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Abstract

This paper describes the design and performance of a link-layer protocol for indoor and outdoor
wireless networks. The protocol is asymmetric to reduce the processing load at the mobile, reliability
is established by a combination of automatic repeat request and forward error correction, and link-layer
packets are transferred appropriately during handoffs. The protocol is named AIRMAIL (AsymmetrIc
Reliable Mobile Access In Link-layer). The asymmetry is needed in the design because the mobile
terminals have limited power and smaller processing capability than the base stations. The key ideas in
the asymmetric protocol design consist of placing bulk of the intelligence in the base station as opposed
to placing it symmetrically, in requiring the mobile terminal to combine several acknowledgments into
a single acknowledgment to conserve power, and in designing the base stations to send periodic status
messages, while making the acknowledgment from the mobile terminal event-driven. The asymmetry
in the protocol design results in a one-third reduction of compiled code. The forward error correction
technique incorporates three levels of channel coding which interact adaptively. The motivation for using
a combination of forward error correction and link-layer retransmissions is to obtain better performance
in terms of end-to-end throughput and latency by correcting errors in an unreliable wireless channel in
addition to end-to-end correction rather than by correcting errors only by end-to-end retransmissions.
The coding overhead is changed adaptively so that bandwidth expansion due to forward error correction
is minimized. Integrity of the link during handoffs (in the face of mobility) is handled by window
management and state transfer. The protocol has been implemented. Experimental performance results
based on the implementation are presented.
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1 Introduction

Most data link-layer protocols in existence today have been designed for conventional networks: low-speed

landline networks based on voiceband modems which have fixed and relatively low error rates, LANs

with very low error rates, the satellite channel with a large propagation delay, or high-speed networks with

extremely low error rates and relatively large propagation delays (with respect to the packet size). The

mobile wireless channel has different characteristics than these conventional networks: the error rate can

be very high and it is highly variable, and the propagation delay with respect to the packet sizes is small.

With the increasing popularity of wireless communication, in the form of outdoor cellular communications

with small bandwidth, or indoor wireless LAN with large bandwidth, there is a growing need for new

link-layer protocols to accommodate the specific properties of the wireless channel in an efficient way so

that a wireless terminal with better performance, lower power, and smaller size can be designed (see, e.g.,

[KGBK78], [LNT87]). In this paper we propose such a protocol. We envision a network architecture which

has a wired network as its backbone with base stations on it acting as access points for the mobile terminals

(Figure 1). Mobile terminals communicate through the base stations with other hosts. In the context of this

architecture, a wireless channel refers to the channel between a wireless terminal and a base station. Our

emphasis throughout the paper will be on the link between the base station and a mobile terminal.

The configuration with a wireless channel between a base station (which is wired to the backbone

network) and a mobile terminal (which has no wired connection) is inherently asymmetric in nature. The

asymmetry can be attributed to the fact that the mobile terminal has limited power and smaller processing

capability than the base station. In order to accommodate this asymmetry, we propose to put as much

intelligence as possible in terms of processing in the base stations and make the mobile terminals relatively

dumb. This issue will be addressed in Section 2.

Because of the effects of fading, interference and mobility, the error rate incurred in a mobile wireless

channel is often very high. This has two effects. First, in current systems, end-to-end protocols must recover

from these errors, often using retransmission timers. These timers are typically set to values on the order

of seconds to allow for variable network delays. This causes the recovery time of an error that occurs on

a wireless channel to be long. Secondly, losses incurred on the wireless channel trigger the end-to-end

transmitters to decrease the window size and increase the duration of the retransmission timers as observed

by Caceres and Iftode in [CI93]. This leads to lower throughput and higher latency. Therefore, correcting

errors at the link-layer in addition to end-to-end correction will result in better performance compared to

only end-to-end correction. However, there is evidence in the literature that a retransmission in the link-layer
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does not always result in better performance owing to its complex interaction with end-to-end retransmission

mechanisms [DCY93].

As stated above, the wireless channel has a variable bit error rate, which can be very high (10
� 2

� 10
� 3).

In addition, the wireless channel has fixed bandwidth, but the transmission rate needs as well as the number

of potential users are constantly increasing. These two properties lead to conflicting requirements in the

design of a protocol. Since the bandwidth is limited, it is necessary to minimize retransmissions. On the

other hand, since the error rate can be very high, it may be desirable to make redundant transmissions with

the assumption that the probability of a packet being delivered correctly is higher if it is transmitted more

than once. This tradeoff, which must be taken into consideration in the design of the protocol parameters, as

well as the aforementioned need to design the protocol to balance end-to-end performance and link-by-link

error control is the subject of forward error control. This issue will be addressed in Section 3.

In cellular communications, as the mobile travels through different cells, the base station that the mobile

communicates with changes. This process is known as a handoff . For data communications, there have been

attempts to reroute or forward messages at the network layer, e.g., Mobile IP [S94]. Our approach provides

transfer of packets during handoffs which might be lost in the case of Mobile IP without a protocol such

as ours. These lost packets would then have to be retransmitted at the transport layer leading to increased

end-to-end delay. By state transfer and link-layer retransmissions, the retransmissions at the transport layer

are avoided. This requires a synchronization of the link-layer state at the new base station with the link-layer

state at the old base station. We have designed techniques to deal with handoffs at the link-layer, these will

be described in Section 4.

