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Abstract— In this paper, we present an analytical study tar-
geted at statistically capturing the loss behavior of a RED queue.
We utilize a finite-state Markov chain model. Starting from re-
cursive equations of the model, we derive equivalent closed-form
equations. We numerically validate the matching of recursive and
closed-form equations. Further, we apply our model to monitor
the average RED queue size in a number of sample topologies il-
lustrating their practicality. Based on our results, we argue that
our model can adapt to the changing network conditions.

Index Terms—RED, Markov Chain, Packet Loss Modeling.

I. INTRODUCTION

Identifying effective congestion and flow control schemes for
both TCP and UDP has been an active area of research in the
past decade. In the recent years, a number of proposed schemes
have made way into implementations [9]. Nonetheless, high
flow loss rate remains to be a challenging problem for con-
gested networks. One of the reasons of the high loss rate, is the
failure of the network to provide early congestion notification
to the traffic sources. This has led Internet Engineering Task
Force (IETF) to recommend the use of active queue manage-
ment algorithms [2] including random drop [6], early packet
discard [11], and random early drop [7]. The most promi-
nent and widely studied queue management scheme is Random
Early Detection (RED) [4]. RED queues alleviate many of the
problems found in other active queue management algorithms.

Although RED can potentially outperform traditional drop-
tail schemes, it is often difficult to parameterize RED queues
under different congestion scenarios. In addition, RED needs
constant tuning to adapt to current network conditions. Based
on simplified models, guidelines have been proposed in [4], [3],
[14] for setting RED parameters. However, most studies on
RED are based on heuristics or simulations rather than a sys-
tematic approach. Of these, the authors of [1] and [5] have
modeled RED stochastically, while those of [8], [13], and [12]
have used a Markovian model to study RED.

Most of the recent research has tried to tune the RED param-
eters, namely, maximum and minimum thresholds, but has not
addressed the issue of the optimum shape of the intermediate
sub-regime Further, the issue of QoS measured in term of av-
erage loss over RED has not been studied adequately. In this
paper, we propose a 3-state Markov chain model to capture the
dynamics of a RED queue. Starting from the recursive equa-
tions of the model, we find the closed-form approximations for
them. We do so, by converting the model to an equivalent 2-
state model. This model can be used to characterize the loss
behavior of a RED gateway, or alternatively that of end-to-end
UDP or TCP traffic passing through RED gateways.

This paper is structured as follows: In Section 2, we present
a 3-state Markov chain model for RED and derive the recursive
equations representing it. In Section 3, we derive approximated
closed-form solutions for the model by means of applying a
number of finite-state Markov chain transformations. In Sec-
tion 4, we present simulation results supporting the equivalence
of the transformations. We also present simulation results of
applying our model to a number of sample topologies utilizing
NS2 [17]. Finally, we present concluding remarks and future
work in Section 5.

II. MARKOV MODELING OF RED

The average queue size of a RED queue is calculated using a
low-pass filter with an exponential weighted moving average as���������
	��

���������������
������� (1)

where ��� is the current average queue size, ������� is the average
queue size at the last time instant, ��
 is the queue weight, and ����
is the current queue size. ��� is then compared to two thresholds,
a minimum threshold ��� �"! and a maximum threshold ���
#%$ .
Each arriving packet is marked with probability & given by

&(' )* +-, .0/ � �21 � � �0!
%�3
�46507
�498;:<�3
�46507 & �
#%$ .0/ ��� �"!>=?��� 1 ���
#%$� .0/ ���2@A���
#%$
(2)

In Equation (2), & is varied linearly from 0 to & �
#%$ in the
region between � � �"! and � �
#%$ . There are many possibilities of
choosing this drop probability as a linear or non-linear, convex
or concave function of queue size. Selecting this intermediate
sub-regime impacts the performance of RED.

The temporally correlated loss observed in the Internet due
to the drop-tail queues can be modeled by the 2-state Gilbert
loss model [15]. In the Gilbert model, a state B known as the
GOOD state represents the receipt of a packet and a state C
known as the BAD state represents the loss of a packet. State B
introduces a probability DFE-'HG of staying in state B and ��	DIE of transitioning to state C . State C introduces a probabilityDIJK'ML of staying in state C and �N	 DOJ of transitioning to
state B .

As shown in Fig. 1, we introduce one more state I to which
we refer as the INTERMEDIATE state for the modeling of
RED. This is a state representing a packet loss probability of& with , 1 & 1 � . Thus, we model a RED queue as a 3-
state Markov chain with states B , C , and P corresponding to
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Fig. 1. Markov modeling of a drop-tail queue and a RED queue with QSRFT%U VXW .
the cases when the queue is below �Y� �"! , above ��� #�$ , and be-
tween ���Z�"! and ���
#%$ . Note that the drop probability in state P
is not a number. Rather, it is a random variable denoted by [ � .

