of $V(G(k))$ into $V(H(n))$ and of $E(G(k))$ into paths of $H(n)$. $G(k)$ and $H(n)$ are respectively referred to as
the guest and the host of f [3]. The node image of f is $f(V(G(k))) = \{f(u) : u \in V(G(k))\}$. The load of f is the maximum number of nodes of $G(k)$ that are mapped to any single node of $H(n)$, and is denoted by $\lambda(f)$. The congestion of f, denoted by $cg(f)$, is the maximum number of times any link of $H(n)$ is used by paths corresponding to the mappings of the links of $G(k)$. The dilation of f is $d(f) = \max\{\text{dist}_H(f(u), f(v)) : (u, v) \in E(G(k))\}$, where $\text{dist}_H(a, b)$ is the distance in $H(n)$ between two vertices a and b of $H(n)$. The expansion of f is $X(f) = |V(H(n))|/|V(G(k))|$. Load, congestion, dilation, and expansion are often used to measure the quality of an embedding, and ideally should be kept as small as possible. Further characterization of an embedding, however, can be achieved by means of a few additional performance metrics, which are defined in the remainder of this section.

Let $E_i(G(k))$ denote the subset of dimension i links in $E(G(k))$, and let $f : G(k) \mapsto H(n)$ be an embedding of $G(k)$ into $H(n)$. The dilation of f along the ith dimension of $G(k)$ is $d_i(f) = \max\{\text{dist}_H(f(u), f(v)) : (u, v) \in E_i(G(k))\}$. Hence, $d(f) = \max\{d_i(f) : 1 \leq i \leq k\}$. f is referred to as a variable-dilation embedding if $d_i(f) < d(f)$, for at least one dimension i of $G(k)$, $1 \leq i \leq k$. Accordingly, f is referred to as a fixed-dilation embedding if $d_i(f) = d(f)$, $\forall i$, $1 \leq i \leq k$. The dilation vector of f is $\overrightarrow{d}(f) = [d_1(f), d_2(f), \ldots, d_k(f)]$. The average dilation of f is:

$$d_{avr}(f) = \frac{\sum_{(u,v) \in E(G(k))} \text{dist}_H(f(u), f(v))}{|E(G(k))|}$$ (1)

An upper bound for the average dilation of an embedding f is:

$$d_{avr}(f) \leq \frac{\sum_{i=1}^{k} |E_i(G(k))| \cdot d_i(f)}{|E(G(k))|}$$ (2)

It is often the case that some dimension i links in $E_i(G(k))$ are mapped into paths of length less than $d_i(f)$ (both in variable- and fixed-dilation embeddings). Thus, Equation 1 should be used for an exact evaluation of the average dilation of an embedding.

A major advantage of variable-dilation embeddings, as opposed to fixed-dilation embeddings, is that they often produce a significantly smaller average dilation. This measure is regarded as a good approximation for the communication slowdown induced by an embedding, and has been used as a standard performance metric in practical evaluations of embedding heuristics [8].

We now define some metrics that offer a more insightful characterization of the congestion produced by an embedding $f : G(k) \mapsto H(n)$. In the following discussion, we assume that f maps the links of $G(k)$ into simple paths in $H(n)$. Let $f(u, v)$ denote the path in $H(n)$ into which link (u, v) of $G(k)$ is mapped, and let (x, y) be a link of $H(n)$. The congestion induced by (u, v) into (x, y), denoted by $cg_{(x,y)}(f(u, v))$, is 1 if $f(u, v)$ traverses (x, y), and 0 otherwise. The congestion induced by f into (x, y) is $cg_{(x,y)}(f) = \sum_{(u,v) \in E(G(k))} cg_{(x,y)}(f(u, v))$. Thus, $cg(f) = \max\{cg_{(x,y)}(f) : (x, y) \in E(H(n))\}$. The link image of f is $f(E(G(k))) = \{(x, y) : cg_{(x,y)}(f) \geq 1, (x, y) \in E(H(n))\}$. The average congestion of f, denoted by $cg_{avr}(f)$, is:

$$cg_{avr}(f) = \frac{\sum_{x,y} |E(H(n))| \cdot cg_{(x,y)}(f)}{|f(E(G(k)))|}$$ (3)
Note that only those links of $H(n)$ that are actually used by f are included in the computation of the average congestion, thereby providing a more realistic metric. The average congestion is an important performance metric of an embedding and, along with the average dilation, gives indication on the induced communication slowdown.

Also of interest are metrics aimed at algorithms which employ only a fraction of the links of the guest graph at any point of their execution. For example, the congestion produced by algorithms based on the SIMD model of computation can be captured by the following metrics. Assume a step of a SIMD algorithm in which only dimension i links of $G(k)$ are used. The congestion induced by dimension i links of $G(k)$ into $H(n)$ is $cg(\Sigma E_i(G(k))) = \max\{\sum_{(x,y)\in E_i(G(k))} c_g(x,y)(f(u,v)) : (x,y) \in E(H(n))\}$. Similar metrics can be defined for algorithms that use at most $2, 3, \ldots, k$ dimensions of $G(k)$ at any time.

We also note that an embedding $f : G(k) \mapsto H(n)$ can be uniquely specified by a node mapping function $f_V : V(G(k)) \mapsto V(H(n))$ and a deterministic routing algorithm r_H of $H(n)$. Thus, a link (u, v) of $G(k)$ is mapped to a path $r_H(f_V(u), f_V(v))$. The characterization of variable-dilation embeddings of hypercubes into star graphs provided in this paper is extensive, and includes all of the metrics defined above. Moreover, our results were obtained over a selection of four different node mapping functions and four different routing algorithms.

3 Background

3.1 The hypercube

A k-dimensional hypercube graph $Q(k) = \{V(Q(k)), E(Q(k))\}$ contains 2^k nodes, which are labeled with binary strings of length k. A node $\phi = q_1q_2\ldots q_i\ldots q_k$ is connected to k distinct nodes, respectively labeled with strings $\phi_i = q_1q_2\ldots \overline{q}_i\ldots q_k$, $1 \leq i \leq k$, where \overline{q}_i denotes the binary negation of bit q_i [2]. The link connecting ϕ and ϕ_i is a dimension i link of $Q(k)$.

3.2 The star graph

An n-dimensional star graph $S(n) = \{V(S(n)), E(S(n))\}$ contains $n!$ nodes which are labeled with the $n!$ possible permutations of n distinct symbols. In this paper, we use the integers $\{1, 2, \ldots, n\}$ to label the nodes of $S(n)$. A node $\pi = p_1p_2\ldots p_i\ldots p_n$ is connected to $(n - 1)$ distinct nodes, respectively labeled with permutations $\pi_i = p_1p_2\ldots p_{i-1}p_ip_{i+1}\ldots p_n$, $2 \leq i \leq n$ (i.e. π_i’s label is obtained by exchanging the first and the i^{th} symbol of π’s label) [1]. The link connecting π and π_i is a dimension i link of $S(n)$. Figure 1 shows $S(4)$.