The indoor and the outdoor channels show very different error characteristics due to different fading

effects. This means they may require different error correction mechanisms. The difference in channel

characteristics and, based on these differences, error correction mechanisms for each environment are

explained in Section 5. Some performance results based on an implementation of the protocol are given in

Section 6. Summary and conclusions are provided in Section 7. Appendix A provides a brief description of

the formal specification of the protocol.

Although some protocols such as SDLC or HDLC have asymmetric modes, they differ from the work

described here in that they are based on a master-slave relationship. AIRMAIL avoids this relationship and

therefore the associated polling operation, waste of bandwidth, and delay.

The Cellular Digital Packet Data (CDPD) protocol has a data link-layer protocol known as Mobile Data

Link Protocol (MDLP), based on HDLC and LAPD [CDPD93]. Although partially based on HDLC, MDLP

operates in balanced mode, i.e., there is no asymmetry in the protocol. In addition, forward error correction
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or precautions taken for handling mobility existent in AIRMAIL do not exist in MDLP.

A link-layer protocol for the IS-95 channel, named the Radio Link Protocol (RLP), was proposed in

[K93]. RLP is a simple, “lightweight” protocol. RLP emphasizes end-to-end error control, and therefore

is not fully reliable. It leaves part of error control to higher layers, e.g., TCP. It is based on a pure-NAK

philosophy, i.e., it is “success-oriented.” The end-to-end, success-oriented approach is valid for clean media

such as fiber, but for very noisy environments such as cellular wireless channel, we believe there is merit in

correcting errors at the error-prone link. With error correction mechanisms at the link-layer, the heavy error

correction overhead present in the physical layer of IS-95 can be avoided.

Recently, a new point-to-point ARQ (Automatic Repeat Request) protocol has been proposed for the

radio channel [NED93] which exploits the sequential delivery of packets in a wireless link. However, it

assumes circuit-mode data, while we assume packet-mode data. Further, [NED93] does not have any of

the unique properties of our protocol, namely, asymmetry, adaptive forward error correction, and mobility

management.

We describe the asymmetric features of the basic protocol first. We then describe the forward error

correction techniques and show how forward error correction and the retransmission mechanisms of the

asymmetric protocol can be combined to obtain reliability. Then, how mobility is taken care of in AIRMAIL

is described. These descriptions are followed by simulation and performance measurement results. The

basic asymmetric protocol which relies only on ARQ techniques is described next.

2 Asymmetry

The key ideas in incorporating asymmetry affect the ARQ error control and window-based flow control

techniques used in AIRMAIL. These are summarized below.

1. Timers are always at the base station regardless of whether it is transmitting or receiving. Thus the

intelligence in terms of maintaining timers, processing complex status messages and most importantly,

making decisions resides in the base station.

2. The base station receiver sends its status to a mobile transmitter periodically, as in the SNR protocol

[NRS90]. The justification for using periodic status messages is to reduce the dependence on the

error-prone medium. In particular, if the wireless channel is bad and the base station does not receive

packets, it can still send status messages, because sending of status messages is triggered by the

timeout signal of a local timer and not by the event of receiving a packet. Also, if a status message
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gets lost, a subsequent status message will shortly follow.

Note that the period of sending status messages should be optimized so as not to waste much bandwidth

for control information while at the same time offsetting the effect of a noisy channel.

3. The mobile receiver does not send its status to the base transmitter periodically because of its power

constraint. These status messages are event-driven.

4. The mobile receiver combines several status messages into one status message to conserve power.

That is, the mobile terminal does not send a status message after receiving each packet. Rather it

sends a status message after receiving a block (a set of packets). However, there is a trade-off between

wasting power and increasing latency.

Thus a mobile terminal transmits packets, but does not send an acknowledgment after receiving each

packet. It waits for receiving a whole block before sending out a status message.

The following subsections provide more detail on how repeat requests and window-based flow control

are handled in AIRMAIL.

2.1 From Mobile Transmitter (MT) to Base Receiver (BR)

The steps involved in providing repeat requests and flow control from MT to BR are listed below (Figure 2):

1. MT transmits new packets continuously until a maximum transmit buffer size is reached (maximum

buffer size is computed using a multiple of the round-trip delay), a retransmission request (status

message notifying loss/corruption of a packet) is received, or it has no more data to transmit. Retrans-

mission has priority over transmission of a new packet. When MT has no more to transmit, it sets a

bit in the packet header of the last packet. This bit is referred to as the e-bit in subsequent sections of

the paper.

2. BR transmits status messages periodically to MT. This is similar to periodic state exchange in the

SNR protocol [NRS90] except that state is not exchanged and that the status messages in this protocol

do not contain information regarding how much buffer space is available in the receiver as in the

SNR protocol. The periodicity is maintained using a status timer which expires after a given interval

and is restarted after a status message is sent. The period is reduced when BR receives a packet with

the e-bit set. In such a case, BR sends its status immediately without waiting for the Status Timer to
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expire. This allows for fast acknowledgments when small amounts of data are being sent and quick

response is the main concern.

Since MT does not send its status periodically and it does not have a timer, a timer is needed at BR

to detect loss of packets. The concept of using a timer at the receiver was introduced in NETBLT

[CLZ87], although in the context of a transport protocol. Also note that BR sends its status periodically

to MT, thereby incorporating redundancy in the error-prone medium.

3. MT retransmits the requested packets before transmitting any new packet.

If retransmissions do not reach BR, MT will not be able to transmit any new packets after a finite

period because the transmit buffer space at MT will be exhausted. The transmit buffer size buf at MT

is larger than the window1 to take care of loss of status messages from BR to MT. This improves the

performance in terms of throughput and delay.

