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Abstract— Reducing packet loss and increasing overall effi-
ciency in queuing systems is one of the most important issues in
the design of traffic control algorithms. On the other hand, the
major issue in multiple source queuing systems is to provide indi-
vidual sources with the ability to take advantage of a fair portion
of shared available resources such as buffer space or server band-
width. In this paper a novel technique for reducing packet loss
in a class of queuing systems accommodating self-similar traffic
patterns is introduced. The technique takes advantage of the mod-
eling power of neural networks to offer a dynamic buffer manage-
ment scheme capable of efficiently solving the trade off between
loss rate and fairness issues.

Index Terms— Perceptron Neural Networks, Packet Network,
Bursty Traffic, Self-Similarity, Traffic Modeling, Buffer Manage-
ment, Server Scheduling, Static Partial Sharing, Dynamic Neural
Sharing.

I. INTRODUCTION

ELETRAFFIC analysis of computer communication net-
works is one of the most important applications of math-
ematical modeling and queuing theory. This is mostly because
of the widespread deployment of packet switching, specifically,
services from Ethernet LANSs, Variable Bit Rate (VBR) video,
ATM, and ISDN. Modeling of bursty traffic patterns is among
the most challenging problems in teletraffic analysis. Although,
numerous models of packet arrival processes were proposed by
Ramaswami et al. [23], Hellstern et al. [13], Sriram et al. [24],
Heffes et al. [12], it seems that there is still a number of packet
traffic features not being understood perfectly. This is partly
due to uncertainties in the traffic characteristics and to the dif-
ficulties in characterizing traffic arrival models. Adas [1] pro-
vided a survey of different teletraffic models in his paper.
Analysis of traffic data from networks and services such as
Ethernet LANSs [17], Variable Bit Rate (VBR) video [3], ISDN
traffic [13], and Common Channel Signaling Network (CCNS)
[5] have all convincingly demonstrated the presence of features
such as long range dependence, slowly decaying variances, and
heavy-tailed distributions. These features are best described
within the context of second-order self-similarity and fractal
theory approach. Leland and Wilson [17] presented a statistical
analysis of Ethernet traffic, in presence of “burstiness” across
a wide range of time scales [17] in which traffic spikes ride on
longer term ripples, that in turn ride on longer term swells, so
on and so forth. This phenomenon is explained in terms of self-
similarity, i.e., self-similar phenomena show structural similar-
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ities across all or a wide range of time scales. This burst within
burst structure not only captures fractal properties observed in
actual traffic data but also explains why measurements show no
actual burst length for packet traffic patterns despite prediction
of conventional models.

Neural networks are a class of nonlinear systems capable
of learning and performing tasks accomplished by other sys-
tems. Their broad range of applications includes speech and
signal processing, pattern recognition, system modeling, and
servo mechanism control. Various kinds of neural networks,
generally, have energy functions. The learning procedure of
neural networks is, indeed, nothing more than decreasing these
energy functions until reaching local minimum levels. Neural
networks acquire required information from the examples sup-
plied to them in their learning procedure. Systems with neural
network building blocks are robust in the sense that the occur-
rence of small errors in the systems does not interfere with the
proper operation of the system. This characteristic of the neural
networks makes them quite suitable for traffic modeling.

Reducing packet loss in queuing systems is one of the most
important issues in the design of traffic control algorithms. Re-
ducing packet loss in the queuing systems is equivalent to im-
proving efficiency and is usually considered as a performance
evaluation tool. For the systems consisting of more than one
source, there is another major issue worth considering known
as fairness. Fairness provides each individual source with the
ability to take advantage of a fair portion of the shared available
resources such as buffer space or server bandwidth. The combi-
nation of buffer management and scheduling algorithms speci-
fies the fairness and the efficiency of a multiple source queuing
system. It is important to note that there is a trade off between
the fairness and efficiency issues as quality upgrade in one leads
to quality degradation in another.