3.3 Node mapping functions

Our embeddings of $Q(k)$ into $S(n)$ use two-step node mapping functions. Initially, we employ a node mapping function $h_V : V(Q(k)) \mapsto V(M(n - 1))$, where $M(n - 1)$ denotes an $(n - 1)$-dimensional mesh of size $2 \times 3 \times \ldots \times n$. The second step uses a node mapping function $g_V : V(M(n - 1)) \mapsto V(S(n))$. Thus, the composite node mapping function $f_V : V(Q(k)) \mapsto V(S(n))$ of an embedding
Figure 1: A 4-dimensional star graph $(S(4))$

$f: Q(k) \mapsto S(n)$ maps node $u \in V(Q(k))$ to node $f_V(u) = g_V(h_V(u)) \in V(S(n))$. We use the
operator \circ to denote the composition of node mapping functions, such that $f_V = h_V \circ g_V$.

Using $M(n-1)$ as an intermediary reference network for our embeddings provides a convenient
way of dealing with the topological differences between $Q(k)$ and $S(n)$. It is known that
$M(n-1)$ can be embedded into $S(n)$ with load 1, expansion 1, and dilation 3 [9, 10]. In [7],
we introduced node mapping functions that support multiple node-disjoint embeddings of hypercubes into
$M(n-1)$.

In the remainder of this subsection, we describe four different node mapping functions $g_V :$ $V(M(n-1)) \mapsto V(S(n))$, which we denote by $g_V^{\text{nonh}}, g_V^{\text{mnonh}}, g_V^{\text{hier}},$ and g_V^{bihier}. g_V^{nonh} is referred to
as the non-hierarchical mapping function, and was independently proposed by Jwo et al. [9] and by
Ranka et al. [10]. g_V^{mnonh} is referred to as the modified non-hierarchical mapping function, and was
introduced in [7]. g_V^{hier} and g_V^{bihier} are respectively referred to as the hierarchical mapping function
and the quasi-hierarchical mapping function, and are introduced in this paper. A node mapping
function $h_V : V(Q(k)) \mapsto V(M(n-1))$, which is common to all of our embeddings, is presented
in Section 4. The four selections of g_V studied in this paper produce four different composite node
mapping functions $f_V : V(Q(k)) \mapsto V(S(n))$, which are respectively denoted by
$f_V^{\text{nonh}} = h_V \circ g_V^{\text{nonh}}, f_V^{\text{mnonh}} = h_V \circ g_V^{\text{mnonh}}, f_V^{\text{hier}} = h_V \circ g_V^{\text{hier}},$ and $f_V^{\text{bihier}} = h_V \circ g_V^{\text{bihier}}$.

We label the nodes of $M(n-1)$ with an $(n-1)$-integer vector $m_1m_2\ldots m_{n-1}$, where $0 \leq m_i \leq i$.
A node mapping function $g_V : V(M(n-1)) \mapsto V(S(n))$ maps $\omega \in V(M(n-1))$ to $\pi \in V(S(n))$, where $\pi = g_V(\omega)$. g_V can be described algorithmically as follows. Let $p_1p_2\ldots p_n$ be a permutation
of n symbols. We denote the transposition of symbols i and j in $p_1p_2\ldots p_n$ by $(i \ j)$. We define an operator
\circ which applies transpositions to permutations, such that $p_1p_2\ldots p_{k-1}p_kp_{k+1}\ldots p_{\ell-1}p_{\ell}p_{\ell+1}\ldots p_n \circ (i \ j) = p_1p_2\ldots p_{k-1}p_{k+1}\ldots p_{\ell-1}p_kp_{\ell}\ldots p_n$, if either $p_k = i$ and $p_{\ell} = j$, or $p_k = j$ and $p_{\ell} = i$. Similarly,
we denote the transposition of the symbols occupying the ith and the jth positions in $p_1p_2\ldots p_n$ by $(i \ j)_p$, i.e. $p_1p_2\ldots p_{k-1}p_kp_{k+1}\ldots p_{\ell-1}p_{\ell}p_{\ell+1}\ldots p_n \circ (i \ j)_p = p_1p_2\ldots p_{k-1}p_{k+1}\ldots p_{\ell-1}p_{\ell}p_jp_{\ell+1}\ldots p_n$. As an example, $2413 \circ (2 \ 4)_s = 4213$, and $2413 \circ (2 \ 4)_p = 2314$.

5
Algorithm 1 gives a general description for a node mapping function \(g_V : V(M(n - 1) \mapsto V(S(n)) \), which applies to \(g_V^{\text{nonh}}, g_V^{\text{nonh}}, g_V^{\text{hier}}, \) and \(g_V^{\text{hier}} \). \(\text{choose(funct_type, } m_1m_2) \) selects an initial permutation \(\pi_0 \) from Table 1. The choice for \(\pi_0 \) depends on the specific type of mapping function \(g_V \) and the two least significant mesh coordinates of \(\omega \) (i.e., \(m_1m_2 \)). Thereafter, the algorithm examines \(m_2 \) through \(m_{n-1} \) and applies sequences of transpositions to \(\pi_0 \) as follows. For each \(i \) such that \(3 \leq i \leq (n - 1) \), only the first \(m_i \) transpositions specified for dimension \(i \) in Table 2 are used. For example, \(g_V^{\text{nonh}} \) maps node 102 of \(M(3) \) into node 2134 \(\circ \) (4 3) \(\circ \) (3 2) \(\circ \) (3 2) \(p \) \(= \) 2143 \(\circ \) (3 2) \(p \) \(= \) 2413 of \(S(4) \). Table 3 depicts complete mappings of \(M(3) \) into \(S(4) \) produced by each of the mapping functions \(g_V^{\text{nonh}}, g_V^{\text{nonh}}, g_V^{\text{hier}}, \) and \(g_V^{\text{hier}} \).

Algorithm 1 \((\text{Node mapping function } g_V : V(M(n - 1) \mapsto V(S(n))) : \)

```c
mesh_to_star(int n, int \omega[, int \pi[, char funct_type]])
{ int i, int j, int \pi[;]
    \pi[ = \text{choose(funct_type, } m_1m_2);)
    for (i = 3; i < n; i = i + 1)
        for (j = 1; j < m_i; j = j + 1)
            \pi[ ] = \pi[ ] \circ \text{transpose(funct_type, } i, j);)
    \pi[ ] = \pi[ ];
}
```