Since buf is larger than the window, MT can transmit new packets longer than usual with the hope

that status messages acknowledging previously transmitted packets will arrive a little later than the

expected time owing to the loss of first few status messages. This prevents idling by the transmitter.

In other words, MT anticipates opening of window or freeing of buffer space in near future.

Buffer space at MT will be exhausted if the forward channel (BR to MT) is bad or the reverse channel

(MT to BR) is bad or both are bad. We argue next that in any case such an anomaly will be reflected

at BR in the form of an unchanged status.

Consider first the case in which the reverse channel is bad. That is, the (re)transmitted packets from

MT to BR are getting lost. In that case, the status of BR will not change because BR is not receiving

anything from MT. If however, the forward channel is good, the status messages (which are identical)

from BR will reach MT. In that case, MT will keep retransmitting the packets with the expectation that

the channel will improve soon. If the channel does not improve, BR will not receive any retransmitted

packet and hence its status will not change. The anomaly will thus be detected at BR.

Consider next the case in which the forward channel is bad. That is, the status messages from BR

to MT are getting lost. If the status messages are lost, MT will have no idea as to which packets

are received at BR. Thus, MT will soon run out of buffer space and stop transmitting new packets.

Not only will MT stop transmitting new packets but it will also not retransmit any old packet before

1Throughout this paper the term ���������	� is used to represent the number of packets that can be transmitted during a round-trip

delay.
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it receives a status message from BR. The reason for MT’s not retransmitting any old packet is

that it does not know which packets have been received by BR and it does not want to retransmit

indiscriminately because bandwidth is expensive. Since MT stops any (re)transmission, BR’s status

will stop changing and the anomaly will be detected.

Thus whether the forward channel or the reverse channel goes bad, the anomaly will be reflected at

BR as a no change of its status. BR will drop the connection if such a situation persists for some time.

2.2 From Base Transmitter (BT) to Mobile Receiver (MR)

The steps involved in repeat requests and flow control from BT to MR are listed as follows (see Figure 3):

1. BT transmits new packets until the window closes, a request for retransmission (which is a part of

the status message) arrives, or it has no more packets to transmit. When BT has no more packets to

transmit, it sets the e-bit in the packet header of the last packet.

BT starts a timer after transmitting a full block of packets or after transmitting a packet with the e-bit

set, and sends an explicit status request message (Poll) to MR if it does not hear from MR before the

timer expires. Note the presence of timer at BT.

2. MR sends a status message after it receives a whole block (fixed number of packets). The status

message is a bitmap such that
�������

indicates whether �	��
��� ��� within the given block has been received

or not. � �����
= 1 indicates “received” while

�������
= 0 indicates “not received.”

Note that to conserve power, MR, unlike BR (when Base Station is in the receiving mode), does not

send status messages periodically (at fixed intervals of time) and frequently (more than once during

the round trip time). Moreover, for the same reason, it does not send a status message after it receives

each packet. MR waits for either a whole block, or a packet with the e-bit set, to arrive before sending

out a status message. This allows the mobile unit to conserve transmission power.

3. BT retransmits the requested packets.

Note that BT selectively retransmits only the “lost” packets in a given block and not the whole block.2

This conserves bandwidth.
2This is different from the SNR protocol in which a whole block is retransmitted. SNR protocol is designed for high-speed

networks where bandwidth is not expensive and hence retransmitting a whole block is not a big issue. However, in wireless links,

bandwidth is expensive and hence we minimize all transmissions.
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BT also starts the timer to detect if MR sends a status message acknowledging the receipt of the

retransmitted packet within the expected time. If not, BT sends an explicit Poll message to MR. If the

status message from MR does not arrive before the timer expires, BT tries again and gives up after a

few attempts if MR does not respond.

The basic asymmetric protocol relies only on the retransmission mechanism to ensure reliability. De-

ciding whether errors are present in a packet is carried out by means of a cyclic redundancy check. By

increasing the power of the code used for that purpose, it is possible to correct errors and avoid retransmis-

sions. In addition, errored packets that cannot be corrected by means of this redundancy can be corrected

by additional parity packets. For real-time traffic, such as audio and video, retranmissions are not feasible,

and forward error correction is viable for ensuring a given quality of service. By changing the parameters

of forward error correction, the best channel utilization can be achieved. These ideas are described in more

detail in the following section.

3 Forward Error Correction

The digital mobile channel has various sources of random noise and deterministic interference that give

rise to errored receptions. The most dominant factors are Rayleigh fading due to Doppler shift of the

operating frequency for mobile transceivers or mobile scatterers, multipath interference due to reflections

from natural and man-made objects around the main transmission path, random noise, and co-channel

and adjacent channel interference. Various signal processing alternatives are under consideration for these

sources of interference, such as equalization, space diversity, multitone transmission, and forward error

correction (FEC) at the physical layer. No consensus exists in the literature as to which of these techniques

can universally recover from all sources of noise and interference. It has been generally accepted that some

FEC at the physical layer is needed to recover from noise for the outdoor channel. In general, however, this

FEC will not be able to generate an error-free channel, and some residual error will be propagated to the

data link layer.