Next, we define the transition probabilities of our 3-state
model. Let \ �^] \`_ ] \`a be the probabilities of transitioning from
state B to state B , C , P , respectively. Similarly, let b � , b%_ , b%a
and c � , c�_ , c�a be the probabilities of transitioning from state C
to B , C , P and from state P to B , C , P , respectively. Note that\`a = (1- \ � - \`_ ), b%a = (1- b � - b�_ ), and c�a = (1- c � - c�_ ). Let D �edF];fg�
be the probability of keeping f packets from d arrived packets.
Further, let D �hdI]ifj] B � , D �hdI]ifj] C � , and D �edF];fk] P � be the prob-
abilities of keeping f packets from d arrived packets and ending
up in states B , C , and P , respectively. We can use the following
recursive equations to find D �hdI]if`� for any d and f as

D �hdI]ifj] B � = D �edl	A�m]ifn	A�m] B � \ ��� D �hdl	?�S];fo	A�m] C � b �� D �hdp	?�S];fq	?�S] P � c �D �hdI]ifj] C � = D �edr	?�S];fk] B � \`_ � D �edr	?�S];fk] C � b%_� D �hdp	?�S];fk] P � c�_D �hdI]ifj] P � = s^D �edl	A�m]ifo	?�S] B � \ta � D �edr	?�S];fn	A�m] C � b%a� D �hdp	?�S];fq	?�S] P � c�a^u ���
	 [ �v�6� sYD �hdl	?�S];fk] B � \ta �D �hdl	A�m];fk] C � b a � D �edr	?�S];fk] P � c a uY[ �D �hdI]if`� = D �hdI]ifj] B � + D �edF];fk] C � + D �edF];fk] P �
(3)

III. CLOSED-FORM SOLUTIONS OF THE RED MARKOV

MODEL

In this section, we derive closed-form solutions for D �edF];fg�
starting from recursive equations of (3).

In [15], a similar analysis for the Gilbert model is carried
out. The closed-form solutions for the 2-state Gilbert model are

given asD �efw�yxj];fk] B � 'G�z �k{ �;��	 L �����
	 G � s| {��6��"}�~�� {��6��(� � z�"�I�i� � LpG � {����%�k��� ����	 L ���;�
	 G ��� �u�Bo��� � G�z �k{���� �;�
	 L � s| {�"}�~ � { � � � z ���� � � L�G � {��k�9� �;�
	 L �����
	 G ��� �u�Cw��� x�@���]gfr@Ax��-�
(4)

and D �hfw�yx�]ifj] C � 'G�z �k{��I� �;�
	 G � s| {�����"}�~�� {����� � � z � � � L�G � {��6���3�6� �;�
	 L �����
	 G ��� �u�B ��� � G3z �3{ ���
	 L ���;�
	 G � s| {�����"}�~�� {�"�I� � � z ���� � � L�G � {����%�k�6� ���
	 L ���;��	 G ��� �u�Cw��� x�@���]gfl@�x
(5)

where d ' f���x . However, obtaining closed-form solutions
of the 3-state RED model is more complicated than that of the
2-state Gilbert model. The Gilbert model contains just � possi-
ble transitions and � trivial drop probabilities, while the 3-state
RED model contains � possible transitions and a pair of triv-
ial drop probabilities along with a drop probability which is a
random variable. Considering the complexity of the problem,
we transform the model as illustrated in Fig. 2. First, we split
state P into 2 states, namely, Pt� (Intermediate GOOD) and P`�
(Intermediate BAD), with the characteristic that the drop prob-
abilities in these states are not random numbers. Rather, they
are 0 and 1 respectively. However, our transition probabilities
containing the term [ � are random. We rename the transition
probabilities of our resulting 4-state model for the ease of con-
vention as shown in Fig. 2.

Next, we observe that the drop probability is 0 in B or P`� and
1 in C or P`� . Thus, we merge these states to reduce our model
to a 2-state model as shown in Fig. 2. The resulting model is
not a deterministic Gilbert model since the transition probabil-
ities of the resulting model are random. Nonetheless, we can
still use the closed-form expressions of (4) and (5), albeit that
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Fig. 2. The 4-state model and pairwise classification of its states.

our D �edF];fg� would be a random variable rather than a determin-
istic value. We need to express G and L of the resulting model
in terms of the 3-state model parameters, to form closed-form
solutions of the RED queue.