<table>
<thead>
<tr>
<th>(m_1m_2) (mesh coordinates)</th>
<th>(g_V^{\text{nonh}})</th>
<th>(g_V^{\text{nonh}})</th>
<th>(g_V^{\text{hier}})</th>
<th>(g_V^{\text{hier}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>12345 \ldots n</td>
<td>12345 \ldots n</td>
<td>12345 \ldots n</td>
<td>12345 \ldots n</td>
</tr>
<tr>
<td>10</td>
<td>12345 \ldots n</td>
<td>21345 \ldots n</td>
<td>21345 \ldots n</td>
<td>21345 \ldots n</td>
</tr>
<tr>
<td>01</td>
<td>13245 \ldots n</td>
<td>13245 \ldots n</td>
<td>31245 \ldots n</td>
<td>23145 \ldots n</td>
</tr>
<tr>
<td>11</td>
<td>13425 \ldots n</td>
<td>23145 \ldots n</td>
<td>13245 \ldots n</td>
<td>13245 \ldots n</td>
</tr>
<tr>
<td>02</td>
<td>14235 \ldots n</td>
<td>31245 \ldots n</td>
<td>23145 \ldots n</td>
<td>32145 \ldots n</td>
</tr>
<tr>
<td>12</td>
<td>14325 \ldots n</td>
<td>32145 \ldots n</td>
<td>32145 \ldots n</td>
<td>31245 \ldots n</td>
</tr>
</tbody>
</table>

Table 1: Choices for initial permutation \(\pi_0 \) used by Algorithm 1

<table>
<thead>
<tr>
<th>Mesh dimension (i)</th>
<th>(g_V^{\text{nonh}})</th>
<th>(g_V^{\text{nonh}})</th>
<th>(g_V^{\text{hier}})</th>
<th>(g_V^{\text{hier}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>((1 \ 2)_s \circ (2 \ 3)_s \circ (3 \ 4)_s)</td>
<td>((4 \ 3)_p \circ (3 \ 2)_p \circ (2 \ 1)_p)</td>
<td>((4 \ 3)_s \circ (3 \ 2)_s \circ (2 \ 1)_s)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>((1 \ 2)_s \circ \cdots \circ (4 \ 5)_s)</td>
<td>((5 \ 4)_p \circ \cdots \circ (2 \ 1)_p)</td>
<td>((5 \ 4)_s \circ \cdots \circ (2 \ 1)_s)</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>(n - 1)</td>
<td>((1 \ 2)_s \circ \cdots \circ (n - 1 \ 1)_s)</td>
<td>((n \ n - 1)_p \circ \cdots \circ (2 \ 1)_p)</td>
<td>((n \ n - 1)_s \circ \cdots \circ (2 \ 1)_s)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Sequences of transpositions used by Algorithm 1
<table>
<thead>
<tr>
<th>Mesh node</th>
<th>Star graph node g_V^{mon}</th>
<th>Star graph node g_V^{nonh}</th>
<th>Star graph node g_V^{hier}</th>
<th>Star graph node g_V^{hier}</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
</tr>
<tr>
<td>100</td>
<td>1234</td>
<td>2134</td>
<td>2134</td>
<td>2134</td>
</tr>
<tr>
<td>010</td>
<td>1324</td>
<td>3124</td>
<td>2314</td>
<td>2314</td>
</tr>
<tr>
<td>110</td>
<td>1324</td>
<td>2314</td>
<td>1324</td>
<td>1324</td>
</tr>
<tr>
<td>020</td>
<td>1423</td>
<td>3124</td>
<td>2314</td>
<td>3214</td>
</tr>
<tr>
<td>120</td>
<td>1432</td>
<td>3214</td>
<td>3124</td>
<td>3124</td>
</tr>
<tr>
<td>001</td>
<td>2134</td>
<td>1243</td>
<td>1243</td>
<td>1243</td>
</tr>
<tr>
<td>101</td>
<td>2143</td>
<td>2143</td>
<td>2143</td>
<td>2143</td>
</tr>
<tr>
<td>011</td>
<td>2314</td>
<td>1342</td>
<td>4123</td>
<td>2413</td>
</tr>
<tr>
<td>111</td>
<td>2341</td>
<td>1243</td>
<td>2413</td>
<td>1423</td>
</tr>
<tr>
<td>021</td>
<td>2413</td>
<td>3142</td>
<td>2413</td>
<td>4213</td>
</tr>
<tr>
<td>121</td>
<td>2431</td>
<td>3241</td>
<td>4213</td>
<td>4123</td>
</tr>
<tr>
<td>002</td>
<td>3124</td>
<td>1423</td>
<td>1342</td>
<td>1342</td>
</tr>
<tr>
<td>102</td>
<td>3142</td>
<td>2413</td>
<td>3142</td>
<td>3142</td>
</tr>
<tr>
<td>012</td>
<td>3214</td>
<td>1432</td>
<td>4132</td>
<td>3412</td>
</tr>
<tr>
<td>112</td>
<td>3241</td>
<td>2431</td>
<td>1432</td>
<td>1432</td>
</tr>
<tr>
<td>022</td>
<td>3412</td>
<td>3412</td>
<td>3412</td>
<td>4312</td>
</tr>
<tr>
<td>122</td>
<td>3421</td>
<td>3421</td>
<td>4312</td>
<td>4132</td>
</tr>
<tr>
<td>003</td>
<td>4123</td>
<td>4123</td>
<td>2341</td>
<td>2341</td>
</tr>
<tr>
<td>103</td>
<td>4132</td>
<td>4213</td>
<td>3241</td>
<td>3241</td>
</tr>
<tr>
<td>013</td>
<td>4213</td>
<td>4132</td>
<td>4231</td>
<td>3421</td>
</tr>
<tr>
<td>113</td>
<td>4231</td>
<td>4231</td>
<td>2431</td>
<td>2431</td>
</tr>
<tr>
<td>023</td>
<td>4312</td>
<td>4312</td>
<td>3421</td>
<td>4321</td>
</tr>
<tr>
<td>123</td>
<td>4321</td>
<td>4321</td>
<td>4321</td>
<td>4231</td>
</tr>
</tbody>
</table>

Table 3: Mappings of $M(3)$ into $S(4)$ produced by g_V^{mon}, g_V^{nonh}, g_V^{hier}, and g_V^{hier}.

7
Let g_{nonh}, g_{monoh}, g_{hier}, and g_{hier} denote embeddings of $M(n-1)$ into $S(n)$, which are respectively produced by the node mapping functions g_{nonh}, g_{monoh}, g_{hier}, and g_{hier}. Table 4 depicts a few properties of these embeddings. Proofs for g_{nonh} and g_{monoh} are given in [10] and [7], respectively. The properties of g_{hier} and g_{hier} can be derived similarly.