As is well-known, FEC techniques are sometimes used in addition to the automatic repeat request (ARQ)

techniques at the data link layer. Various combined techniques, known as hybrid techniques, have been

suggested and studied for this purpose (e.g., see [LC83] and its references). Among the channels suggested

for the use of hybrid ARQ/FEC schemes is the satellite channel and the high-speed ATM channel. In both

cases, the packet size is large with respect to the propagation delay, or in other words, the bandwidth-delay

product is high. This makes the process of requesting and receiving retransmissions take long with respect
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to the packet size, and consequently reduces the protocol throughput. Therefore FEC, by means of adding

redundant packets so that errored or “lost” packets can be reconstructed based on the redundant packets and

packets that are correctly received, becomes a feasible alternative to ARQ. The land-mobile channel does

not have a large delay-bandwidth product, and therefore, the use of FEC at the data link-layer as suggested

above may appear to be questionable. We will address this issue in this section, and will summarize under

which circumstances FEC becomes useful. First, we would like to discuss possible ways of implementing

FEC in a data transmission system.

There are three possible levels FEC can be incorporated into a data transmission system.

� Bit-level FEC: This is achieved at the physical layer, typically in hardware, by means of a DSP chip

or an application specific integrated circuit. For bandwidth-limited channels, trellis coded modulation

with Viterbi decoding is used. If the channel is not bandlimited, block or convolutional coding

techniques are employed. In the latter case, decoding is by means of the Viterbi algorithm. A

characteristic of the Viterbi algorithm is that it provides a sequence, which is closest to the original

given the received sequence in some mathematical measure (i.e., maximum likelihood). By definition,

the Viterbi algorithm does not provide any indication of an uncorrectable sequence, or the number of

corrections, etc. Although it is possible to correlate calculated values in the algorithm with the long

term channel bit error rate, the Viterbi algorithm does not provide a measurement of the short-term

channel error characteristics based on channel errors.

� Byte-level FEC: This is done by means of per-packet FEC. Every packet in a data link-layer protocol

carries a cyclic redundancy check (CRC) field in order to determine whether the packet is received

error-free. The same field can be used for error correction. Most traditional data link-layer protocols

use this field for error detection only, mainly due to the computational complexity of performing FEC

decoding. Recently, with the advent of more powerful processing, additional use of this field for error

correction purposes is being considered. For example, ATM AAL 3/4 has a per-cell CRC field which

is designed to be capable of one bit error correction. In a similar fashion, we propose replacing this

field by a code that is capable of error correction, such as the output of a Reed-Solomon encoder.

When the field size is the same as that needed for CRC, there is no additional bandwidth or coding

overhead required as compared to an ARQ scheme, although there is an associated increase in the

probability of undetected errors. By increasing the size of this field, the probability of undetected

error and the number of packet retransmissions needed can be reduced. Our simulations indicate most

blocks have a few bytes in error for the outdoor channel, and therefore, bit- and byte-level FEC can
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be highly beneficial for this environment. Byte-level FEC has the advantage of correcting only those

bytes in error (as the error process manifests itself as short bursts), and therefore has the advantage of

using the bandwidth more efficiently. The interplay between these two levels of FEC is an interesting

area of research.

� Packet-level FEC: This is done by allocating some packets in the protocol window for correction. In

the case of packets that cannot be corrected by bit-level or byte-level FEC (or equivalently, packets

that are “lost”), these redundant packets, together with the correctly received packets, can be used for

recovery of the lost packets without retransmissions. It is possible to add
�

redundant packets to �

data packets, so that as long as at least some � packets of the total ���
�

data packets and redundant

packets are received, the � data packets can be recovered. This technique is known as optimum

erasure encoding-decoding (optimum in the maximum distance sense), and various coding methods

can be employed for this purpose. A well-known technique is Reed-Solomon codes, which can be

used for error correction (positions unknown, as in byte-level FEC) or erasure correction (positions

known) [LC83]. When the number of packets is 2 or 3, the diversity code [AIGM93] is more efficient

in terms of the size of the field the operations are performed in. Again, with the advent of more

complicated processing, FEC methods at the packet level are finding their way into data transmission.

For example, there is a proposal to incorporate cell-level FEC into ATM AAL 1.

In the system we are proposing, all three levels of FEC have their place. Our simulations have shown

that different mobile channels show different characteristics. The narrowband outdoor mobile channel has

a small number of bytes in error for most of the packets transmitted. There exists some correlation in the

number of errored bytes with time. This correlation can be exploited for estimation of the number of bytes

to be in error for the next block, and the FEC overhead can be changed by a message from the receiver to

the transmitter accordingly. This is equivalent to measuring the channel continuously and describing the

channel “state” to the transmitter. It has a similar motivation to the periodic state exchange of the SNR

protocol [NRS90]. The rate of these measurement messages is orders of magnitude smaller than the rate of

power control messages (1 kb/s) for IS-95 digital cellular standard using CDMA. The small delay-bandwidth

product of the mobile channel enables adaptation based on feedback. Our simulations have shown better

channel utilization by using an adaptive algorithm as described above. The messages from the receiver are

in general used to change the FEC parameters at all levels. For the narrowband outdoor channel, bit-level

and byte-level adaptation is dominant. Changing of the physical layer parameters from measurements by

the data link-layer is accomplished by sending messages to the bit layer. For trellis coded modulation or
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convolutional coding at the data link-layer, the measurement of the channel error characteristics cannot

be obtained as a byproduct of the decoding process at the physical layer and therefore these messages are

essential for adaptation at the bit level. The bit-level and the byte-level adaptive FEC are well-suited to the

narrowband outdoor mobile channel.

On the other hand, the wideband indoor channel shows very different error characteristics. This channel

is error-free most of the time. As the RMS delay spread to bit period ratio approaches 10%, however, the

channel begins to show error characteristics such that most packets within a window are error-free, but some

have very large number of bytes in error. These cannot typically be corrected by bit-level or byte-level FEC,

and use of packet-level FEC is therefore in order for this application. The wideband outdoor channel will

benefit from all three levels of coding.

