
POSTER IN IEEE/ACM IPSN 2005 1

Optimizing Timeout-Based Sleep Algorithms
Athina Markopoulou, Nick Bambos

Electrical Engineering Department, Stanford University
(amarko@stanford.edu)

Abstract— For wireless sensor networks that are expected to have a long
lifetime while operating on limited energy resources, energy efficiency is a
major concern [1]. In particular, it is well known that idle listening of the
radio causes significant waste of energy; a power management technique
[2] to deal with this problem is to switch to the lower energy consumption
SLEEP mode during idle times. The effectiveness of this technique depends
on (i) the duration of idle times (ii) the power consumption and performance
characteristics of the sensor node and (iii) the sleep schedule/algorithm. A
significant body of work focuses today on developing sleep schedules to
meet energy and performance requirements. A class of simple, thus easy
to implement, algorithms can be based on timeouts: nodes switch from ON
to SLEEP, when the radio has been idle for longer than a Timeout period;
clearly, the choice of Timeout becomes a critical parameter.

In this extended abstract, we propose and analyze fixed timeout algo-
rithms for a single sensor node, to minimize energy consumption. First, we
consider the case that nothing is known about the duration of idle times;
we choose a fixed timeout based on the power consumption characteristics
of the node, and we prove that the energy consumed by this fixed timeout
algorithm is at most twice the energy consumed by an offline algorithm.
Second, we consider that the distribution of idle times is known and we
show how to choose a fixed timeout value so as to minimize the average
energy consumption; as a concrete example, we analyze the interesting case
of Poisson packet arrivals. We are currently working on several extensions
of this WIP, including (i) adaptive timeouts (ii) network-wide algorithms
and (iii) performance metrics such as delay and connectivity.

I. M ODEL AND PROBLEM STATEMENT

Fig.1 shows the simple state machine for the radio of a sensor node.
• Modes.The radio can be in one of two modes, ON or SLEEP

(this can be generalized to several modes). When it is ON, it
can forward packets but it spendsPon power in every time slot.
When the node is in SLEEP mode, it spends negligible power
(for simplicity, Psleep ' 0, although this is not essential for the
analysis) but it cannot forward packets.

• Mode Transitions.When the radio switches from SLEEP to ON, it
spends wake-up energyEtr. Energy is also spent on the transition
from ON to SLEEP, but it is in general much less (we ignore this
cost for simplicity, although this assumption is not essential for
the analysis). Finally, we assume instantaneous transitions; in the
next steps of this work we plan to consider transition delayDtr.

• Packet Arrivals and Forwarding.Packets can arrive at the radio
from two sources: either the sensor device at the node itself
collects data, or the node acts as a relay forwarding packets from
its neighbors. In either case, once a packet arrives, the radio must
forward it immediately. If the radio is in SLEEP mode, it needs
first to switch ON and then forward the packet.

• Timeout.Let ti be the idle time since the last packet arrival. The
role of the timeout algorithm is to observe for how long the node
has been ON and idle and to switch the node from ON to SLEEP
as soon asti reaches the timeout valueT . The intelligence of a
timeout algorithm lies in the choice and/or adaptation ofT .

Fig.2 shows an example of state transitions as a result of packet
arrivals and timeouts. Packets arrive at timest1, t2, ..., t5. When packets
1, 2 arrive, the radio is ON and immediately forwards them. After being
idle for s1−t2 = T time, the radio switches to SLEEP. When packet3
arrives, the radio wakes up immediately and serves the packet. It goes
back to sleep ats2, after it has been idle fors2 − t5 = T time.

For a given idle periodti, it may or may not worth switching from
ON to SLEEP, depending on the operating (Pon) and wake-up (Etr)

SLEEPON Psleep~=0Pon

Idle time (ti) > Timeout (T)

Packet Arrival
costs Etr, Dtr

Fig. 1. State machine for the radio (states, transitions, associated costs and
events).

t2t1 t3 t5t4

0
SLEEP

ON

time

time

State

Arrival of Packet

idle time

Timeout T Timeout T

s2s1

Fig. 2. Example of state transitions, depending on the arrivals of packets and
on the timeout algorithm.

costs. It worths switching if and only if the idle period is long enough
to balance out the wake-up cost:tiPon ≥ Etr, i.e.

ti ≥ tc = Etr/Pon (1)

wheretc a critical time that depends only on the energy consumption
characteristics of the node. However, the actual energy savings from
sleeping depend not only ontc but also on the actual idle times.