In this study, two different scheduling algorithms are con-
sidered. These are namely Fixed Time Division Multiplexing
(FTDM) and Statistical Time Division Multiplexing (STDM).
While in FTDM each source takes advantage of a fair portion of
the server bandwidth also known as the service rate and there is
no bandwidth sharing, in STDM the unused portion of the band-
width assigned to each source might be used to service other
sources. Although FTDM is typically used for ATM switching
systems with a number of Virtual Paths, STDM is typically used
in ATM queuing systems with a number of Virtual Channels.

There are a number of different buffer management algo-
rithms studied in literature as described in [18], [10], [14], [15],
and [9]. The first and probably the simplest method is Complete
Sharing (CS) in which the buffer space is shared among all of
the existing sources without enforcing any capacity allocation



mechanism. This method introduces an unfair consumption of
the buffer space by greedy sources while providing the lowest
loss rates. The second method is called Complete Partition-
ing (CP) in which the available capacity of the buffer is shared
equally among the existing sources. This method has the best
fairness characteristic while it greatly suffers from efficiency
degradation by introducing the highest loss rate. In presence
of a specified scheduling algorithm, a threshold buffer manage-
ment algorithm is introduced as the third alternative solution. It
might be considered as a solution between the above explained
two extremes. In a threshold method, each source has its own
fixed portion of the buffer space which can only be used for
buffering packets generated by that specific source. There is
also an additional shared portion of the buffer which is com-
pletely shared among the existing sources. This method is also
called Partial Sharing (PS).

A dynamic buffer management algorithm is classified under
the threshold methods with the ability to adjust the buffer size
of each source dynamically. A dynamic buffer management al-
gorithm is able to offer an acceptable solution considering both
fairness and efficiency issues, i.e., the algorithm should assign
a fair portion of the buffer space to each source with the ability
to dynamically adjust the buffer space partitions.

The algorithm introduced in this paper is, in fact, a dynamic
buffer management algorithm. It is capable of improving the
loss performance of Static Partial Sharing (SPS) method intro-
duced in [18] while considering fairness versus loss trade off.
The algorithm relies on the power of neural networks to model
self-similar traffic patterns of the individual sources in a multi-
ple source queuing system and dynamically adjust the portion
of the buffer space assigned to each source according to the cor-
responding traffic generation pattern. Relying on the prediction
power of neural networks and as shown in simulations, the tech-
nique is able to outperform other threshold algorithms studied
in the literature.

An outline of the paper follows. In Section I, we briefly re-
view the characteristics of aggregated traffic patterns with self-
similar nature. In Section Ill, we give an overview of the neu-
ral network modeling of bursty traffic patterns. Section IV de-
scribes a typical multiple source system used for the application
task. In Section V, we discuss the packet loss reduction appli-
cation and compare the performance of our Dynamic Neural
Sharing (DNS) scheme with other buffer management schemes.
Finally, Section VI concludes the paper.

Il. AGGREGATED BURSTY TRAFFIC

The main objective of the current section is to provide an an-
alytical framework for self-similarity as a statistical property of
time series. Intuitively, self-similar phenomena display struc-
tural similarities across a significant number of time scales. The
degree of self-similarity is sometimes specified by measuring a
single parameter called Hurst parameter. In the following sec-
tion, we provide a brief discussion about mathematical and sta-
tistical properties of the self-similar processes.

A. Second-Order Self-Similarity
Suppose X = (X; : t = 0,1,2,...) is a covariance stationary
stochastic process with mean y, variance o2, and autocorrela-

tion function R(n), n > 0. Particularly, assume the autocor-
relation function of X has the form

R(n) ~kin™P, as n — 00 Q)
where 0 < 8 < 1 and constants k1, ko, ... are finite positive
integers. For each m = 1,2,3, ... let X(m = (x{™ : p =
1,2,3,...) be the covariance stationary time series with corre-
sponding autocorrelation function R(™) obtained from averag-
ing the original series X over the non-overlapping time periods
of size m, i.e., for eachm = 1,2,3,- - -, the covariance X (™)
is given by

1
Xr(z,m) - E(Xnm—m-i-l +o At Xom), n2>1 (2)

The process X is called exactly second-order self-similar with
the self-similarity parameter H = 1 — 8/2 if the corresponding
X (™) has the same correlation function as X, i.e., R0™(n) =
R(n) forallm = 1,2,3,---andn = 1,2, 3, ---. The process
X is called asymptotically second-order self-similar with self-
similarity parameter H = 1 — 3/2 if RU™ (n) asymptotically
approaches to R(n) given by (1), for large m and n. Hence, if
the correlation functions of the aggregated processes X ("™ are
the same as the correlation functions of X or approach asymp-
totically to the correlation functions of X, then X is called ex-
actly or asymptotically second-order self-similar.