As in ATM, exclusive use of FEC is needed for real-time applications, such as voice or video. Data, on

the other hand, can be transmitted by a combination of ARQ- and FEC-based data transmission protocol.

The issue of using packet-level FEC with a sliding window ARQ algorithm requires some bookkeeping.

In order to illustrate how this can be done, we give a simple example. Consider a base transmitter and a

mobile receiver. Suppose the window size is
� �

8 and
� �

2. The transmitter transmits � �
6 data

packets (say � 0, � 1, � 2, � 3, � 4 and � 5) followed by
�

= 2 parity packets (say � 0 and � 1 computed based

on the data packets � 0, � 1, � 2, � 3, � 4 and � 5). If the receiver receives any 6 of the 8 packets (say packets

� 0, � 2, � 3, � 5, � 0 and � 1), it can reconstruct the lost data packets � 1 and � 4. However, if it receives less

than 6 packets, recovery is not possible.

For example, suppose the receiver receives only 4 packets � 0, � 1, � 4 and � 1. In that case, it cannot

reconstruct data packets � 2, � 3 and � 5 and hence sends a retransmission request to the transmitter in the

form ( ��� = 2, Bitmap = 0010). ��� sets the lower end of the window (leftmost bit of the bitmap corresponds

to the status of data packet ��� ) and hence the Bitmap 0010 corresponds to the status of data packets d2,d3,d4

and d5 respectively from left to right. The transmitter moves ��� (lower end of the window at the transmitter)

to 2, retransmits data packets � 2, � 3 and � 5, transmits new data packets � 6 and � 7 and computes 2 parity

packets � 0 	 and � 1 	 based on � 2, � 3, � 4, � 5, � 6 and � 7 and transmits them following the data packets. Thus

the parity packets are computed based on the data packets in the current window. The information about

which packets have been used in computing the parity packets is available at the receiver (because it is the

receiver which sends the bitmap and ��� ) and hence, the receiver can use that information to recover lost

data packets from the packets it receives at any instant of time.

A combination of FEC and the retransmission mechanisms of the asymmetric protocol is sufficient to

ensure reliability of a wireless link as long as the two endpoints of the link, in particular, the base station,
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remains the same. When the mobile terminal moves from one cell to another, and therefore changes base

station, packets may be lost during transition, resulting in inconsistent states at the mobile terminal and the

new base station. In order to be able to maintain a reliable link in the face of mobility, we take additional

measures at the link-layer which are described in the next section.

4 Mobility and Handoff

Handoffs occur when the communication to and from a mobile terminal is transferred from one base station

to another. To allow this link-layer protocol to operate in a mobile environment, provisions must be made

for handoffs to occur. For example, when a handoff occurs, the sequence numbers of the link-layer protocol

in the mobile terminal and the new base station must be synchronized so that lost packets may be detected,

and ordered data delivery may be provided to the higher layer protocol. In contrast to [KMSKF93], where

only real-time services are addressed, we aim for reliable data transfer; and in order to limit the amount of

extra processing that must occur at the mobile terminal, we infuse the new base station with the state of

the old base station so that no change is noticed at the link-layer of the mobile terminal. To enhance the

performance of the handoff mechanism, we allow the mobile transmitter to continue transmitting data while

the handoff is occurring.

The basic scheme works as follows (see Figure 4):

1. The mobile terminal issues a handoff request to a new base station to which it wishes to handoff. This

request includes the state information of the mobile transmitter and receiver.

2. The new base station requests state information from the old base station. This information is used to

infuse the new base station with the proper state.

3. While waiting for the information from the old base station, the new base station attempts to derive

its proper state from the information provided by the mobile terminal. During this time, it sends no

status messages to the mobile transmitter.

4. The new base station buffers data arriving from the network and the mobile terminal. The transmit

window of the mobile transmitter is increased during handoff (dynamic windowing).

5. The new base station receives the state information from the old base station, updates its state, and

processes all buffered data according to the normal protocol rules. At this time, it generates a status

message to the mobile transmitter and operates normally.
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Recall from Section 3 that there are three levels of FEC. In order to decide which levels of FEC need to

be used in AIRMAIL, we set up a simulation environment for indoor and outdoor channels. The simulation

environment and the results are described next.

5 Wireless Channel Simulation Results

In this section we will describe the wireless channel simulations that result in the design decisions of

Section 3 briefly. With the purpose of studying the characteristics of indoor and outdoor channels for

mobile communications, a simulation setup was programmed (see Figure 5). It is well-known that the

mobile channel has various effects that limit the quality of data transmission. The most important of these

is due to multipath fading, i.e., various natural and man-made objects reflect or scatter carriers such that the

receiver receives the transmitted signal over multiple paths. In each such path, there are random amplitude

and phase fluctuations. Furthermore, the mobile causes Doppler shift for each such path. The combined

effect of these events is that the magnitude of the received signal becomes Rayleigh distributed, which can

become vanishingly small. The Rayleigh distribution is the cause of the name Rayleigh fading for this

event. Such channels are closely approximated by Jake’s model [J74]. Such a model was programmed

and tested for various indoor and outdoor applications using differential quadrature phase shift keying for

a carrier frequency of 850 MHz, for data rates 64 kb/s and 2 Mb/s, with blocks of size 256 bytes, mobile

speeds 5, 35, and 55 mph, and delay spread (RMS delay of various paths) values of 100 ns (indoor channel)

and 3 � s (outdoor channel). Typical outdoor channel results are shown in Figure 6 for a 64 kb/s channel,

vehicle speed 35 mph, and delay spread 3 � s. As can be seen, most blocks have errored bytes and the

number of errored bytes vary significantly, but there is a correlation in short term behavior of the number

of bytes in error that can be exploited for changing the bandwidth adaptively. As the number of errored

bytes within a block is usually small, byte-level forward error correction is the appropriate technique to use.

