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ABSTRACT

We propose a novel distortion minimization technique for

the transmission of a packetized progressive bitstream. We

consider tandem channels introducing bit errors and packet

erasures. We formalize the distortion minimization problem

as a constrained optimization problem and propose an algo-

rithm that optimally allocates the available budget between

the bit error and packet loss protection components. We

show that our proposed optimization technique is robust and

has a linear complexity in the transmission rate. Numerical

results show the effectiveness of the proposed algorithm.

1. INTRODUCTION

Embedded coding is the ability of a source coder to allow

a decoder to progressively reconstruct its data at different

bit rates from the prefixes of a single bitstream. Practi-

cal implementations of progressive encoders include SPIHT

[7] for still image coding, and scalable H.264/AVC [8] for

video coding. The embedded capability of progressive en-

coders, however, comes at the expense of high sensitivity to

transmission noise and the possibility of error propagation.

Therefore, progressive transmission over noisy channels has

to be accompanied with appropriate channel coding or joint

source-channel coding schemes.

Joint source-channel coding of progressive bitstreams

has been studied by many researchers. Concatenated coding

[2, 9], dynamic programming [2, 3, 4], exhaustive search

[9], and gradient-based optimization [1, 6, 13] are among

the techniques used to solve different variants of the latter

problem. In [13], we applied a gradient-based optimization

method to the transmission of progressive bitstreams over

tandem channels characterized by bit errors and packet era-

sures.

The above-mentioned algorithms are either sub-optimal

in the distortion sense, or have a best case O(N log N) com-

plexity in the number of packets N . Gradient-based tech-

niques are also sensitive to the initial conditions, and may

fail to find the global optimum. In [5], we introduced a lin-

ear complexity distortion minimization technique for chan-

nels that only introduce bit errors. This latter algorithm is

globally optimal for sources with exponential Distortion-

Rate (D-R) function (e.g., Gauss-Markov), and is also very

effective for arbitrary progressively encoded sources. More-

over, the proposed algorithm eliminates the need for a closed-

form and smooth D-R function of the source that is used in

many of the gradient-based techniques such as our work of

[13].

The low complexity of our proposed algorithm in [5]

makes it particularly useful in applications involving real-

time deadlines such as video transmission. Our objective

in this paper is to extend the latter algorithm to the case of

tandem channels, where both bit errors and packet erasures

are present. We propose a linear-complexity algorithm that

minimizes the distortion for a tandem channel. Moreover,

we show that our proposed algorithm can optimally allocate

the available budget between the bit error and packet era-

sure components. We thus eliminate the need for a design

parameter to specify the latter budget allocation which was

a shortcoming of [13].

The structure of this paper is as follows. In Section 2,

we formulate our distortion-optimal problems and present

our proposed solutions to them. We present our numerical

results in Section 3. Finally, Section 4 concludes this paper.

2. ANALYSIS

We first consider the problem of transmitting a progressively

encoded bitstream over a channel that only introduces bit

errors. We use N packets of length L symbols with a total

budget of BT = NL symbols. As shown in Fig. 1(a), the

ith packet consists of Ci channel coding symbols together

with bi data symbols. The expected distortion of the N -

packet transmitted bitstream can be written as [13]:

JN =
N+1∑

i=1

Di−1Ψi

i−1∏

j=1

(1 − Ψj) (1)

where Ψi is the failure probability of packet i and Di is the

distortion associated with the first i packets. The boundary



Fig. 1. Optimization problem with bit errors only (a) origi-

nal optimization problem (b) packet by packet optimization

problem.

conditions for the above equations are ΨN+1 = 1 and D0 =
σ2 where σ2 is the source variance. Variables Di and Ψi

depend on the choice of the source coder, channel model as

well as error statistics, and the choice of Ci’s. The goal is to

find a set of Ci’s that minimize this distortion.

A global search over all possible parity combinations

requires LN cost function evaluations which is impracti-

cal. We can reduce this number by making an unequal error

protection (UEP) assumption in the form of C1 ≥ C2 ≥
· · · ≥ CN which is quite reasonable for a progressively en-

coded bitstream. Even with the UEP assumption, the num-

ber of function evaluations increases very quickly with L
and N . As an alternative approach, one can try to solve a

constrained nonlinear optimization problem in the form of:

min
C1,···,CN

JN (2)

Subject To: 0 ≤ Ci < L, i ∈ {1, · · · , N} (3)

In [5], we solved the optimization problem (2) using a

packet by packet approach as shown in Fig. 1(b). We solve

N single-variable optimization problems instead of solving

an optimization problem with N decision variables. The

ith optimization problem consists of i packets, but only the

first packet has to be optimized. Let us use superscript i as

an index for the ith optimization problem. Ci
j and Ψi

j then

represent the number of channel coding symbols and the

failure probability of the jth packet in the ith optimization

problem, respectively. Our optimization algorithm can be

formalized as the following:

Algorithm A1

• Find C1
1 ∈ {0, 1, · · · , L − 1} that minimizes the ex-

pected distortion for a single packet.