In a timeout-based algorithm, we have to make decisions online by
comparing the idle time (since last packet arrival) to a timeout. Let us
call AT the algorithm that uses fixed timeoutT : “ if the radio is idle
for time T , then switch from ON to SLEEP.” T is the only parameter
that needs to be optimized, based on the power consumption of the
node (captured bytc) and the packet arrival process (captured byti).
In the next two sections, we choose and analyze timeout valuesT .

II. CHOOSINGTIMEOUTS FORUNKNOWN ARRIVAL PROCESS

First, we consider the case that nothing is known about the packet
arrival process, or equivalently theti’s. AT is an online algorithm
because it makes decisions when to go to SLEEP without knowing the
ti’s in advance. An offline algorithm knows all idle times and can make
the best choices; thus it is the benchmark for comparison.

In particular, at each packet arrival, the offline algorithm compares
the next idle time totc and decides whether to switch or not immedi-
ately (at the beginning of the idle time). E.g. the idle periodt3−t2 was
long enough and the offline algorithm would have switched to SLEEP
immediately after serving the packet att2, instead of waiting untils1

and wastingPon(s1− t2) being idle. In practice, the idle times are not
known to the online algorithmAT before the next packet arrival.

Following a competitive analysis approach [3], we compare the
energyEAT spent by the online algorithmAT , to the energyEoffline

spent by the offline algorithm on the same sequence ofti’s. The
following proposition is the building block for the rest of the analysis.
Proposition 1. An online algorithm that uses a fixed timeoutT = tc,
thus calledAtc , spends at most twice the energy that an offline



POSTER IN IEEE/ACM IPSN 2005 2

algorithm would have spent for the same sequence ofti’s.
Proof. Let ti be the idle time since last packet arrivalt0 = 0.

At time t0, the offline algorithm knowsti and makes the optimal
choice accordingly:

Eoffline =

{
Ponti, if ti < tc (no switch)

Ponti = Etr, if ti ≥ tc (switch at t0)
(2)

The online algorithmAtc , does not knowti in advance, so it stays
ON and only switches to SLEEP ifti reaches the timeoutT = tc.

Etc =

{
Ponti, if ti < tc (no switch)

Pontc + Etr = 2Etr, if ti ≤ tc (switch at tc)
(3)

ThereforeEtc ≤ 2Eoffline, ∀ti. The same competitive ratio holds
for everyti, and therefore for the entire sequence ofti’s. Furthermore,
this is the best competitive ratio achievable by any fixed timeout:
Proposition 2. No other online fixed timeout algorithm can achieve a
competitive ratio smaller than 2.
Proof. For another timeout algorithmATx with Tx 6= tc, enumerate
the cases for the order ofti, tc, Tx, and compare again the energy
consumption for each resulting interval. We omit the details for lack
of space. This general line of reasoning is inspired by [3].

Adaptive Timeouts. What if we adaptT with time as we observe
arrivals and obtain an estimate for the next idle durations? There are
many prediction techniques to estimatetnext

i based on its observed
history. However, only simple techniques are implementable in a light-
weight sensor node. Interestingly, there are very simple prediction
techniques which are analyzable within this competitive analysis frame-
work, similarly to [3], but are omitted from this WIP for lack of space.
E.g. predicttnext

i = tprevious
i and adaptT = tc if tnext

i > tc and
T = 0 otherwise; this can provably achieve a competitive ratio of 3.

III. C HOOSINGTIMEOUTS FOR AKNOWN ARRIVAL PROCESS

In some cases, it may be possible to know the distributionf(ti)
of packet inter-arrival (or equivalently idle) timesti. For example,
the sensor may collect data periodically or receive packets from the
neighbors according to some rule. Knowingf(.) enables us to tune
T for it and also carry out a probabilistic as opposed to a worst case
analysis. In this section, we choose a fixed timeoutT to minimize the
average energy spent on a sequence ofti’s drawn fromf(ti).

As discussed in the previous section, for a given idle timeti the
timeout algorithmAT spends energy:

ET =

{
Ponti, if ti < T (do not switch)

Ponti + Etr = Pon(ti + tc), if ti ≥ T (switch at T )
(4)

ET is known as a function ofti, tc, Pon, if T is known. Because
ti is now a random variable drawn from distributionf(ti), we can
compute the average energyE[ET ] spent on a sequence of idle times,
by averaging overti; then we can chooseT to minimizeE[ET ].