<table>
<thead>
<tr>
<th>Property</th>
<th>Embedding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilation vector</td>
<td>$[3, \ldots, 3, 1]_{n-2}$</td>
</tr>
<tr>
<td>Average dilation</td>
<td>$\leq 3 - \frac{2}{n-1}$</td>
</tr>
<tr>
<td>Dilation</td>
<td>3</td>
</tr>
<tr>
<td>Expansion</td>
<td>1</td>
</tr>
<tr>
<td>Load</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4: Properties of embeddings of $M(n-1)$ into $S(n)$

Let $a_1 \ldots a_{n-1}$ be a vector of $(n-i)$ integers such that $0 \leq a_i \leq i$ and $i \geq 1$. For some fixed vector $a_1 \ldots a_{n-1}$, we denote the induced submesh formed by all nodes $m_1 \ldots m_i \ldots m_{n-1} \in V(M(n-1))$, such that $m_i \ldots m_{n-1} = a_i \ldots a_{n-1}$, by $M(n-1)[m_i \ldots m_{n-1} = a_i \ldots a_{n-1}]$. g_{hier} maps the nodes in $M(n-1)[m_i \ldots m_{n-1} = a_i \ldots a_{n-1}]$ to an i-dimensional substar of $S(n)$. This can be verified by noting that the nodes of $M(n-1)[m_i \ldots m_{n-1} = a_i \ldots a_{n-1}]$ are mapped to $i!$ distinct permutations whose last $(n-i)$ symbols are fixed. The same property is verified for g_{hier} when $i \geq 3$. For this reason, g_{hier} and g_{hier} are regarded to as hierarchical mapping functions. Because g_{nonh} and g_{monoh} do not possess this property, they are regarded as non-hierarchical mapping functions. g_{hier} and g_{hier} were devised with the intent of producing both small average dilation and small average congestion, which is confirmed by our experimental results (see Sec. 5). We later show, however, that g_{monoh} also produces small congestion metrics when combined with a particular routing algorithm in $S(n)$.

4 Variable-Dilation Embeddings

In this section, we introduce a node mapping function $h_V : V(Q(k)) \mapsto V(M(n-1))$. h_V can be combined with any of the mapping functions $g_V : V(M(n-1)) \mapsto V(S(n))$ given in Subsec. 3.3, producing a composite node mapping function $f_V = h_V \circ g_V$. The corresponding embedding $f : Q(k) \mapsto S(n)$ is shown to have variable dilation. Analytical expressions for the expansion $X(f)$, dilation $d(f)$, and dilation vector $\vec{d}(f)$ are provided, as well as an upper bound on the average dilation $d_{\text{avg}}(f)$.

Fig. 2 depicts an example of the node mapping function h_V we will be describing in this section. h_V produces a variable-dilation embedding $h : Q(4) \mapsto M(3)$ with $X(h) = 1.5$, $\lambda(h) = 1$, $d(h) = 2$, $\overline{d(h)} = [1, 1, 1, 2]$, and $d_{\text{avg}}(h) = 1.25$. Assume we use $f_V = h_V \circ g_{\text{hier}}$ to construct a variable-dilation embedding $f_{\text{hier}} : V(Q(4)) \mapsto V(M(3))$. Using results that are presented later in this
section, it is possible to verify that \(X(f_{\text{hier}}) = 1.5, \lambda(f_{\text{hier}}) = 1, d(f_{\text{hier}}) = 4, \overline{d}(f_{\text{hier}}) = [1, 2, 3, 4], \) and \(d_{\text{av}}(f_{\text{hier}}) \leq 2.5. \)

![Hypercube dimensions](image)

Figure 2: A variable-dilation embedding \(h : Q(4) \mapsto M(3) \)

A preliminary result used by our variable-dilation embeddings follows.

Lemma 1 \(Q(k) \) can be embedded into \(M(n - 1) \) with load 1, dilation 1, if \(k \leq n - 1 \).

The proof of Lemma 1 is straightforward and is omitted here. The following algorithm implements a node mapping function \(h_V : V(Q(k)) \mapsto V(M(n - 1)) \), which produces an embedding \(h \) with the properties stated by Lemma 1.

Algorithm 2 (Node mapping function \(h_V : V(Q(k)) \mapsto V(M(n - 1)), k \leq n - 1 \):

```c
cube_to_mesh (int k, int \phi[ ], int \omega[ ], int origin[ ])
{
    int i;
    for (i = 1; i <= k; i = i + 1) \omega[i] = \phi[i] + origin[i];
}
```

In Alg. 2, \(\phi \) and \(\omega \) respectively denote a node of \(Q(k) \) and its image in \(M(n - 1) \) (i.e., \(\omega = h_V(\phi) \)). The argument \(\text{origin} \) is a vector of \((n - 1) \) integers, such that \(\text{origin}_i < i, 1 \leq i \leq n - 1 \). For \(k = n - 1 \), the node image \(h(Q(n - 1)) \) contains the mesh nodes that match the pattern \(m_0^* \ldots m_{n-1}^* \), where either \(m_0^* = \text{origin} \) or \(m_0^* = \text{origin} + 1 \).

With multiple calls to Alg. 2 and a proper selection of the argument \(\text{origin} \), one can embed multiple image-disjoint copies of \(Q(n - 1) \) into \(M(n - 1) \). This principle is the basis for packing hypercubes into \(S(n) \) [7]. Packed \(Q(n - 1) \)'s can be hierarchically joined to form larger hypercubes. For example, in Fig. 2, a disjoint union \(Q_0(3) \cup Q_1(3) \) is packed into \(M(3) \) by using calls to Alg. 2 with \(\text{origin} = 000 \) and \(\text{origin} = 002 \). The hierarchical join of \(Q_0(3) \) and \(Q_1(3) \) produces a variable-dilation embedding of \(Q(4) \) into \(M(3) \).

Theorem 1 Let \(F(x, y) = x(y + 1) - 2^{x+1} + 2 \), and let \(n, \ell, \) and \(k \) be integers such that \(n \geq 4, 2 \leq \ell \leq \lceil \log_2 n \rceil, \) and \(F(\ell - 1, n) \leq k \leq F(\ell, n) \). There is a load 1 variable-dilation embedding \(h : Q(k) \mapsto M(n - 1) \), whose dilation along dimension \(i \) of \(Q(k) \) is:
\[
\begin{align*}
 d_i(h) &= \begin{cases}
 1, & \text{if } 0 < i \leq F(1, n) \\
 2, & \text{if } F(1, n) < i \leq F(2, n) \\
 4, & \text{if } F(2, n) < i \leq F(3, n) \\
 \vdots & \vdots \\
 2^\varepsilon - 1, & \text{if } F(\varepsilon - 1, n) < i \leq F(\varepsilon, n), 1 \leq \varepsilon < \ell \\
 \vdots & \vdots \\
 2^\varepsilon - 1, & \text{if } F(\ell - 1, n) < i \leq k,
 \end{cases}
\end{align*}
\]

Proof: Throughout the proof, we denote dimensions of \(M(n-1) \) and of \(Q(k) \) by \(\bar{i} \) and \(i \), respectively.

We hierarchically join \(Q(n - 1) \)'s in a disjoint union \(U = \bigcup_{j=0}^{2^n-1} Q_j(n - 1) \) to form \(Q(k) \). Each \(Q_j(n - 1) \) in \(U \) can be embedded into \(M(n - 1) \) with dilation 1, which is due to Lemma 1. Noting that \(F(1, n) = n - 1 \), we have \(d_i(h) = 1 \), if \(0 < i \leq F(1, n) \).