On the other hand, typical indoor channel results are shown in Figure 7 for a 2 Mb/s channel, in an indoor

environment when people are walking in the building (delay spread is 100 ns, speed 5 mph). In this case the

channel is usually error-free, with a large number of bytes being in error occasionally. When a block has

errors, their number is high so that byte-level forward error correction will not work. On the other hand,

the periodicity of errored blocks indicates packet-level FEC will work under these circumstances. Results

shown in Figure 7 and 6 indicate that bit- and byte-level FEC is appropriate for the narrowband outdoor

channel, while packet-level FEC is appropriate for the wideband indoor channel.

The protocol was specified using Communicating Extended Finite State Machines (CEFSMs), and using
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this specification, was translated into textual APSL (Augmented Protocol Specification Language). Part

of the formal specification of the protocol is given in Appendix A. The APSL validator was then used to

explore the state space of the protocol in a random manner. The reason for random exploration is to avoid

the well-known state space explosion. After validation, the protocol was implemented in several steps.

The first implementation of the asymmetry properties was carried out in the user space with Unix sockets.

At this point, a SunOS 4.1.3 kernel implementation exists as a loadable kernel module. We made several

measurements based on the implementation, which are described next.

6 Experimental Performance Results

The objective of this section is to justify the claims we made about the key properties of the protocol, namely,

conserving bandwidth by preventing redundant retransmissions and conserving power by combining several

status messages into one by the mobile receiver even in the absence of timers. We also substantiate our claim

of asymmetry by the size of code and the processing time at the base station and at the mobile terminal.

These results are obtained from the socket-based implementation of the protocol.

First of all, we show that the protocol minimizes redundant retransmissions. This conserves the

expensive cellular bandwidth. Figure 8 shows 3 separate plots corresponding to different packet error rates.

The number of status messages on the horizontal axis is varied by changing the timeout interval of the status

timer at the base receiver. The plot shows that the number of packets retransmitted by the mobile transmitter

is the same irrespective of the number of retransmission requests (the slight variations correspond to different

number of packets lost in different runs), and that number is exactly equal to the number of lost packets.

That is, if we plot the number of lost packets on the same axes, it would overlap completely with the plot for

number of retransmitted packets. Thus, even if the base receiver sends its status messages very frequently,

the mobile transmitter prevents duplicate retransmission. The same is true for the base transmitter.

The next plot (Figure 9) shows that there is a trade-off between sending the status more frequently to

obtain a better response time, versus the wastage of expensive bandwidth. In this case, the timeout interval

of the status timer at the base receiver is altered to send status messages at different frequency to the mobile

transmitter. If the status messages are sent too frequently, bandwidth is wasted. However, the response time

improves. If the status messages are sent infrequently, bandwidth is preserved but response time suffers.

However, the good news is that there is an optimal choice of the timeout interval for the status timer such

that the gain in terms of response time is maximum at the expense of minimum additional bandwidth. From

Figure 9, the optimal choice is to send 1.5 to 2 status messages per round-trip delay to the mobile transmitter.
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Our measurements indicated that, as expected, the throughput falls with higher packet error rates.

However, the normalized throughput of the protocol does not fall below 0.8 even for a packet error rate of

0.1.

We show the effects of asymmetry in the protocol design by providing some figures from the socket-

based implementation. Table 1 compares the size of compiled code at the base station and at the mobile

terminal. It shows that the total size of code at the mobile terminal is two-thirds the size of the code at the

base station.

Table 2 shows the average processing time for the mobile transmitter and the base receiver for transferring

a file of size 204 KBytes at a packet error rate of 0.33 and status timer timeout interval equal to half the

round trip delay. It shows that the average processing time for the mobile transmitter is one-third of that of

the base receiver. The difference between the two reduces with decrease in error rate.

Table 3 shows the average processing time for the base transmitter and the mobile receiver for transferring

a file of size 204 KBytes at a packet error rate of 0.01 and poll timer timeout interval equal to twice the

round trip delay. It shows that the average processing time for the mobile receiver is two-thirds of that of

the base transmitter. The difference between the two increases with increase in error rate.

7 Conclusion

This paper presents the design and performance of a novel link-layer protocol for a digital cellular channel.

The protocol is asymmetric in the sense that the intelligence in terms of making decisions is always at

the base station, irrespective of whether it is transmitting or receiving. The mobile terminal follows a

relatively simpler protocol compared to the base station, mainly because it has limited battery power and

smaller processing capability. We showed how the protocol conserves bandwidth by preventing redundant

retransmission and how the mobile terminal conserves power by combining several status messages into a

single comprehensive status message. The use of adaptive forward error correction with retransmission is

particularly suitable for error-prone wireless channels. The forward error correction technique encompasses

bit-, byte-, and packet-level channel coding. The interplay between these three levels of channel coding is

managed by means of an adaptive algorithm. We showed how forward error correction can be added to our

basic protocol. We described a link-layer approach to mobility management based on window management

and state transfer.