Fractal Gaussian Noise (FGN) is a good example of
an exactly self-similar process with self-similarity parameter
H, 1/2 < H < 1. Fractional Arima processes with the
parameters (p,d,q) such that 0 < d < 1/2 are examples of
asymptotically second-order self-similar processes with self-
similarity parameter d + 1/2.

Mathematically, self-similarity manifests itself in a number
of ways as follows.

« The variance of sample mean decreases more slowly than
the reciprocal of the sample size. This is called slowly
decaying variance property which means var(X (™) ~
kam(P asm — cowith0 < 8 < 1.

« The autocorrelations decay hyperbolically rather than ex-
ponentially fast, implying a non-summable autocorrela-
tion function ), R(n) = oo. This is called long range
dependence property.

o The spectral density f(.) obeys a power-law near the ori-
gin. This is the concept of 1/f noise with the meaning
FAA)=ksdAasA > oowith0 <y <landy=1-5.

The most important feature of the self-similar processes is
seemingly the fact that their aggregated processes X (™) pos-
sess a non-degenerate correlation function as m — oo. This
is completely different from typical packet traffic models pre-
viously considered in literature, all of which have the property
that their aggregated processes X (™) tend to second order pure
noise, i.e., R™ — 0 as m — oo.

The concept of self-similar processes provides a very el-
egant explanation for the Hurst effect phenomenon. In or-
der to describe the Hurst effect, we should first describe the
rescaled adjusted range. For a given set of observations (X, :
n = 1,2, ..., N) with sample mean X (V) and sample variance



S2(N), the rescaled adjusted range denoted by the R/S statis-
tic is given by
R(N) 1

iS) = m[max(Wi) — min(W;)] (3)

wherei =0,...,N, Wy =0and

Wo=(Xi+ ..+ X,) —nX(N), n>1  (4)

While many time series appear to be well represented by
the relation E[R(N)/S(N)] ~ k4N, as N — oo, with
Hurst parameter H typically about 0.73, observations X,
from a short-range dependent models are known to satisfy
E[R(N)/S(N)] ~ ksN°5 as N — oco. This is usually re-
ferred to as the Hurst effect.

B. An Evidence of Self-Similarity: Ethernet and VBR Traffic
Measurements

In [3], Beran et al. observed the absence of natural length
of a burst for the traffic patterns of Variable Bit Rate (VBR)
video traffic. In [16], Leland et al. observed the same feature
for the high quality, high time-resolution LAN traffic data col-
lected between August 1989 and February 1992 on several Eth-
ernet LANSs. This behavior is very different from conventional
telephone traffic and from previously considered formal mod-
els of packet traffic. With the available data sets, Leland et al.
investigated the persistent feature of Ethernet traffic across the
network and across the time irrespective of the medium utiliza-
tion level. They graphically estimated a Hurst parameter H of
about 0.80. In general, the degree of self-similarity depends on
the utilization level of the medium. For the Ethernet it increases
as the utilization increases.

I1l. NEURAL NETWORK MODELING OF BURSTY TRAFFIC

Earlier in this paper we mentioned that analysis of traffic data
from networks and services have demonstrated the presence of
statistical self-similar characteristics. We also mentioned that
only few of the formal models of the packet traffic considered
in the literature are able to capture self-similar nature of the
measured traffic. The following lists a number of implications
of the existence of self-similar packet traffic on high-speed net-
works.