Let \(s_i = \bar{i} + 1 \) denote the width of \(M(n - 1) \) along dimension \(\bar{i} \). If \(n \geq 4 \), there are \(n - 3 \) dimensions \(\bar{i} \) of \(M(n - 1) \) for which \(s_i \geq 4 \). Noting that \(F(2, n) = 2n - 4 = F(1, n) + n - 3 \), let \(F(1, n) < i \leq F(2, n) \). \(Q(i) \) can be embedded into \(M(n - 1) \) as follows. Let \(\text{vec}[\bar{i}] = u_1 \ldots u_s \) be a vector of \(z \) integers. Let \(p \) and \(s \) be indices such that \(1 \leq p, s \leq z \), and let \(a \) be an integer. We define an operator \(\boxplus \) such that \(\text{vec}[\bar{i}] \boxplus (a, p, s) = u'_p \ldots u'_s \ldots u'_z \), where \(u'_p = a \) if \(u_s \neq 0 \), and \(u'_z = 0 \) otherwise. Thus, \(\boxplus(a, p, s) \) removes integers \(u_{p+1} \ldots u_s \) from \(\text{vec}[\bar{i}] \), and replaces each non-null \(u_i \) with \(a \). Let \(\text{bin}_j[\bar{i}] = u_1 u_2 \ldots u_{n-1} \) be the binary code for the index \(j \) of each \(Q_j(n - 1) \) in \(U \), where \(u_1 \) is the LSB. For \(0 \leq j < 2^n-1 \), we embed \(Q_j(n - 1) \) into \(M(n - 1) \) using Alg. 2 with \(\text{origin}(j) = 00 \ldots 0 \| (\text{bin}_j[\bar{i}] \boxplus (2, 1, i - n + 1)) \), where \(\| \) denotes concatenation.

The \(2^n - 1 \) copies of \(Q(n - 1) \) can be joined hierarchically to produce a variable-dilation embedding \(h : Q(i) \mapsto M(n - 1) \). Dimension \(i \) links of \(Q(i) \), \(F(1, n) < i \leq F(2, n) \), are mapped to paths which contain two dimension \(i \) links of \(M(n - 1) \), \(\bar{i} = i - n + 3 \). Thus, \(d_i(h) = 2 \), if \(F(1, n) < i \leq F(2, n) \). For example, a variable-dilation embedding \(h : Q(6) \mapsto M(4) \) is formed by augmenting the packing \(P : Q_0(4) \cup Q_1(4) \cup Q_2(4) \cup Q_3(4) \mapsto M(4) \) with the dimension 5 and 6 links that exist in \(Q(6) \). In this example, \(\text{origin}(0) = 0000, \text{origin}(1) = 0020, \text{origin}(2) = 0002, \) and \(\text{origin}(3) = 0022 \).

Extensions of the technique described above can be derived for \(n \geq 8, n \geq 16 \), and so on. In general, for each \(\varepsilon \geq 1 \), if \(n \geq 2^\varepsilon \), there are \(n - 2^\varepsilon + 1 \) distinct dimensions \(i \) of \(M(n - 1) \) for which \(s_i \geq 2^\varepsilon \). One can form \(n - 2^\varepsilon + 1 \) distinct dimensions \(i \) of \(Q(k) \) as follows. Dimension \(i \) links of \(Q(k) \), such that \(\sum_{i=1}^{n-1}(n - 2^\varepsilon + 1) \leq i \leq \sum_{i=1}^{n-1}(n - 2^\varepsilon + 1) \) (or \(F(\varepsilon - 1, n) \leq i \leq F(\varepsilon, n) \)), are mapped into paths containing \(2^\varepsilon - 1 \) dimension \(i - F(\varepsilon - 1, n) + 2^\varepsilon - 2 \) links of \(M(n - 1) \), which produces dilation \(d_i(h) = 2^\varepsilon - 1 \). This holds if \(\varepsilon < \ell \), where \(\ell \) is selected such that \(F(\ell - 1, n) \leq k \leq F(\ell, n) \), under the restriction \(2 \leq \ell \leq \lfloor \log_2 n \rfloor \). □

Algorithm 3 implements a node mapping function \(h_V : V(Q(k)) \mapsto V(M(n - 1)) \) according to the technique described in the proof of Theorem 1.
Algorithm 3 *(Node mapping function \(h_V : V(Q(k)) \mapsto V(M(n-1)) \))*:

```plaintext
var cube_to_mesh (int n, int k, int \( \phi[i] \), int \( \omega[i] \))
    { int i;
        for (i = 1; i < n; i++) \( \omega[i] = 0; \)
        for (\( e = 1; F(e - 1, n) < k; e = e + 1 \))
            for (\( i = F(e - 1, n) + 1; i \leq \min(F(e, n), k); i = i + 1 \))
                \( \omega[i - F(e - 1, n) + 2^e - 2] = \omega[i - F(e - 1, n) + 2^e - 2] + 2^{e-1}\phi[i]; \}
    int F(int x, int y)
    { return((\( x(y + 1) - 2^{x+1} + 2 \)); }
```

The composite node mapping functions \(f_{V_{nonh}}, f_{V_{nonh}}^{\text{hier}}, f_{V_{hier}}, \) and \(f_{V_{hier}}^{\text{hier}} \) can be generically described by the following algorithm:

Algorithm 4 *(Node mapping function \(f_V : V(Q(k)) \mapsto V(S(n)) \))*:

```plaintext
var cube_to_star (int n, int k, int \( \phi[i] \), int \( \pi[i] \), char functype)
    { int i, int \( \omega[i] \);)
        var cube_to_mesh (n, k, \( \phi, \omega \));
        mesh_to_star (n, \( \omega, \pi, \text{functype} \) )
```

Lemma 2 gives some interesting properties of the mapping functions \(g_V \) discussed in Subsection 3.3. These properties relate to the dilation in \(S(n) \) produced along dimension \(i \) links of \(Q(k) \), when \(i > n - 1 \). For example, it is known that dimension \(n \) links of \(Q(k) \) have dilation \(d_n(h) = 2 \) in \(M(n-1) \) (Theorem 1). Moreover, \(h : Q(k) \mapsto M(n-1) \) maps dimension \(n \) links of \(Q(k) \) to a path containing exactly two dimension 3 links of \(M(n-1) \). Using this fact and Table 4, one should expect that dimension \(n \) links of \(Q(k) \) have dilation \(d_n(f) = 2 \times 3 \) in \(S(n) \). In fact, an embedding \(f : Q(k) \mapsto S(n) \) using any of the composite node mapping functions \(f_V = h_n \circ g_V \) yields \(d_n(f) = 4 \), which is due to Lemma 2.