The protocol described here has been implemented for the Unix kernel. Its unique properties make it

well-suited for the digital cellular channel. This paper is an overview of the main ideas in the protocol.
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Upcoming papers will describe the protocol in detail, in terms of a formal specification with state diagrams,

detailed description of the adaptive forward error correction algorithm and mobility management, and will

provide performance analysis and comparisons.

8 Conclusion

Thanks are due to Shilpa Talwar for her help in running simulations for characterizing the mobile channel.

16



Appendix

A Formal Specification of the Protocol

In order to describe the protocols in a formal way, we represent them in the form of Communicating

Extended Finite State Machines (CEFSMs). In order for an EFSM to transition from one state to another,

it may require certain conditions to be true (which depend on the values of the context variables), or may

require certain inputs to arrive (from another communicating machine). In addition to that, these EFSM’s

may update context variables or send certain outputs (to other communicating machines) during a transition

from one state to another. The condition, input, output and update are represented as follows:

1. A condition is represented by
� 
�� .

2. A message is represented by
�

where
�

can be of the form � 1! � (send a message � to EFSM � 1) or

� 1? � (receive a message � from EFSM � 1). The message � , in general, can have several parameters.

An abbreviation ( � 1? � ��� 2? � ) will be used to represent either � 1? � or � 2? � . Similarly, the

abbreviation ( � 1! ���	� 2! � ) will be used to represent � 1! � followed by � 2! � .

3. An update is represented by [ 
 ] where 
 can be thought of as a simple program segment which updates

context variables. The update may depend on conditions. Thus, 
 may have conditional statements

as well as assignment statements.

We only give the formal description of the protocol between MT and BR for brevity.

The mobile transmitter MT is a single EFSM (Figure 10). MT maintains an array � ���� ��� in which

each entry is a record with three fields: abit, clock and ebit. An entry � ���� ���� ����� � ����� is 1 or 0 depending

on whether packet
�

has been acknowledged or not. Similarly, an entry � ���� ���� ����� 
���� 
�� contains the local

clock time when packet
�

was last (re)transmitted. � ����� ���� �����  ����� = 1 or 0 depending on whether packet
�

indicates an early end of a block or not. MT maintains a context variable nop (number of outstanding

packets) which is the difference between the highest numbered packet transmitted ( � � ) and the lowest

numbered packet acknowledged ( � � ). Maxbuf is a constant representing the maximum size of buffer at MT.

We also assume that MT sends an indication when it has no more packets to send. The indication which

depends on the implementation may be in the form of a bit or in the form of a special packet. Here we

assume that the indication is in the form of a bit which we call ebit. The variable ebit is also set to 1 in a

packet if that is the last packet in a window. Otherwise it is 0.
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The EFSM of the base receiver BR communicates with the Status Timer(ST), which is also modeled

using an EFSM (Figure 11). We assume that BR maintains an array
� ���� �� such that an entry

� ���� ���� ���
is 1 or 0 depending on whether packet

�
has been received or not. BR maintains two pointers � � and � � . � �

points to the lower end of the window. That is, all packets until ��� - 1 have been received and ��� is the first

packet which has not been received. � � points to the higher end of the window indicating the last packet

which has been received. Thus if ��� = � � + 1, then all packets have been received so far. BR sends its

status when ST expires. BR sends � � � � ��
���� � ��� if ��� = � � + 1 (that is, it has received all packets so far).

BR sends � � � � �  � � � ���	�
� � ��� � � ��� if there is an entry
� ���� ���� ��� = 0 for some

�
between � � and � � + � ,

where � = � � - � � + 1. BR maintains a context variable nochng which represents the number of times the

status of BR remains unchanged and is incremented if the status of BR does not change since the last time

it is sent. The constant MaxNochng indicates the maximum number of times the status of BR is allowed to

remain the same before disconnection.

Finally, we give a formal description of handoff between a mobile transmitter and a base receiver and

show how it fits into the formal specification of the protocol without handoff (Figure 12).

A base station receiver is initially in state idle. When it receives a handoff request (ho rqst) from a

mobile transmitter, it transfers into ck state. The handoff request includes the identity of the old base station

and the values for the � � and � � variables at the mobile transmitter. The new base station receiver generates

a handoff indication (ho ind) to the old base station. This indication requests that the old base station

forward its state information to the new base station.

If � � is equal to � � , there is no data outstanding between the mobile transmitter and the new base station

receiver. The new base station sets its variables and enters the wait info state. While in this state, any data

that arrives from the mobile transmitter is buffered by the base station receiver (buffer). When it receives

the state information from the old base station, the new base station updates its context variables, generates

an acknowledgment to the old base station, generates a status message to the mobile transmitter, and moves

to the Active state. In the Active state, the base station receiver processes all of the data buffered during the

handoff process, and any new data that arrives, according to the normal protocol rules.

If � � is less than � � , data is outstanding between the new base station receiver and mobile transmitter

and the base station receiver enters state wait missing. In this state, the new base station receiver buffers

any data it receives (buffer missing) until it receives the state information from the old base station. At this

time, it processes the R array received from the old base station. The new base station requests (get data(i))

that the old base station forward it any data (data(i)) that it has received and buffered. When this has been

completed, the new base station contains all data that has been previously transmitted by the mobile terminal
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that has been either not forwarded to the higher layer protocol by the old base station or lost in transmission.

The new base station receiver generates an acknowledgment to the old base station, a status message to

the mobile transmitter, and transitions into Active state. While in the Active state, the new base station

processes any buffered data and newly arriving data according to the normal protocol rules.

