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I. I NTRODUCTION

The idea of applying the theory ofOrthogonal Designsin Space-
Time Codingwas introduced in [1], [2]. The purpose was to create
codes that provide fullspatial diversitywith maximal possibletrans-
mission rateR (preferablyR = 1) while providing a linear decod-
ing complexity. These designs have remarkably simple maximum-
likelihood decoding algorithms via linear processing at the receiver.
It was also shown that very few real orthogonal designs exist that pro-
vide full diversity and full rate. Assumingn to be the number of the
transmit antennas, the 3 classical orthogonal designs forn = 2, 4 and 8
are the only existing square real orthogonal designs. The authors of [1]
also introduce the concept ofComplex Orthogonal Designsand prove
that the case for complex orthogonal designs is even more stringent.
TheAlamoutidesign forn = 2 would turn out to be the only complex
square orthogonal design [1]. Relaxing some of the conditions such
as the rate would allow the authors to construct some new codes. The
concept of generalized orthogonal designs was introduced that would
provide codes for any possible value ofn under the trade-off of having
R ≤ 1/2. The estimation ofR ≤ 1/2 would turn out not to be sharp
and the authors were able to construct codes for sporadic values ofn
having higher rates. For instance, forn = 3 andn = 4 codes of rate
R = 3/4 were constructed. Since the introduction of space-time block
codes, there has been a lot of effort in designing higher rate codes, e.g.
[3], [4]. The main conclusions are as follows. The maximum symbol
transmission rate of a space-time block code from complex orthogonal
designs is only 3/4 for three and four transmit antennas [3]. It means
that it is impossible to improve the original orthogonal designs pro-
vided in [1] for three and four transmit antennas. Also, there are only
few examples of codes with rate higher than 1/2 for more than four
transmit antennas [4]. An orthogonal design is defined for any arbi-
trary indeterminate variablesx1, x2, · · · , xn. The theory of orthogonal
designs [5] and its generalization [1] provide designs that are orthog-
onal for any real or complex values ofx1, x2, · · · , xn. However, in
practice, in a communication system,x1, x2, · · · , xn are members of
a constellation that has a finite number of signals instead of the real (or
complex) numbers with infinite number of possibilities. For example,
when the transmitter uses QPSK constellationx1, x2, · · · , xn can take
one of the four possible QPSK symbols. From the results provided in
[1] and the following studies in the literature, it is not clear if there
exists designs that are orthogonal only for a finite set of constellation
symbols. In this work, we study the possibility of such designs by
definingPseudo-Orthogonal Designsthat are defined on a finite sub-
set of real numbers. The case of complex pseudo-orthogonal designs
will be handled in future.

In the following we will shortly revisit the orthogonal designs and
review their connection with space-time coding and will introduce the
concept of Pseudo-Orthogonal Designs.

II. PSEUDOORTHOGONAL DESIGNS

An orthogonal design is defined for any arbitrary indeterminate vari-
ablesx1, x2, · · · , xn. In this section, we define pseudo-orthogonal de-
signs that are defined for indeterminate variablesx1, x2, · · · , xn that
are from a finite set of numbers. This finite set of numbers can be any
constellation for example PSK or QAM. If such a pseudo-orthogonal

design exists for any constellation , one can use that particular constel-
lation to transmit with a full-rate and achieve maximum diversity and
simple maximum-likelihood decoding.

In this work, we only define the real pseudo-orthogonal designs as
follows:

Definition 1: Let S be an arbitrary subset ofIR with at least 3 dif-
ferent, nonzero elementss1, s2, ands3. A real Pseudo-Orthogonal
Design of ordern is ann-square matrixG with polynomial entries
of degree 1 inn variablesx1, x2, · · · , xn, satisfying the real Hurwitz-
Radon (HR) equation:

GT G = (x2
1 + x2

2 + · · ·+ x2
n)In

for all possible values ofx1, x2, · · · , xn ∈ S, whereGT is the trans-
pose of G andIn is then× n identity matrix.

If G is a real orthogonal design of ordern we may write

G = A1x1 + A2x2 + · · ·+ Anxn.