« The Hurst parameter and fractal dimensions such as cor-
relation dimension provide a more satisfactory measure of
burstiness for self-similar traffic than the previously used
measures such as the index of dispersion of counts.

« The nature of congestion produced by self-similar network
traffic models differs from that predicted by standard mod-
els. More specifically, the efficiency of the proposed con-
gestion control schemes for high-speed networks greatly
depends on how well those schemes perform under the in-
fluence of self-similar traffic scenarios.

In [27], we introduce an elegant modeling technique of self-
similar packet traffic that is capable of coping with the frac-
tal properties of the aggregated traffic. Motivated by a desire
for having a relatively simple model of the complex packet
traffic generation process, our technique proposes the use of

a fixed structure perceptron neural network with back propaga-
tion learning algorithm as a simpler alternative to stochastic and
chaotic systems approaches proposed in [16], [7], [2], and [1].

The promise of neural network modeling approach is to re-
place the analytical difficulties encountered in the other mod-
eling approaches with a straight forward computational algo-
rithm. As oppose to the other modeling approaches, neural
network modeling does not introduce a parameter describing
the fractal nature of traffic neither does it investigate identifi-
cation of appropriate maps. It, hence, need not cope with the
complexity of estimating Hurst parameter and/or fractal dimen-
sions. The approach simply takes advantage of using a fixed
structure nonlinear system with a well defined analytical model
that is able to predict a traffic pattern after learning the dynam-
ics of the pattern through the use of information available in a
number of traffic samples. The fixed structure feed forward per-
ceptron neural network used for the task of modeling consists
of an input layer with eight neurons, three hidden layers with
twenty neurons in each layer, and an output layer with one neu-
ron. Figure (1) shows the structure of the network. Although
it might be possible to reduce either the number of the neurons
in the input layer or the number of hidden layers, we use the
above-mentioned structure as the structure practically fits the
dynamics of the traffic pattern. The neural network relies on

Output Layer

——

H2

Input Layer

Fig. 1. Fixed structure neural network with 8 neurons in the input layer and
20 neurons in each of the three hidden layers used for traffic modeling task.

back propagation learning algorithm as described in [27], [19],
[8], [21], [11], [26], [20], and [4] in which the learning phase is
directly followed by the recalling phase when the network out-
put is able to follow the real traffic within an acceptable error
bound, e. In what follows we briefly describe back propagation
learning algorithm. Using the notation
« z;[s] : The present output state of the j-th neuron from the
layer s
« wj;[s]: Weighting function of the connection between i-th
neuron from layer (s — 1) and the j-th neuron from layer
S
o I;[s]: The combined input of the j-th neuron of layer s
« uj[s]: The external input of the j-th neuron of the first
layer



We note that in our network, a neuron transfers its output as
zls] = F{D_(wslslails — 1D} = F{L[s]}  (8)

where f is the sigmoid function defined as

1
= 6
1) = 1o ©)
For the absolute error function E defined as
1
E=3 >k — k)’ ()

k

with ¢ indicating the present output of the network to the in-
put u, y corresponding to the real output, and index & denoting
various elements of y and 4, the critical parameter that is back
propagated into the network is

oF
61[8]=—6Ij[8]

(8)

The relationship between the relative error of a specified neuron
in layer s and the local errors in layer s + 1 is expressed as

ejls] = a;[s).(1 — z;[s]) . Y {exls + 1wi;[s + 1]} (9)

k

In order to decrease the absolute error function, the weighting
functions are changed in the opposite direction of the gradient
vector as

OFE

= lc.e;[s].zi[s — 1] (10)

where lc denotes the learning coefficient. Our implementa-
tion of the back propagation algorithm is, hence, described be-
low.

« Propagate input v in the forward direction through the net-
work until reaching output «}. During propagation of this
information through the network, set all of the combined
inputs I; and output states x; for each neuron.