Poisson Arrivals. As a concrete example of calculation, let us
consider Poisson arrivals. This is also an interesting process in itself
because it can arise as a superposition (e.g. a large number of neighbors
sending their packets through the node). The inter-arrival timesti

are now exponentially distributed, say with parameterλ: f(ti) =
λexp(−λti) for ti ≥ 0. The expected value of the energy spent by
AT can be easily computed:

E[ET ] =

∫ ∞

0

ET f(ti)dti

=

∫ T

0

Pontiλe−λtidti +

∫ T

0

Pon(ti + tc)λe−λtidti

= · · · = Pon

λ
(1− e−λT )

︸ ︷︷ ︸
+ Pontce

−λT

︸ ︷︷ ︸

(5)

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Pon=1, lambda=0.5, tc=1,3,5

A
ve

ra
ge

 E
ne

rg
y 

S
pe

nt

Timeout T

Pon * tc, if tc=3>2=1/lambda

Pon * tc, if tc=1<2=1/lambda

Pon * tc, if tc=5>2=1/lambda

Pon * tc, if tc=2=1/lambda

Fig. 3. Average energy spentE[ET ] on a sequence of Poisson packet arrivals,
as a function of the timeoutT , as computed in Eq.(5). The shape ofE[ET ]
depends on the arrival rateλ, the critical valuetc and the differencetc − 1/λ.
As a numerical example, we used:Pon = 1, λ = 0.5 and tc = 2.

Let us briefly discuss the intuition and tradeoffs behind this formula.
The average idle time is1/λ; the critical time istc and recall that
Pontc = Etr. The first term in Eq.(5) is the energy spent while ON
Pon/λ, provided that we are ON:Pr(ti > T ) = 1−e−λT . The second
term is the energy spent waking upPontc = Etr, provided that we
were in SLEEP mode:Pr(ti < T ) = e−λT .

In Fig. 3, we plotE[ET ] as a function of the timeoutT . It turns out
that E[ET ] is a monotone function ofT (which can be explained by
the memoryless property):
• It is increasing inT if tc < 1/λ (i.e. idle times are on average

longer than the criticaltc). To save the most energy, we should
go to SLEEP immediately after serving a packet (T −→ 0).

• It is decreasing inT if tc > 1/λ (i.e. idle times are on average
shorter thantc). To save the most energy, we should be hesitant
to go to SLEEP and at the extreme always stay ON (T −→∞).

• It is constant iftc = 1/λ. Then we spend on averagePon/λ ∀T .
Similar analysis can be applied to optimizeT for other arrival pro-
cesses. E.g. we tried it for uniform distribution, and we observed that,
unlike Poisson,E[ET ] has a single maximum inT . Finally, in a tandem
or in a network of nodes, our analysis can be used to tune the timeout
at each node depending on its load (which now is the superposition of
its own sensed data and the traffic forwarded by neighbors).

IV. EXTENSIONS AND ONGOING WORK.

In addition to the extensions mentioned above (adaptive timeouts,
general arrival processes, network-wide algorithms), we are currently
working on including performance - in addition to energy- objectives.
For example, when the wake-up delay is non-negligible, there is a
performance penalty every time a packet arrives the radio wakes up.
We are currently working on optimizing timeouts for both energy [4]
and performance (such as delay [5] and connectivity [6]) guarantees.

REFERENCES

[1] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, “Energy-aware
wireless sensor networks”,IEEE Signal Processing Magazine19(2), pp.40-
50, March 2002.

[2] L.Benini, A.Bogliolo, G.De Micheli, “A Survey of Design Techniques
for System-Level Dynamic Power Management”,in IEEE Trans. on VLSI
Systems, Vol.8, No.3, June 2000.

[3] A. Karlin, M.Manasse, L.McGeoch, S.Owiski, “Competitive Randomized
Algorithms for Non-Uniform Problems”,Algorithmica, pp.543-571, 1994.

[4] A. Sinha and A. P. Chandrakasan, “Operating System and Algorithmic
Techniques for Energy Scalable Wireless Sensor Networks,”in Proc. of
the 2nd Intl Conference on Mobile Data Management (ICMDM, Jan. 2001.

[5] C.Schurgers, V.Tsiatsis, S.Ganeriwal, M.Srivastava, “Optimizing sensor net-
works in the energy-latency-density design space,” IEEE Trans. on Mobile
Computing1, 2002.

[6] A.Goel, S. Rai, and B.Krishnamachari, ”Sharp thresholds for monotone
properties in random geometric graphs,”in Proc. ACM STOC, June 2004.