Then theHR-equation is equivalent to

Σ1≤i<j≤n(AT
i Aj+AT

j Ai)xixj+Σ1≤i≤n(AT
i Ai−In)x2

i = 0. (1)

The main idea in studying the orthogonal designs relies on the fact that
this latter equation can only hold if all coefficients are simultaneously
equal to 0. Sincexi’s are simply indeterminate variables assuming any
possible real number, Equation (1) results in:

Theorem 1:Let G = A1x1 +A2x2 + · · ·+Anxn be a real square
orthogonal design. Let also define n-1 matricesB1, B2, · · · , Bn−1 via
the relationBi = Ai+1A

T
1 , for i = 1, 2, · · · , n − 1. Then such aG

can only exist if the family{B1, B2, · · · , Bn−1} build a so calledHR-
family of orthogonal matrices, i.e. matrices that satisfy the following
conditions:

1) Bi’s are all orthogonal
2) B2

i = −In

3) BiBj = −BjBi

Proof: For the details of the proof we refer to [5] and [1].
In the following we will try to find suitable finite setsS over which

we allow thexi to range in the hope to satisfy Equation (1) without
requiring all the coefficients to be 0. The following theorem will settle
this problem for the real pseudo orthogonal designs. It will turn out
that for the real case no choice ofS will provide us with any new
result.

Theorem 2:For any arbitrary subsetS of the reals having at least
3 non-zero elementss1, s2 ands3, the 3 standard square orthogonal
designs forn = 2, 4, 8 are the only real pseudo orthogonal designs.

But before we prove the theorem, we need to remark the following
about the setS:

1) We do not consider the case whereS is a singleton. Since firstly
it would be less attractive from a coding theoretical point of
view and secondly theHR-equation remains invariant under re-
scaling (simultaneous multiplication of all variables with a con-
stant), therefore the case ofS being a singleton is equivalent to
all variablesxi’s being equal to 1. In this case our orthogonal
design becomes a scalar matrixA satisfying the equation

AT A = nIn.
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Such a matrix is referred to as aHadamardmatrix in the lit-
erature and is extensively studied in [5]. It is shown that such
a matrix can only exist ifn = 1, 2 or n = 4k for some natural
numberk. Therefore we will only focus on cases wheren = 4k.

2) As mentioned above since rescaling leaves theHR-equation in-
variant we may always assume without loss of generality that
1 ∈ S.

3) We can always assume that0 6∈ S. Since otherwise let allxi’s
except for one,xj for instance, to be equal to 0. Then from
Equation (1) it follows thatAT

j Aj − I = 0 for any arbitraryj.
Let also allxi’s be 0 except for two specificxj andxk. Then
from the same equation it follows that(AT

k Aj + AT
j Ak) = 0

for any arbitrary values forj andk. Then according to Theorem
1 any pseudo orthogonal design for anyS containing 0 will be
an orthogonal design.

4) Unlike the case of orthogonal designs, maximum diversity is not
guaranteed for pseudo orthogonal designs. The result shows
that, under the conditions of the theorem, even non full-rank
pseudo orthogonal designs do not exist.

Proof of Theorem 2: Let us focus on a fixed entry ((k, l), for in-
stance), of the matricesAT

i Aj + AT
j Ai andAT

i Ai − In in Equation
(1). Let

2akl
ij := (k, l)− entry of(AT

i Aj + AT
j Ai)

and
akl

ii := (k, l)− entry of(AT
i Ai − I).

Then from Equation (1) it follows that

Σ1≤i<j≤nakl
ij xixj + Σ1≤i≤nakl

ii x2
i = 0.