« For each neuron in the output layer calculate the scaled
local error and the variations of weighting functions from

relations
0
€ = —gIEO = —g—f;g[o = (y —9).f1(1,)
= (y—9)0.(1-9) (11)
Awj;[s] = lcej[s].{zi[s — 1] + k.e;[s — 1]}

N——
(k+1)—th step
+ M( iji [S] )
———

k—th step

(12)

where M stands for the momentum.
« For each neuron in layer s located below the output layer
and above the input layer obtain the scaled relative error

and the variations of the weighting functions from rela-
tions

ejls] = wjls]-(1—ajls]) . ) {exls+1]wpsls+11} (13)
k

Awj;s] = lc.ej[s].{xs[s — 1] + k.e;[s — 1]}
N———

(k+1)—th step
+ M( A'LUJ','[S] )

———
k—th step

(14)

o Update all of the weighting functions by adding the
variations to the old values.

In a typical iteration of the learning phase, the neural network
is provided with samples z[k — 8] through z[k — 1] of the real
traffic pattern and the difference between sample z[k] of the
real traffic pattern and the neural network output is used to ad-
just the weighting functions of the network accordingly. In the
next iteration, sample z[k — 8] of the real traffic pattern is dis-
carded, samples z[k — 7] through z[%] of the real traffic pattern
are used as the new input sample set, and sample z[k + 1] is
used as the new real traffic sample. The neural network contin-
ues processing more information in consecutive iterations of the
learning phase until the absolute error is less than a specified er-
ror bound. The learning phase of the perceptron neural network
is directly followed by the recalling phase when the network
output is able to follow the real traffic within the acceptable
error bound, e. In each iteration of the recalling phase, the neu-
ral network independently generates the samples by discarding
the oldest input sample, shifting the input samples by one, and
using its output as the most recent input sample. The same se-
quence of following a learning phase by a recalling phase is
repeated when and if the neural network output difference ex-
ceeds the acceptable error bound, e. The number of samples
required for the training of the neural network depends on the
complexity of the traffic pattern dynamics. The method may be
used to model source level as well as aggregated level bursty
traffic. The time complexity and the space complexity of the
back propagation algorithm are respectively O(IN) and O(N)
where N is the number of weighting functions in the network
and I is the number of iterations. Although the complexity is
typically better than the complexity of implementing statistical
approaches such as fractional ARIMA processes or the com-
plexity of calculating fractal dimensions such as correlation di-
mension, wide variations of I prevent us from making a strong
claim about complexity advantage of the algorithm compare
to other algorithms. Nonetheless combining the straight for-
ward way of implementation with the analysis of complexity,
we claim that the neural network modeling approach provides
an elegant approach for the task of traffic modeling. In the fol-
lowing section, we apply the proposed neural network modeling
technique to reduce the packet loss rate of a shared buffer in a
typical multiple source system.



IV. MULTIPLE SOURCE SYSTEM

This section describes the underlying multiple source sys-
tem used in our study. The multiple source system consists
of a number of ON-OFF source models. Traffic pattern of
each source includes the packets generated by a number of
ON-OFF maps. In this section, we also provides a brief dis-
cussion viewing each source and the corresponding buffer as
a separate queuing system. This is an appearance of complete
partitioning buffer management scheme employing FTDM ser-
vice scheduling at the output of the queue. The discussion may
also be directly applied to the case of complete sharing buffer
management scheme employing FTDM service scheduling at
the output of the queue or may be slightly changed to apply
to the case of complete/partial partitioning buffer management
scheme employing STDM service scheduling at the output of
the queue. The model may be considered as the so-called burst
scale queuing component of an ATM queuing system with a
number of Virtual Channels (VCs) and each VC belonging to a
traffic source as described by [22].

In our model, there is a finite capacity buffer corresponding
to each source storing generated packets before they get trans-
mitted. The occupancy of each buffer is determined by the flow
of the cells from the corresponding source and the rate at which
the cells are serviced. In this model, a queue is identified by
its buffer capacity C,,42, and its server capacity O,,,4.. In each
queue, the generation rate is compared with the service rate to
determine whether the size of the queue is increasing or de-
creasing as well as whether the queue is losing cells.