Lemma 2 Let \(\omega = m_1 \ldots m_{i-1} m_i m_{i+1} \ldots m_{n-1} \) and \(\omega_{i,\theta} = m_1 \ldots m_{i-1}(m_i + \theta)m_{i+1} \ldots m_{n-1} \) be mesh nodes connected by a path containing \(\theta \) dimension \(i \) links of \(M(n-1) \), where \(1 \leq i < n \) and \(1 \leq \theta \leq i \). Let \(g_V \) be one of the node mapping functions \(g_{V_{nonh}}^{n}, g_{V_{nonh}}^{m}, g_{V_{hier}}^{n}, \) and \(g_{V_{hier}}^{m} \), and let \(dist_S(g_V(\omega), g_V(\omega_{i,\theta})) \) denote the distance in \(S(n) \) between the images \(g_V(\omega) \) and \(g_V(\omega_{i,\theta}) \). Then:

\[
\text{dist}_S(g_{V_{nonh}}^{n}(\omega), g_{V_{nonh}}^{m}(\omega_{i,\theta})) \leq \begin{cases}
\theta + 2, & \text{if } 0 < i < n - 1 \\
\theta, & \text{if } i = n - 1
\end{cases}
\] \(\text{(5)} \)

\[
\text{dist}_S(g_{V_{nonh}}^{m}(\omega), g_{V_{nonh}}^{m}(\omega_{i,\theta})) \leq \theta + 2
\] \(\text{(6)} \)

\[
\text{dist}_S(g_{V_{hier}}^{n}(\omega), g_{V_{hier}}^{m}(\omega_{i,\theta})) \left\{ \begin{array}{ll}
= 1, & \text{if } i = 1 \\
\leq \theta + 1, & \text{if } i = 2 \\
\leq \theta + 2, & \text{if } 3 \leq i \leq n - 1
\end{array} \right.
\] \(\text{(7)} \)
\[\text{dist}_S(g^\text{thier}_V(\omega), g^\text{thier}_V(\omega_i)) = \begin{cases} 1, & \text{if } i = 1 \text{ and } m_2 \leq 1 \\ 3, & \text{if } i = 1 \text{ and } m_2 = 2 \\ \leq \theta + 1, & \text{if } i = 2 \\ \leq \theta + 2, & \text{if } 3 \leq i \leq n - 1 \end{cases} \] (8)

Proof: Omitted. The interested reader is referred to [7] for a proof for \(g^m_{nonh} \). The remaining cases can be derived similarly.

The following theorem states the properties of our variable-dilation embeddings \(f: Q(k) \mapsto S(n) \).

Theorem 2 Let \(F(x, y) = x(y + 1) - 2^{x+1} + 2 \), and let \(n, \ell, k \) be integers such that \(n \geq 4 \), \(2 \leq \ell \leq \lfloor \log_2 n \rfloor \), and \(F(\ell - 1, n) < k \leq F(\ell, n) \). Let \(\gamma_i = 0 \) if \(i = F(z, n) \), for some \(z \) such that \(1 \leq z \leq \ell \), and \(\gamma_i = 2 \) otherwise. Let \(f \) be one of the node mapping functions \(f^\text{nonh}_V, f^\text{nonh}_V, f^\text{thier}_V, \) and \(f^\text{thier}_V \), and let \(f: Q(k) \mapsto S(n) \) be one of the corresponding embeddings \(f^\text{nonh}_V, f^\text{nonh}_V, f^\text{thier}_V, \) and \(f^\text{thier}_V \) generated by \(f_V \). Then, \(\lambda(f) = 1 \), \(X(f) = \frac{n!}{2^x} \), \(d(f) = \max \{d_i(f)\} \), and \(d_{\text{avr}}(f) \leq \frac{\sum_{i=1}^{k} d_i(f)}{k} \), where:

\[
d_i(f^\text{nonh}_V) = \begin{cases} 1 + \gamma_i, & \text{if } 0 < i \leq F(1, n) \\ 2 + \gamma_i, & \text{if } F(1, n) < i \leq F(2, n) \\ \vdots & \vdots \\ 2^{\ell-1} + \gamma_i, & \text{if } F(\ell - 1, n) < i \leq k, \end{cases}
\] (9)

\[
d_i(f^\text{nonh}_V) = \begin{cases} 3, & \text{if } 0 < i \leq F(1, n) \\ 4, & \text{if } F(1, n) < i \leq F(2, n) \\ \vdots & \vdots \\ 2^{\ell-1} + 2, & \text{if } F(\ell - 1, n) < i \leq k, \end{cases}
\] (10)

\[
d_i(f^\text{thier}_V) = d_i(f^\text{thier}_V) = \begin{cases} 1, & \text{if } i = 1 \\ 2, & \text{if } i = 2 \\ 3, & \text{if } 2 < i \leq F(1, n) \\ 4, & \text{if } F(1, n) < i \leq F(2, n) \\ 6, & \text{if } F(2, n) < i \leq F(3, n) \\ \vdots & \vdots \\ 2^{\ell-1} + 2, & \text{if } F(\ell - 1, n) < i \leq k, \end{cases}
\] (11)

Proof: Follows from Theorem 1 and Lemma 2. \(\Box \)
5 Routing and Simulation Results

5.1 Preliminaries

We developed a simulation tool to characterize other important metrics of our variable-dilation embeddings. These include exact measures for the average dilation, average congestion, congestion, and congestion induced by dimension i links of $Q(k)$ (see Section 2 for definitions). Currently, the tool supports all of the node mapping functions $f_{v}^{\text{nonh}}, f_{v}^{\text{nonh}}, f_{v}^{\text{hier}},$ and f_{v}^{hier}.

Performance metrics are produced for any combination of node mapping function f_{v} and a routing algorithm r_{S} in $S(n)$. We recall that a complete characterization of congestion metrics is only possible when the specification of an embedding $f : Q(k) \rightarrow S(n)$ includes a mapping of links of $Q(k)$ into paths of $S(n)$. The previously defined node mapping functions f_{v} give only partial knowledge about such paths. Namely, a link $(u, v) \in E(Q(k))$ is mapped to a path $f_{v}(u, v)$ with endpoints $f_{v}(u)$ and $f_{v}(v)$. However, it is often the case that a shortest path between $f_{v}(u)$ and $f_{v}(v)$ in $S(n)$ is not unique [11].

Paths in $S(n)$ can be uniquely specified if a deterministic routing algorithm r_{S} is assumed for $S(n)$. While this approach does not precisely capture highly non-deterministic routing algorithms, it still provides valuable insight into routing algorithms that are only partially non-deterministic (e.g., adaptive algorithms with a dominant routing rule).

Our simulation tool currently supports four deterministic routing algorithms in $S(n)$, which are described in the next subsection.

5.2 Routing algorithms in $S(n)$

The currently available selections of routing algorithms are fairly simple and do not include heuristics to optimize congestion. Some investigation on augmenting the algorithms with congestion-optimizing heuristics is the object of ongoing research. The results obtained so far, however, do not indicate significant improvements on the congestion metrics (at least for the more favorable combinations of node mapping function f_{v} and routing algorithm r_{S}). This is due to uniformity considerations: good combinations of f_{v} and r_{S} produce a fairly uniform distribution of congestion on the links of $S(n)$, which produces small average congestion (see Subsec. 5.3).