We note that G is the probability of starting from D �ed?	�S];fX	��m] B � and going to D �hdI]ifj] B � for the transformed 2-
state model. To find G , we need D �ed�	M�S];f�	��S] B � andD �hd�	K�S];f�	K�S] PS� � for each d and f of the 4-state model.
Although we have the sum of these two quantities as theD �hdI]ifj] B � of the 2-state model, we do not have the individual
terms as the result of combining the states.

Assuming the 4-state model is in the steady-state and for
large d and f , we can approximate the ratio of the probabil-
ity of being in B and the probability of being in P`� by the ratio
of their steady-state probabilities B �;� and PS��;� . This gives

D �hdI]ifj] B � G ' D �edr	?�S];fo	A�m] B � � EI�v�E �v� �6�%��v� � \ ��� \t� �� � ��v�E �v� �6�%��v� ���`���y� � ���G ' � EI�v�E �v� �6�%��v� � \ ��� \t� �6� � ��v�E �v� �9����v� ���`����� � ���
(6)

A similar analysis applies to L , with Pg���� and C ��� as steady-
state probabilities of being in Pg� and C . We use equilibrium
equations to get B �;� , PS��;� , C ��� and P`���� as follows:Bo��� = \ � Bo�;� � b � C���� � c � Pt���� �y�`� Pm����C���� = \`_�Bo�;� � b%_�C���� � c�_�Pt���� �y� _�Pm����Pt���� = \`a�Bo�;� � b%a�C���� � c�a�Pt���� �y� a�Pm����Pm���� = \t��Bo�;� � b���C���� � c%�YPt���� �y� �YPm���� (7)

While only 3 of the above equations are linearly independent,
we can extract a 4-th equation from the probability of the sum
to express:

���
	 \ ��� Bo��� � b � C��;� � c � Pt���� �?�`� Pm���� = 0\`_�Bo��� �����
	 b%_ � C��;� � c�_�Pt���� �?� _�Pm���� = 0\`a�Bo��� � b%a�Cw��� �����
	 c�a � Pt���� �?� a�Pm���� = 0Bo��� � C���� � Pt���� � Pm���� = 1

(8)

The solution of this system of linear equations is given by

Bo���
'�� ��¡  Cw���
'M� _�¡  P ���� '�� a�¡  P ���� '�� �� (9)

Further simplification occurs because c � ' � � , c _ ' � _ ,c a ' � a , c � ' � � , and \ aY¢ \ � = b a^¢ b � = c aY¢ c � = � aY¢ � � . These
constraints are obtained because we start from a 3-state model
and convert it to a 4-state model. The resulting 4-state model
does not have all possible combinations of the transition proba-
bilities. As a result, we get

� � = -
b � c � 0

( b%_ -1) c�_ 0b%a ( c�a -1) 1

� _ =
( \ � -1) c � 0\ _ c _ 0\ a ( c a -1) 1

� a = -
( \ � -1) b � c �\ _ ( b _ -1) c _\ a b a c a

� � =
( \ � -1) b � c �\`_ ( b%_ -1) c�_\`a b%a ( c�a -1)

� =
( \ � -1) b � c �\`_ ( b%_ -1) c�_

1 1 1

= � � � � _ � � a � � �

(10)

IV. NUMERICAL VALIDATION

A. Results Comparing 2-State and 3-State Markov Models

For examining our approximation, we choose a set of 3-state
model parameters and find the equivalent 2-state parameters.
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Then, we compare D �hf��>xj];fg� with x�=Af over different ranges
of parameter f . From the sets of experiments conducted by us,
we select two ranges of parameter f , namely, fA£ � �S] � , � andfK£ � � , ]�� ,m, � . Fig. 3 (a) and (b) show the results of those
two experiments, respectively. The values of D �efp�¤xj];fg� ob-
tained differ very slightly for most values of f . In addition, the
slight mismatch decreases with increasing f . This shows that
the Markov chain quickly moves toward and stays in equilib-
rium validating the approximation.
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¬q­ W%ªv®%¯±° , and (b) ¥Z¦"§k¨�©^ªh§�« for §�¬n­ ²%¯Yª;W;¯%¯±° .
B. NS2 Experiments

In this section, we provide simple ways of measuring the pa-
rameters of our model in RED queus utilizing their statistical
properties. We utilize two simulation topologies shown in Fig
4. The first topology to which we refer as the 4-flow topology,

is a half-dumbbell topology with 4 TCP/FTP sources transmit-
ting to a sink. The second topology to which we refer as the
3-flow topology, is a full-dumbbell topology with 3 TCP/FTP
sources transmitting to 3 different sinks. We set up the sim-
ulation parameters such that the TCP links always operate at
the maximum possible data rate allowed by the bottleneck link.
The link bandwidths and delays are shown in Fig. 4 (a) and (b).
For each topology, we experiment with different bottleneck link
bandwidths.