Here the challenge is the dynamic assignment of the buffer
space such that the probability of loss is minimized. Using the
following notation,

o I(i,k): The input rate of the i-th buffer at time .

o O(i, k): The output rate of the 4-th buffer at time .

o Q(i,k): The queuing rate of the i-th buffer at time k.

o L(i, k): The loss rate of the i-th buffer at time k.

o C(i,k): The queue size of the i-th buffer at time k.
the state of the queue for each buffer is specified by

):
):

I(i,k) = O(i, k) + Q(i, k) + L(i, k) (15)

at any instant of time as shown in Figure (2). Note that besides
Q(i, k) values which could be positive or negative, all of the
other values are always positive. Originally, all of the queues

Fig. 2. Queuing diagram of the 4-th source at time k.

are empty. A queue begins to form when the buffer input rate
exceeds the service rate. Hence, the queue rate Q (4, k) and the

loss rate L(4, k) remain zero as long as the input rate is less than
or equal the service rate, i.e.,

I(i, k)
Omaw

I(i,k) < Oz

I(Zv k) = Omaz (16)

0(i k) = {
The queue size C(i, k) begins to increase as soon as the in-
put rate exceeds the service rate O,,,... While the queue is not
empty, the output rate is always equal to the queue server ca-
pacity and the total queuing rate is the difference between the
input rate and queue server capacity. The loss rate is zero at this
stage.

The queue size keeps increasing and finally becomes full if
the input rate remains higher than the queue server capacity. In
that situation, the queuing rate is zero and the excess input rate
is the cell loss rate as,

L(i, k) =1(i, k) — O(i, k) a7
with O(i, k) = Opmq.. The effect of a change in the input rate
is not immediately appeared if there are packets in the queue
waiting to be transmitted. It is the queuing rate which changes
according to

QU k+1)=QU,k)+I(i,k+1)—I(,k) (18)
The queue size begins to decrease in size when the input rate
becomes less than the server capacity, i.e., I(i, k) < Oppqz, and
the queuing rate goes below zero as the result, i.e., Q (i, k) < 0.
The queue becomes empty if this situation lasts. The output rate
is obtained from the following equation,

Omas : C(i,k)
I(Gi,k) : C(,k)

v

O(i, k) = { 8 (19)
After providing a brief queuing analysis for individual queues,
it is now time to take a look at the system from a high level
point of view. In the following section, it is assumed that a
number of sources are sharing the total available buffer space.
The traffic pattern of each source includes the packets gener-
ated by a number of artificial ON-OFF source models. An ON-
OFF source model is generating traffic at a peak rate when it is
active and becomes active as soon as the state variable of the
describing nonlinear map goes beyond the threshold value. The
source becomes passive as soon as the state variable goes below
the threshold. We choose double intermittency chaotic map as
the artificial ON-OFF source model which is known to gener-
ate a bursty traffic pattern according to [7] and [27]. Figure (3)
shows a sample state transition of double intermittency map in
the phase plane starting from an initial condition. The two map
segments of Figure (3) associate with the source in passive and
active states. By using different initial conditions and/or differ-
ent threshold values, different traffic patterns are obtained for
different sources.

V. Loss REDUCTION

Consider a system consisting of a number of sources shar-
ing the space available in a central buffer and generating pack-
ets following an ON-OFF source model. Figure (4) shows the
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Fig. 4. The structure of a multiple source queuing system.

structure of a multiple source queuing system. In order to show
the performance of the modeling approach, four different buffer
management scenarios are compared together in presence of
FTDM and STDM scheduling algorithms.

o In the first method complete sharing mechanism is de-
ployed, i.e., there is only one queue for all of the sources.
This is a simple queuing mechanism in which all of the
generated packets are directly sent to the central buffer and
wait there until getting transmitted. This method has the
advantage that the buffer is shared among all the sources,
hence the maximum efficiency for the buffer space is ob-
tained. The drawback of the method is that the space may
not be used fairly as a source with a high output rate is able
to consume a big portion of the buffer space and cause the
queue to overflow. It is worth mentioning that the results
of FTDM and STDM are the same in this scenario as there
is only one buffer in the system.

o The second method is a simple implementation of com-
plete partitioning scheme in presence of FTDM and
STDM in which the capacity of the central buffer is dis-
tributed equally among the sources. The most important
characteristic of the method is that the buffer space is dis-
tributed fairly. FTDM is suffering from a possible low ef-
ficiency rate compare to STDM, i.e., sources with lower
generation rates may not use the whole portion of the
buffer space assigned to them while sources with higher
generation rate are losing packets. This is not happen-
ing when STDM is employed as the unused portion of

the buffer space is used for the packets generated by other
sources.