In the remainder of this subsection, we discuss four deterministic routing algorithms, which we denote by $r_{S}^{\text{can}}, r_{S}^{\text{can}}, r_{S}^{\text{can}},$ and r_{S}^{can}. We refer to these algorithms as canonical routing, reverse canonical routing, even-only canonical routing, and odd-only canonical routing, respectively. A common feature of these algorithms is that they all compute shortest-length paths. Thus, the average dilation metric computed for an embedding does not depend on the choice of routing algorithm. Another positive aspect of the currently supported routing algorithms is that they can be easily rendered in hardware.

Let $\pi_{s} = f_{v}(u)$ and $\pi_{d} = f_{v}(v)$ respectively denote the source and the destination of a path $f(u, v)$ used by $f : Q(k) \rightarrow S(n)$. Due to symmetry properties of $S(n)$, routing from π_{s} to π_{d} is equivalent to routing from π_{ds} to π_{0}, where $\pi_{ds} = \pi_{d}^{-1} \circ \pi_{s}$, $\pi_{0} = 123 \ldots n$ is the identity node of $S(n)$, and π_{d}^{-1} is the inverse or reciprocal of permutation π_{d} [1].

We may organize the symbols of permutation π_{ds} as a set of cycles – i.e. cyclically ordered
sets of symbols with the property that each symbol’s desired position is that occupied by the next symbol in the set. A permutation $\pi_{ds} = 265431$, for example, can be written in cyclic format as $(1 2 6)(3 5)(4)$. Note that any symbol already in its correct position appears as a 1-cycle. The cyclic representation of a permutation is not unique: the cycles can appear in any order, and the symbols within each cycle may be rotated. A standard representation is referred to as the canonical format [12], in which: 1) the smallest symbol appears first in each cycle, and 2) cycles are ordered from left to right in decreasing order according to their first symbol. Equivalently, the reverse canonical format is one in which: 1) the largest symbol appears first in each cycle which do not contain symbol 1, 2) the smallest symbol (i.e., 1) appears first in the cycle which contains symbol 1, and 3) cycles are ordered from left to right in increasing order according to their first symbol. Thus, the canonical and the reversal canonical representations of 265431 are respectively $(4)(3 5)(1 2 6)$ and $(1 2 6)(4)(5 3)$.

Let $C_a = (a_1, a_2 \ldots, a_r)$ be an r-cycle included in π_{ds} $(2 \leq r \leq n)$. The permutation produced from π_{ds} by moving the symbols in C_a to their correct positions is $\pi_{ds} \circ (a_1, a_2 \ldots, a_r)_p$, where $(a_1, a_2 \ldots, a_r)_p$ denotes the execution of C_a. We can express $(a_1, a_2 \ldots, a_r)_p$ by a sequence of transpositions as follows [11]:

$$(a_1, a_2 \ldots, a_r)_p = \left\{ \begin{array}{ll}
(1 a_2)_p \circ (1 a_3)_p \circ \ldots \circ (1 a_r)_p, & \text{if } a_1 = 1 \\
(1 a_1)_p \circ (1 a_2)_p \circ (1 a_3)_p \circ \ldots \circ (1 a_r)_p \circ (1 a_1)_p, & \text{if } a_1 \neq 1
\end{array} \right. \quad (12)$$

The following deterministic rules are used by the routing algorithms supported by our simulation tool. All four algorithms execute cycles from left to the right. In r^{ca}_S, π_{ds} is always written in canonical format. In r^{rc}_S, π_{ds} is always written in reverse canonical format. r^{rc}_S uses the canonical format if the source node $\pi_s = f_1(u)$ is even-ranked, and the reverse canonical format otherwise. r^{ca}_S is the opposite of r^{rc}_S. A simple convention determines if the rank of $f_1(u) \in V(S(n))$ is even or odd, and consists of verifying the LSB of u’s label, $u \in V(Q(k))$.

5.3 Simulation results

Figures 3 and 4 respectively depict the average dilation and the average congestion produced by our variable-dilation embeddings. Each plot in those figures corresponds to one of the node mapping functions f_V presented earlier in the paper. Moreover, in Figure 4, the routing algorithm r_S which produces the smallest average congestion for a given node mapping function is indicated. A summary of performance metrics is given in Table 5, which is intended to help the reader identify combinations of f_V and r_S which produce overall minima on a number of metrics, for several possible embeddings $f : Q(k) \mapsto S(n)$. We consider the cases $2 \leq k \leq 16$ and $4 \leq n \leq 9$, which correspond respectively to hypercubes of sizes 4 through 65,536, and star graphs of sizes 24 through 362,880.

As far as average dilation is concerned, f^{hier}_V achieves the best results among all embeddings shown in Table 5. Values shown in Figures 3a, 3b, 3c, and 3d lie in the ranges $[2.25, 3.34], [2.00, 3.45], [1.50, 3.07], \text{and } [1.50, 3.09]$, respectively. In fact, f^{hier}_V achieves average dilation which is only slightly better than that produced by f^{hier}_V. As a rule of thumb, hierarchical mapping functions achieve smaller average dilation than the non-hierarchical mapping functions f^{nonh}_V and f^{nonh}_V.
As far as routing algorithms and average congestion are concerned, we made the following observations. Non-hierarchical mapping functions perform considerably better when used in combination with the canonical routing algorithm \(r_S^{can} \). Using either one of \(f_V^{nonh} \) or \(f_V^{nonh} \) with \(r_S^{can} \) increases all of the congestion metrics. Hierarchical mapping functions have an opposite behavior, and should be selected in star graphs with reverse canonical routing capabilities. \(r_S^{can} \) and \(r_S^{can} \) produced congestion metrics which lie between the minima and maxima obtained with \(r_S^{can} (r_S^{can}) \) and \(r_S^{can} (r_S^{can}) \), when used in combination with hierarchical and non-hierarchical mapping functions, respectively.

\(f_V^{hier} \), used in combination with \(r_S^{can} \), achieves smaller average congestion in all but one embedding shown in Table 5. The combination \(f_V^{hier} + r_S^{can} \) also demonstrates the capability of producing congestion 1 embeddings of \(Q(k) \) into \(S(n) \), when \(k \leq n - 1 \). Because \(f_V^{hier} \) produces average dilation which is very close to that produced by \(f_V^{hier} \), the combination \(f_V^{hier} + r_S^{can} \) appears to be a strong candidate for minimizing the communication slowdown of our embeddings.

Values shown in Figures 4a, 4b, 4c, and 4d lie in the ranges \([1.00, 4.94], [1.21, 2.93], [1.08, 3.60], \) and \([1.00, 3.01], \) respectively. \(f_V^{nonh} \), used in combination with \(r_S^{can} \), also performs quite well,
especially in embeddings of large hypercubes. In fact, minima on congestion are often produced by this combination when \(k \geq 10 \). An analysis of log files produced by our simulator reveals that \(f_V^{nonh} + r_S^{can} \) consistently produces a fairly uniform distribution of congestion on the links of \(S(n) \), which explains this result.