• For i = 2, · · · , N
– Set Ci

j = Ci−1
j−1 j = 2, · · · , i.

– Find Ci
1 ∈ {0, · · · , L − 1} that minimizes the

expected distortion for i packets.

• {CN
1 , · · · , CN

N } is the optimal solution.

It can be proved that A1 is optimal for the class of sources

satisfying the following condition [5]:

D(n + ∆n) =
D(n)D(∆n)

D(0)
∆n ≤ L (4)

In the above equation, D(n) is the distortion associated with

the first n information symbols. As an example, a Gauss-

Markov source has an asymptotic D-R function in the form

of an exponential D(n) = αe−βn that satisfies the optimal-

ity condition (4). Simulation results show that A1 also pro-

vides good results for sources characterized by piecewise

exponential D-R functions. The latter condition is practi-

cally met for a wide range of sources and as a result, A1

can be applied to all such sources.

The worst-case complexity of A1 is O(NL). In other

words, it is linear in the transmission rate. Notice that by in-

voking the UEP assumption, we can limit the search space

for Ci
1 to the set {Ci

2, · · · , L−1}. This will usually not com-

promise the optimality of the algorithm. The search space

can be further limited based on the allowable code rates.

In deriving A1, we have made no assumptions on the

channel model and the channel coding scheme used. A1

is applicable to any system so long as the bitstream is pro-

gressively encoded. While the choice of the source coder,

channel coder, and the transmission medium is reflected in

the variables Di and Ψi, it does not change the algorithm.

Packet failure rates, Ψi, can be either calculated exactly as

in [13] or can be obtained through numerical simulations

[6].

The by-product of the recursive optimal solution for N
packets is the optimal solution for k packets where 1 ≤ k ≤
N − 1. This property is useful in applications involving

different levels of Quality of Service (QoS) associated with

different transmission rates. Performing the optimization

for the maximum transmission rate automatically provides

the optimal channel coding rates for all of the intermediate

transmission rates.

We notice that the convergence of the search algorithm

is guaranteed for all values of N and L. Consequently, the

convergence of A1 is not affected by the choice of initial

conditions unlike gradient-based algorithms.

We now assume that the channel introduces packet era-

sures in addition to bit errors. We consider a product code as

shown in Fig. 2. The first N packets contain data and their

associated parity bits for bit error protection while an addi-

tional NE packets are used for erasure recovery. The first N
symbols of every column form the data portion of a maxi-

mum distance separable (MDS) code that is used for erasure

recovery. The MDS property of the column code facilitates

the recovery of the entire packet set as long as the number

of received packets is N or more [12]. We now define a new



Fig. 2. Optimization problem with bit errors and packet era-

sures

probabilistic cost function that includes the effects of packet

erasures as:

J = PR(N) JN + (1 − PR(N)) D0 (5)

where PR(N) is the packet set recovery probability and is

defined as the probability of receiving N or more packets

out of NT transmitted packets. PR(N) can be further writ-

ten as PR(N) = 1 − ∑N−1
k=0 P (NT , k) where P (NT , k) is

the probability of receiving k packets out of NT transmit-

ted packets. We note that Equation (5) implicitly assumes

that no packets have been received if the number of received

packets is less than N . Even though in this case we can not

recover the packet set, we can still decode the bitstream if

the first k packets have been received with k being arbitrary.

Therefore, Equation (5) provides a somewhat pessimistic

estimate of the expected distortion. The new optimization

problem is then formulated as:

min
C1,···,CN ,N

J (6)

Subject To: 0 ≤ Ci < L, i ∈ {1, · · · , N} (7)

1 ≤ N ≤ NT (8)

with a total available budget of BT = NT L, where NT =
N + NE . A brute-force solution of this optimization prob-

lem involves NT optimizations and is extremely inefficient

unless a fast optimization technique is found for minimizing

JN . Moreover, note that the number of data packets, N , is

itself an optimization variable. Since the optimization prob-

lem (6) has a variable number of optimization variables, it

can not be solved using the traditional optimization tech-

niques.