Defining the symmetric matrixAkl := (akl
ij ) will result in:

XT AklX = 0, (2)

whereX := (x1, x2, · · · , xn)T . Then theHR-equation would be
equivalent to satisfying Equation (2) for all possible values ofX ∈ Sn

for all matricesAkl. We will haven2 equations of type (2) forn2 dif-
ferentAkl’s. The proof is complete if we prove that for any suchAkl,
Akl = 0. Since this will prove that our pseudo orthogonal design sat-
isfies Equation (1) and will turn out to be an orthogonal design.
Claim: Akl = 0.
Proof of the Claim: SinceAkl is symmetric, there exists an orthog-
onal matrixP such thatP T AklP = diag(λ1, λ2, · · · , λn) := Λ,
whereλ1, λ2, · · · , λn are the eigenvalues (all real) ofAkl. The ma-
trix Λ defines a symmetric bilinear form onIRn, which can be non-
singular. LetM be the set of all isotropic vectors (vectors of length0)
with respect toΛ, i.e. the set of all points inIRn satisfying Equation
(2). Then underP , M gets transferred into ahypercone

PM := {(x1, x2, · · · , xn)T ∈ IRn|λ1x
2
1 +λ2x

2
2 + · · ·+λnx2

n = 0}

The following lemma is the crucial point of the proof:
Lemma 1: If a straight lineL intersectsPM in more than 2 points,

thenL ⊆ PM . In addition ifL has the equationX := V t + W , for
someW andV ∈ IRn. Then

< V, V >=< W, V >=< W, W >= 0,

where we adopt the notation< x, y >Λ or < x, y > for short, instead
of xT Λy. Consequently the subspace generated byV and W will
be an isotropic subspace, i.e. a subspace on which the bilinear form
vanishes.
Proof of Lemma:
Let X := t(v1, v2, · · · , vn)T + (w1, w2, · · · , wn)T be an arbitrary

point ofL. Then the intersection ofL with PM will satisfy the equa-
tion:

λ1(v1t + w1)
2 + λ2(v2t + w2)

2 + · · ·+ λn(vnt + wn)2 = 0.

This quadratic equation (in variablet) has at most 2 solutions. Know-
ing thatL intersectsPM at least 3 times, the equation can only hold
if all its coefficients equal 0. Therefore it follows:

< V, V >=< W, V >=< W, W >= 0.

Considering that once all the coefficients are 0, the equation will hold
for any possible value oft, proves thatL ⊆ PM . 2

Let ei := (0, · · · , 0, 1, 0, · · · , 0)T be the standardith unit vector
andW := (s1, s1, · · · , s1)

T ∈ Sn. Furthermore letLi be the straight
line having the equation:X := tei + W . Then eachLi contains at
least 3 points ofSn

Yi,1 := (s1, s1, · · · , s1, · · · , s1)
T ,

Yi,2 := (s1, s1, · · · , s2, · · · , s1)
T ,

Yi,3 := (s1, s1, · · · , s3, · · · , s1)
T .

Let us also definee′i := Pei andW ′ := PW . Considering thatP
is an orthogonal transformation, the image ofLi underP , PLi, that
is another line will intersectPM in more than 2 points (the images of
Yi,1, Yi,2, Yi,3 underP ). Then according to the lemma:

< e′i, e
′
i >=< W ′, e′i >=< W ′, W ′ >= 0. (3)

For an arbitrary choice ofi andj (i 6= j) let Li,j be the straight line
passing through the pointW +(s2−s1)ei and parallel toej . ThenLi,j

will contain 3 points ofSn. The linePLi,j will contain the images of
these 3 points (underP ) and will satisfy the equation:

X := PW + (s2 − s1)Pei + tPej = W ′ + (s2 − s1)e
′
i + te′j .

According to the lemma it follows:

< W ′ + (s2 − s1)e
′
i, e

′
j >= 0.

Using Equation (3) it follows that for alli 6= j:

< e′i, e
′
j >= 0. (4)

Combining (3) and (4) it follows that for alli, j:

< e′i, e
′
j >= 0. (5)

SinceP is an orthogonal transformation, the vectorse′1, · · · , e′n gener-
ate the whole spaceIRn. From Equation (5) it follows that the whole
spaceIRn is Λ-isotropic, thereforeΛ = 0 or consequentlyAkl = 0.
This proves the claim and the theorem.2

III. C ONCLUSIONS

We have introduced the concept of Pseudo Orthogonal Designs. A
pseudo orthogonal design is defined for a finite set of elements instead
of all real or complex numbers. We have proved that a real pseudo
orthogonal design does not exist. The case of complex pseudo orthog-
onal designs will be handled later.
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