« The third method is a simple implementation of partial
sharing scheme that has three equal portions for the three
sources with an additional shared portion that can be
shared among all the sources. This is also called partial
sharing.

« The fourth method is the dynamic assignment of the buffer
space relying on the results obtained from the neural net-
work prediction algorithm, i.e., adjusting the buffer space
according to the packet generation pattern of each source.
This is a generalization of the third method keeping the
shared portion size fixed and adjusting the buffer space
size of each source dynamically.

It is important to mention that in case of the last three methods,
there is a separate queue for each source storing the packets
generated by that source. The difference between the third and
the fourth scenario is that in the third scenario the buffer space
assigned to each source is fixed and each source is able to send
its generated packets either to its own buffer or the shared buffer
if space is available while in the fourth scenario the portion of
the buffer space assigned to the source with a higher packet
generation rate is increased in case other sources are not gener-
ating enough packets to use their allocated share of the buffer
space. This is a dynamic buffer management algorithm with a
potential to perform better than the existing buffer management
algorithms as it relies on predicted future information.

In order to investigate the performance of the method, a triple
source system is used. The traffic patterns of the first, second,
and third source consist of an aggregated artificial traffic pattern
generated by 30, 40, and 50 individual double intermittency
map packet generators respectively. The traffic generated by
each source is collected and sent to the corresponding buffer in
around robin manner. It is specially important to note that there
is a difference among the number of packets generated by each
source as the result of having a different number of ON-OFF
packet generators per source. In order to evaluate the perfor-
mance of different methods, the over all as well as per source
loss rate of the system for different choices of buffer size with a
fixed service rate are compared together. The buffer space can
be shared among all of the sources or may be divided into equal
portions for individual source usage. The server bandwidth may
also be used according to FTDM or STDM scheduling mecha-
nisms. Figures (5) through (8) show the total and single source
packet loss rate versus buffer size diagram for the triple source
queuing system in presence of FTDM and STDM scheduling
algorithms. In the single source case, we choose the source with
the lowest packet generation rate in order to be able to compare
the fairness of different schemes. The simulation results have
been obtained from an iterative algorithm with a total number
of ten million iterations per choice of buffer size. Applying a
continuous sequence of learning and recalling phases, the fixed
structure neural network has been able to follow the traffic pat-
tern within the specified error range between 20 and 30 times
covering an average of fifty samples per time. We note that the
performance of different methods can be drastically different as
the result of applying different methods for traffic management
of a heavily utilized system.
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dynamic neural sharing (DNS) in presence of FTDM scheduling algorithm.
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Fig. 6. Single source loss rate versus buffer size diagram for the triple source
queuing system using complete partitioning (CP), static partial sharing (SPS),
and dynamic neural sharing (DNS) in presence of FTDM scheduling algorithm.
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Fig. 7. Total loss rate versus buffer size diagram for the triple source queu-

ing system using complete partitioning (CP), static partial sharing (SPS), dy-
namic neural sharing (DNS), and complete sharing (CS) in presence of STDM
scheduling algorithm.

1.000E+08

1.000E+07
& 1.000E+06 =N
o
4 1.000E+05 N '\.\‘ ——CP
= \ —m—SPS
< 1.000E+04
2 \\ —&—DNS
% 1.000E+03 —e—CS
1
S 1.000E+02

1.000E+01

1.000E+00 ‘

0 2 4 6 8 10 12
Normalized Buffer Size
Fig. 8. Single source loss rate versus buffer size diagram for the triple

source queuing system using complete partitioning (CP), static partial sharing
(SPS), dynamic neural sharing (DNS), and complete sharing (CS) in presence
of STDM scheduling algorithm.