The careful reader might notice a few larger measures for dilation and congestion in Table 5, particularly in embeddings of large hypercubes into \(S(n) \). It should be noted, however, that our embeddings are aimed at producing small average dilation and small average congestion. These metrics provide a good approximation for the communication slowdown induced by an embedding [8], and should be minimized if performance is at stake. For all the embeddings shown in Table 5, the average dilation and the average congestion will respectively lie in the ranges [1.50,3.09] and [1.00,3.01], if the combination \(f_V^{hier} + r_S^{can} \) is used. To further illustrate the discussion, Table 6 compares some of our variable-dilation embeddings with those of Nigam, Sahni, and Krishnamurthy.
<table>
<thead>
<tr>
<th>Embedding $Q(k) \mapsto S(n)$</th>
<th>Average dilation λ</th>
<th>Average congestion $\mu(n)$</th>
<th>Dilation ρ</th>
<th>Congestion γ</th>
<th>Congestion due to dimension i links of $Q(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q(2) \mapsto S(n), n \geq 4$</td>
<td>$1.50 (c^,d^)$</td>
<td>$1.00 (a,d)$</td>
<td>$2 (c^,d^)$</td>
<td>$1 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(3) \mapsto S(4)$</td>
<td>$1.83 (c^*)$</td>
<td>$1.00 (a,d)$</td>
<td>$3 (all^*)$</td>
<td>$1 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(4) \mapsto S(5)$</td>
<td>$2.00 (c^*)$</td>
<td>$1.88 (d)$</td>
<td>$3 (all^*)$</td>
<td>$1 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(5) \mapsto S(6)$</td>
<td>$2.12 (c^*)$</td>
<td>$1.52 (d)$</td>
<td>$4 (all^*)$</td>
<td>$1 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(6) \mapsto S(7)$</td>
<td>$2.29 (c^*)$</td>
<td>$2.14 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(7) \mapsto S(8)$</td>
<td>$2.35 (c^*)$</td>
<td>$1.77 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(8) \mapsto S(9)$</td>
<td>$2.48 (c^*)$</td>
<td>$2.18 (d)$</td>
<td>$4 (all^*)$</td>
<td>$7 (d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(9) \mapsto S(10)$</td>
<td>$2.52 (c^*)$</td>
<td>$1.89 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(10) \mapsto S(11)$</td>
<td>$2.62 (c^*)$</td>
<td>$2.16 (d)$</td>
<td>$4 (all^*)$</td>
<td>$8 (b)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(11) \mapsto S(12)$</td>
<td>$2.56 (c^*)$</td>
<td>$1.71 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(12) \mapsto S(13)$</td>
<td>$2.52 (c^*)$</td>
<td>$1.40 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a,d)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(13) \mapsto S(14)$</td>
<td>$2.64 (c^*)$</td>
<td>$1.94 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(14) \mapsto S(15)$</td>
<td>$2.59 (c^*)$</td>
<td>$1.60 (d)$</td>
<td>$4 (all^*)$</td>
<td>$5 (a)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(15) \mapsto S(16)$</td>
<td>$2.73 (c^*)$</td>
<td>$2.14 (d)$</td>
<td>$4 (all^*)$</td>
<td>$8 (b)$</td>
<td>$\leq 2 (all)$</td>
</tr>
<tr>
<td>$Q(16) \mapsto S(17)$</td>
<td>$2.81 (c^*)$</td>
<td>$2.12 (d)$</td>
<td>$4 (all^*)$</td>
<td>$8 (b)$</td>
<td>$\leq 2 (all)$</td>
</tr>
</tbody>
</table>

Legend:
(a): Node mapping function f_{nonb}, routing algorithm $r^{s_{nonb}}$
(b): Node mapping function f_{m-nonb}, routing algorithm $r^{s_{m-nonb}}$
(c): Node mapping function f_{hier}, routing algorithm $r^{s_{hier}}$
(d): Node mapping function $f_{s_{hier}}$, routing algorithm $r^{s_{s_{hier}}}$
(all): applicable to (a),(b),(c), and (d)
(a*): Node mapping function f_{nonb}, routing algorithm = irrelevant
(b*): Node mapping function f_{m-nonb}, routing algorithm = irrelevant
(c*): Node mapping function f_{hier}, routing algorithm = irrelevant
(d*): Node mapping function $f_{s_{hier}}$, routing algorithm = irrelevant

(all*): applicable to (a*),(b*),(c*), and (d*)

Table 5: Summary of performance metrics
Because previous works on embeddings of \(Q(k)\) into \(S(n)\) did not consider congestion metrics, we do not have here a basis for comparison. We do claim, however, that our variable-dilation embeddings consistently produce both small average congestion and small average dilation, and will also achieve small dilation and small congestion for many combinations of \(k\) and \(n\) (see Table 5).

<table>
<thead>
<tr>
<th>Embedding (Q(8) \leftrightarrow S(6))</th>
<th>Expansion(Q(8) \leftrightarrow S(6))</th>
<th>Dilation (Q(8) \leftrightarrow S(6))</th>
<th>Average dilation (Q(8) \leftrightarrow S(6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q(8) \leftrightarrow S(6))</td>
<td>2.81</td>
<td>4</td>
<td>2.48</td>
</tr>
<tr>
<td>(Q(10) \leftrightarrow S(7))</td>
<td>4.92</td>
<td>4</td>
<td>2.62</td>
</tr>
<tr>
<td>(Q(13) \leftrightarrow S(8))</td>
<td>4.92</td>
<td>4</td>
<td>2.87</td>
</tr>
<tr>
<td>(Q(16) \leftrightarrow S(9))</td>
<td>5.54</td>
<td>4</td>
<td>3.07</td>
</tr>
</tbody>
</table>

Table 6: Comparison with related work

As a final comment on the performance metrics shown in Table 5, we point out that several of our embeddings produce congestion 1 or 2 on the links of \(S(n)\) when a single dimension of \(Q(k)\) is used. This is particularly important for algorithms which employ only a fraction of the links of \(Q(k)\) at any point of their execution (e.g., algorithms based on the SIMD model of computation).

6 Conclusion

This paper presented novel techniques for embedding a hypercube into a star graph, which is considered an attractive network for parallel processing. Our embeddings are designed for performance, and consistently produce small average dilation and small average congestion. We achieve these goals simultaneously by employing variable-dilation embeddings, and a careful selection of node mapping functions and routing algorithms. Altogether, the paper discusses four options each of node mapping functions and routing algorithms, which have fairly simple specifications. An extensive performance characterization of our embeddings is given in the paper, which includes the first results on congestion metrics for embeddings of \(Q(k)\) into \(S(n)\) we have knowledge of. Our techniques demonstrated the possibility of embedding large hypercubes into the star graph, with corresponding small expansion while producing both small average dilation and small average congestion. On continued research, we intend to expand our investigation on congestion metrics to a related technique introduced by the authors. Such a technique is referred to as packing, and can produce even smaller expansion by creating multiple node-disjoint embeddings of hypercubes into a star graph.

References