We now introduce an alternative solution to the con-

strained optimization problem of (6) relying on our solu-

tion to the bit-error only problem (2). The algorithm A1 to

minimize JN has the desired property that it also provides

the global minimum of Jk for all 1 ≤ k ≤ N . We use

this property to develop a low-complexity exhaustive search

algorithm for minimizing the cost function of (6). We for-

malize our algorithm as the following:

Algorithm A2

• For a given L and channel characteristics, calculate

PR(N) for every N ∈ {1, 2, · · · , NT }.

• Minimize JNT using A1. Save all of the intermediate

optimal cost functions JN for 1 ≤ N ≤ NT as well

as the corresponding optimal solutions for Ci’s.

• Using Equation (5), evaluate J for 1 ≤ N ≤ NT

and find its minimum. The corresponding N and Ci’s

provide the solution to (6).

Notice that the first step of A2 does not depend on the bit-

stream and can be performed off-line for a given channel.

A2 requires only one optimization with a complexity of

O(NT L). In other words, it has a linear complexity in the

transmission rate. We note that if we use the sub-optimal

equal protection scheme for the second step of A2, the com-

plexity is still O(NT L) since in that case, we need to per-

form a two-dimensional search over L possible code rates

and NT possible budget allocations. Finally, we notice that

A2 is a globally optimal algorithm since it performs an effi-

cient exhaustive search over all possible budget allocations.

3. NUMERICAL RESULTS

In this section, we present the simulation results of our pro-

posed algorithm. We use the 512 × 512 gray scale Barbara

image encoded progressively using the SPIHT encoder, [7].

The operational D-R curve that is used in the optimization

algorithm is implemented as the following set of (R, D)
pairs: {(0, 2227.8), (0.03, 365.9), (0.35, 74.7), (0.76, 24.4),
(2.26, 2.8), (3, 1.6)} where the rate R is expressed in bpp.

The D-R curve is approximated as a piecewise exponential

function between the set of above points. This justifies the

use of the algorithm for practical implementations where an

accurate estimation of the D-R curve may not be available.

In practice, this lookup table can be generated during the

encoding process based on the wavelet coefficient quantiza-

tion errors [7]. The time-varying bit error rate of a fading

channel is modeled using the two-state Gilbert-Elliott chan-

nel. The transition probabilities for the GOOD to BAD and

BAD to GOOD state transitions are 0.00127 and 0.125, re-

spectively. Per state symbol error rates are derived from

the per state signal-to-noise ratios. We use the relationship

SNRG = 10 SNRB in order to distinguish between the

signal-to-noise ratios of the GOOD and BAD states. Chan-

nel coding is done using rate compatible punctured Reed-

Solomon codes over GF (256) with a symbol size of one

byte. We refer the reader to [13] for a detailed description

of the channel model and the calculation of the loss proba-

bilities Ψi. A packet length of L = 200 bytes is used in our

experiments.

Fig. 3 shows the performance of algorithm A1 for a

channel that introduces bit errors only. The SPIHT source

coder performance is also shown as a point of reference.

A tandem channel is considered in our next experiment.

Packet erasures are modeled using a Gilbert channel. The
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Fig. 3. Numerical results for the transmission of the Barbara

image over a channel with bit errors only
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Gilbert channel is essentially the same as the Gilbert-Elliot

channel with constant values of GOOD and BAD state error

rates of εG = 0 and εB = 1, respectively. We have used

a total of NT = 200 packets which translates into a trans-

mission rate of 1.22 bpp. The GOOD to BAD and BAD

to GOOD transition probabilities of the erasure channel are

0.1 and 0.125, respectively. The parameter α = N
NT

defines

the fraction of the budget allocated for bit error protection

and data transmission, while 1− α represents the fractional

budget for erasure protection. The results of algorithm A2

for the optimal budget allocation are shown in Fig. 4 (a). We

note that for moderately high values of SNRG, the optimal

value of α is relatively constant. In Fig. 4 (b), we have com-

pared the expected PSNR for the optimal α with a number

of constant budget allocation schemes. These results show

that our proposed algorithm is indeed optimal when both bit

errors and packet erasures are present. Fig. 4 also shows

similar results for our experiments using the Lena image.

4. CONCLUSION

In this paper, we proposed a novel distortion minimization

technique for the transmission of packetized progressive bit-

streams. We considered tandem channels subject to bit er-

rors and packet erasures. We formulated the distortion min-

imization problem as a constrained optimization problem

and showed that our proposed algorithm has a linear com-

plexity in the transmission rate and can optimally allocate

the available budget between the bit error and packet erasure

components. We numerically showed the effectiveness of

our proposed algorithm for arbitrary progressively encoded

sources.
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