When a base station in Active state receives a handoff indication from a new base station, it sends the

new base station its state information. If the old base station receives any requests for data it has buffered

(get data(i)), it sends this data to the new base station (data(i)). When the old base station receives an

acknowledgment from the new base station it clears its record and enters the idle state.

During a handoff, it is possible that the window of the mobile transmitter will close. This is because the

new base station does not generate any status messages until it has completely synchronized its state. To

solve this problem we use a technique called dynamic windowing.

When the mobile transmitter requests a handoff, it increases its window size temporarily. This allows

it to continue transmitting past its normal window size. The transmit window is reduced to its proper size

when the status message is received from the new base station.
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Size of Object File (Bytes)
MT 40,960

BR + ST 65,536
BT + PT 81,920

MR 57,344
Total at Base 147,656

Total at Mobile 98,304

Table 1: Comparison of the size of compiled code.

Window Size MT Processing Time (seconds) BR Processing Time (seconds)
4 0.07 0.23
8 0.07 0.23
16 0.07 0.21

128 0.06 0.20

Table 2: Comparison of the processing time for MT and BR.

Block Size BT Processing Time (seconds) MR Processing Time (seconds)
4 0.23 0.14
8 0.24 0.16
16 0.26 0.16
32 0.36 0.23

Table 3: Comparison of the processing time for BT and MR.
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Figure 1: Cellular wireless network architecture. The mobiles communicate via the base stations and the
mobile switching center with the backbone network. The backbone network can be the Public Switched
Telephone Network (PSTN), or Integrated Services Digital Network (ISDN), or the Broadband-ISDN (B-
ISDN). Each base station communicates with the mobiles within the cell that it controls. When mobiles
move from one cell to another, the base station that a mobile communicates with changes, which is known
as a handoff. A similar scenario is applicable for the LAN environment where the backbone network is
a LAN or a centralized switch, and the function of the mobile switching center is integrated into the base
stations or the LAN.
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Figure 2: Data transfer from Mobile Transmitter (MT) to a Base Receiver (BR). Messages 1 are new
packets transmitted by MT. Messages 2 are periodic status messages transmitted by BR. Messages 3 are
retransmissions of lost packets. In the figure, message 1d is lost, and retransmitted upon receipt of the status
message.
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Figure 3: Data transfer from a Base Transmitter (BT) to a Mobile Receiver (MR). When BT completes the
transmission of a block (1), it starts a timer. MR transmits a bitmap of indicating which packets within a
block have been received (2) when it receives a block. IF BT does not receive the bitmap, it sends explicit
status message request (3). When MR receives message 3, it transmits status message (4). In this figure,
there is no loss in the block 1a, but there are losses in block 1b. In addition, block acknowledgement 2b is
lost. Then, BT sends explicit status message request 3, and status message 4 is transmitted.
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Figure 4: Mobility management in AIRMAIL.
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Figure 6: Simulated outdoor channel error characteristics. Number of bytes in error for each block
transmitted is plotted against the block number. Each block consists of 256 bytes. Transmission rate

�
64

kb/s, vehicle speed
�

35 mph, delay spread
�

3 � s.
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Figure 7: Simulated indoor channel error characteristics. Number of bytes in error for each block transmitted
is plotted against the block number. Each block consists of 256 bytes. Transmission rate

�
2 Mb/s, vehicle

speed
�

5 mph, delay spread
�

50 ns. Note that the lower figure is an expanded view of the upper figure.
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ReTrans_done
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Notation Explanation
Setup br?setup ack * u!enable [buf ful flag=0]

Transmit e0
�
nop � MaxBuf � u?pkt(e=0) [++Ht;++nop;update T array]

br!pkt(Ht,e=0)
Transmit e1 u?pkt(e=1) [++Ht;++nop;update T array]

br!pkt(Ht,e=1)
Window closed

�
nop==MaxBuf � u!disable [buf ful flag=1]

Recv ack br?stat ack(Lr) [Lt=Lr;nop=Ht-Lt;update T array;
if (buf ful flag==1) (buf ful flag=0;u!enable)]

Recv ret req br?stat ret(Lr,w,Bitmap[])
[Update T array,Lt,nop; i=0]

ReTransmit
�
((local clock - T array[Lr+i].clock) � rtd)

AND (Bitmap[i]==0) AND (i � w) �
br!pkt(Lr+i,T array[Lr+i].ebit)
[Update T array;++i]

ReTrans done
�
(i==w) OR (T array[Lr+i].ebit==1) �

Figure 10: Specification of Mobile Transmitter.
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Notation Explanation
Setup mt?setup * mt!setup ack * st!start

Recv pkt e0 mt?pkt(pno,e=0) [if (new info) then
update R array,Lr,Hr;nochng=0]

Recv pkt e1 mt?pkt(pno,e=1) * st!stop [if (new info) then
update R array,Lr,Hr;nochng=0]
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Send ack

�
Lr==Hr+1 � mt!stat ack(Lr) * st!start

Send ret req
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Lr � Hr+1 � mt!stat ret(Lr,w,Bitmap[])*st!start

No pkt recd
�
No packet received � mt!setup ack*st!start

No stat chng
�
nochng==MaxNochng � mt!quit

Figure 11: Specification of Base Receiver.
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L � � H � �
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new base ! send info(L � , H � ,nochng,Maxnochng,R array)
send info to new base new base?get data(i) * new base!send data(i)

recv ack from new base new base?ack

Figure 12: Specification of Base Receiver during Handoff.
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