Figure (5) shows total loss rates of complete partitioning
(CP), static partial sharing (SPS), and dynamic neural sharing
(DNS) buffer management schemes versus different values of
normalized buffer size in presence of FTDM scheduling algo-
rithm. Figure (6) shows individual loss rates of the most pas-
sive source for complete partitioning (CP), static partial shar-
ing (SPS), and dynamic neural sharing (DNS) buffer manage-
ment schemes versus different values of normalized buffer size
in presence of FTDM scheduling algorithm. Figure (7) shows
total loss rates of complete partitioning (CP), static partial shar-
ing (SPS), dynamic neural sharing (DNS), and complete shar-
ing (CS) buffer management schemes versus different values of
normalized buffer size in presence of STDM scheduling algo-
rithm. Figure (8) shows individual loss rates of the most pas-
sive source for complete partitioning (CP), static partial shar-
ing (SPS), dynamic neural sharing (DNS), and complete shar-
ing (CS) buffer management schemes versus different values of
normalized buffer size in presence of STDM scheduling algo-
rithm. All of the numbers in the figures have been scaled as
multiples of 10~9.

It is clearly observed from the figures that for both FTDM
and STDM using dynamic neural sharing scheme, the total loss
rate compared to complete partitioning scheme as well as per
source loss rate compared to complete sharing scheme are re-
duced. The results may be interpreted as the evidence that dy-
namic neural sharing scheme has come up with a solution in
between the two extreme cases. Comparing the results for static
partial sharing and neural dynamic sharing show the higher ef-
ficiency of the latter method. This is a significant improvement
compare to the other three schemes.

We close this section by some of the practical findings in the
implementation of the algorithm. First, we note that the learn-
ing algorithm of the perceptron neural network used for the task
of modeling is time consuming because of the rich dynamic of
the traffic pattern that the neural network is trying to learn. In
deed, the neural network needs to access thousands of samples
in each training period resulting in a typical sequence of learn-



ing and recalling phases with few hundred thousand samples
and hundreds of samples respectively. In addition, all of the
convergence results are strongly affected by the choice of ini-
tial conditions of the weighting functions of the neural network.
As a practical finding, setting the initial values of the weight-
ing functions of the neural network at w;;(0) = 0.01 Vi,j
typically yields good results. Our justification for both of the
above-mentioned phenomena is the fact that the proposed neu-
ral network is trying to learn complicated dynamics of chaotic
maps exhibiting extreme sensitivity to variations of initial con-
ditions.

V1. CONCLUSION

In this paper, we studied packet loss reduction in a class of
multiple source queuing systems as an application of neural net-
work modeling of self-similar packet traffic. We modeled self-
similar traffic patterns using a fixed structure perceptron neural
network with three hidden layers. The neural network had eight
neurons in its input layer, and twenty neurons in each of its three
hidden layers. The number of neurons in its output layer was
one. In the learning phase of the modeling process, we applied
eight consecutive samples of the packets as the input of the neu-
ral network and used the ninth sample as the desired output in
each iteration. The number of required samples for the network
to be trained, depended on the steady state behavior of the traf-
fic pattern and the network load, i.e, the number of required
samples increased in case of heavily loaded network indicating
more complicated steady state behavior.

We used a neural-based dynamic buffer management scheme
called dynamic neural sharing to improve the loss performance
of static partial sharing buffer management algorithm while
considering the fairness issue. Relying on the prediction power
of neural networks, our neural-based algorithm was able to dy-
namically adjust the buffer allocation of individual sources in
a multiple source system with a central shared or partitioned
buffer.

We also compared the performance of different buffer man-
agement schemes, namely complete sharing, complete parti-
tioning, static partial sharing, and dynamic neural sharing in
presence of different server scheduling algorithms, fixed time
division multiplexing and statistic time division multiplexing,
and concluded that our dynamic neural sharing scheme was able
to offer the best solution considering the trade off between fair-
ness and loss issues.
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