The plots displayed in Fig. 4 (c) and (d), are the plots of
instantaneous queue size ( ���� ) and average queue size ( ��� ) for a
RED queue with � 
 ' ,´³ ,m, � . Since RED uses � � to evaluate
drop probabilities, we use the same quantity to extract the tran-
sition probabilities and steady-state probabilities for our 3-state
model. In order to obtain transition probabilities, we count all
of the transitions of � � from I, G, or B to I, G, or B, and divide
them by the total number of transitions. Here, � �Z1 � � �0! repre-
sents the G region, �Y� �0!�=���� 1 ���
#%$ represents the I region,
and ���N@µ���
#%$ represents the B region. We note that anytime���� reaches ���
#%$ , all subsequent packets are dropped. The latter
is due to the fact that the size of the queue is the same as �Y�
#%$ ,
and hence the transition is counted as one going to the C state.
Similarly, the total number of times the queue is in I, G, and
B states divided by the total number of times give steady-state
probabilities of being in these states.

We have performed simulations for bottleneck link band-
widths ranging from 0.1Mbps to 100Mbps. The number of
flows have been varied from 2 to 20 with different values of
the queue weight ( � 
 ) for RED. Due to space limitation we
do not present all of our results. The simulations show that [ �
which directly depends on ��� , resembles a quasi static random
variable. Further, its value does not vary much around a mean
value. Hence, we use the mean value of [ � to obtain numerical
values of the equivalent 2-state transition probabilities.

Table IV-B includes Markov model parameters obtained for
4-flow topology with ��
 ' ,´³ ,m, � . Reviewing the results of
Table IV-B reveals that c�a is the dominant transition probability.
The latter validates our modeling approach, as the primary aim
of RED is to operate the queue in the P state. The value ofc a becomes less dominant as we increase the number of flows.
This is intuitive, since informing a larger number of sources
about the queue state causes a longer delay in controlling the
traffic. In fact, the transitions to state C increase as the result
of increasing the number of sources. Further, the mean and
variance of [ � respectively indicated by ¶I· � and ¸k· � increase as
the number of sources increase.

We do not observe a large number of transitions to state B
TABLE I

MARKOV MODEL PARAMETERS OBTAINED FOR 4-FLOW TOPOLOGY WITH¹6ºO» ¯Y¼ ¯%¯%® .
BW 3-state model params Eqv. 2-state model params½t¾ b�&k¿ a1=0, a2=0, a3=0, g0=0.939, b0=0.062,

b1=0, b2=0, b3=1,c1=0, G =0.938, L =0.061
c2=0.007, c3=0.993,¶ · � =0.055, ¸ · � =0.00896
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unless � 
 is a large number signifying a smaller averaging win-
dow. The plots displayed in Fig. 4 (e) and (f) are similar to those
displayed in Fig. 4 (c) and (d) for the choice of � 
 ' ,´³ � . As
observed from the figures, the average queue sizes more closely
follow the instantaneous queue sizes for larger values of �Ä
 . We
also note that there are more fluctuations in the average queue
size as ��
 becomes larger.

The values of transition probabilities of our model provide
useful insight into conditions at RED gateway. We summarize
our findings as follows. More transitions from P to C and P toB are observed if ���
#%$ and ���Z�"! are chosen close to each other.
The model parameters are determined depending on operating
conditions. Of course, P to P transitions would dominate un-
der good operating conditions. Further, we have observed that
even for a large ��
 , more transitions to state B are occurred
for smaller number of sources and narrower width of P region
identified by � �
#%$ 	�� � �"! .

At the end of this section, we note that this model can be eas-
ily applied to the changing network conditions by updating the
model parameters using a weighted contribution from the newer
values of � � . Additionally, a statistical guarantee algorithm such
as the one proposed by our earlier work of [15] can be applied
along with this model to provide end-to-end QoS guarantee for
the traffic sources accommodated by RED queues. Our work of
[16] introduces appropriate UDP end node signaling schemes
for such a task.

V. CONCLUSIONS

In this paper, we presented a finite-state Markov chain model
to capture the dynamics of a RED queue. We found closed-
form equations closely approximating the behavior of the RED
queue. Further, we validated the results of our modeling task
by means of simulations. Utilizing the model, we are investi-
gating optimum representations of the intermediate region be-
tween ��� �0! and ���
#%$ for a RED queue accommodating hy-
brid TCP and UDP flows. The latter reuires capturing the UDP
feedback mechanisms in the model another area of our research
focus. Further, we are currently in process of creating an end-
to-end statistical guarantee algorithm of QoS for RED queues
accommodating a mix of TCP and UDP flows. We leave this
and developing similar models for other queuing disciplines as
a part of our future work.
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