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Abstract

Traditionally the performance of a distributed system or a telecommunications network is taken into account only in the last steps of its
design and it is seen as a final improvement. Recent attempts to incorporate performance considerations in the mainstream desi gn rely on the
development of a functional model consisting of entities that must be optimally distributed over a network of physical nodes. The optimal
allocation is environment sensitive and probable different environments must be taken into account. Functional entities that are likely to be
grouped together in different environments compose the so-called network entities. In this paper the problem of optimally composing
network entities is examined. Different variations of the problem have been studied. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The objective of this paper is to examine a general pro-
blem that arises in the context of a telecommunication sys-
tem design. Design implies: (1) the definition of a set of
software and hardware components that co-operate in such
a way as to satisfy a list of initial requirements; (2) their
placement in the nodes of a communication network.

The second part of this design process is traditionally
driven by experience. Nevertheless, the usage of computers
and the increased complexity have encouraged more sys-
tematic techniques. The problem has been thoroughly stu-
died within the RACE MONET project that aimed at
describing a third-generation mobile telephony system
(UMTS [1,11]). This methodology is supposed to be general
enough for any distributed system. In order to describe the
methodology a few terms must be introduced: the smallest
(software or hardware) unit is called the functional entity
(FE). The FE can be defined as a grouping of service pro-
viding functions in a single location and is a subset of the
total set of functions required to provide the service. In other
words, it is the atomic unit of distribution. Therefore each
node is seen as a collection of FEs and the system design as
the allocation of the FEs in each physical entity (PE) of the
system. The PE is a set of FEs which is mapped onto a single
piece of equipment, actually a network node. In order to
determine the FEs contained in each PE one must take
into account the environment in which the network will
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operate. Thus, one may formulate a complex optimization
problem. Its solution will then determine the optimal alloca-
tion of FEs to PEs. This task is not within the scope of this
paper.

Nevertheless, a network is bound to operate under diverse
environmental (i.e. offered traffic) conditions. Different
conditions will give rise to different instances of the opti-
mization problem and different subsequent optimal alloca-
tions. Therefore, the composition of optimal PEs depends on
the environment. This is a rather unfortunate situation as far
as network produce manufacturers are concerned. They
would be obliged either to produce a wide variety of PEs
(in order to cover different environments) or to produce
each FE as a separate PE. The network entity (NE) concept
provides the right size for products to be provided by man-
ufacturers: an NE is a module which groups FEs that tend to
be co-located under all or the most frequent environmental
conditions. By properly selecting NEs one can then con-
struct PEs. In short, NEs are sets of FEs that appear together
in different solutions of the optimal allocation problem. It is
the problem of properly selecting the NEs that is dealt with
in this paper.

The steps involved in the MONET design methodology
(MDM) are:

1. write down a list of requirements to be satisfied by the
system;
2. transform the requirements into a graph of interacting
FEs;
. allocate the FEs to PEs appropriately;
repeat step 3 for different environments (i.e. geographi-
cal distribution of users, traffic generated by users, etc.);
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5. generate appropriate NEs by taking into account the dif-
ferent results of step 3 obtained for different environ-
ments.

Note that a rigorous description of the environmental
conditions may help in creating a well-defined mathematical
problem. In simple cases a linear programming problem
may arise for step 3, whereas more detailed capacity con-
straints and cost factors may create a difficult combinatorial
optimization problem. Alternatively, the different
allocations may be the product of a less formal design,
and step 3 can be based either on experience or on partial
optimizations.

In this paper we deal only with step S, assuming that the
results of the previous steps have somehow (i.e. by using
either a strict approach or just a good guess) been produced.
Therefore, we concentrate on the problem of optimally
creating NEs given the optimum allocations of FEs to PEs
for different environmental conditions. We present the pro-
blem and the results in a more or less strict mathematical
way as we think that the details of specific implementation
instances would only add unnecessary complexity to our
descriptions. Nevertheless, most of this work has been per-
formed within European Union funded projects dealing with
third-generation mobile systems and systematic develop-
ment of services over a fixed and mobile infrastructure
(i.e. RACE MONET and ACTS DOLMEN). We also prefer
to present the existing bibliography after having rigorously
formulated different versions of the problem, so as to associ-
ate each past paper with the right problem.

2. Problems statement

In the rest of the paper we will deal with three ‘‘layers’’
of sets, i.e. the FEs, NEs and PEs. An alternative terminol-
ogy for these sets could be objects (O), basic services (BS)
and services (S) respectively, where the notation O, B and S
originates.

LetO={o0},0,,...,0,} be the set of FEs (first layer). NEs
(second layer) and PEs (third layer) are both considered to
be subsets of 0. We think of NEs as being ‘‘small’’ subsets
of O, used to compose *‘larger’’ subsets of O, the PEs. Our
purpose is to describe PEs efficiently. However, it is more
efficient to describe them in terms of a few groups of FEs
rather than directly in terms of a lot of FEs themselves. FEs
which usually appear together in all, or in most, of the PEs
should be grouped together to form a separate entity (NE)
and should be used all together. That is why we introduce
the intermediate layer of NEs.

Given the FEs and the PEs, we will try to choose NEs
appropriately in order to optimize some criteria.

Problem Pl is the following.
Given the set of FEs O and a collection of PEs S =
{S1, 82, ..., Sk}, a set of NEs is defined as a collection B

of subsets of O : B={B,B,, ..., B,,}, such that:

¢ cach FE belongs to exactly one NE and
e VS in S, there are some NEs whose union equals gi.

The problem is to find a set of NEs, B, of minimum
cardinality.
Problem P2 is a relaxed version of P1.

Given O and S= {S}, 55, ..., S¢ }.a set of NEs is defined as
a collection B of subsets of O : B={B,B,,...,B,,}, such
that:

each FE belongs to exactly one NE and
V S, in S, there are some NEs whose union is a superset
of S;, but

¢ this union is not too big in comparison with S;, according
to some appropriate criterion,

The problem is again to find a set of NEs, B, of minimum
cardinality.

Problem P3 is the following.

Given the FEs O and the PEs S, a set of NEs B is defined
as a collection of subsets of O : B={B,,B,,...,B,,}, such
that:

e VYV S in S, there are some NEs (probably trivial) whose
unicn equals S;.The problem is still to find a set of NEs,
B, of minimum cardinality.

Note that in this last problem, each FE may belong to
more than one NE, unlike P1 or P2. In other words, B is
now a cover, not a partition of O. The problems are com-
pared in Table 1.

In the rest of the paper, we will further elaborate on each
of the problems.

3. Partitioning the set of FEs

3.1. Problem P1: formulation and analysis

Given:

e the set of FEs O={0(,0,,...,0,} and
o the set of PEs S={(5,,5,,...,S¢} C 2°.Find:

¢ aset of NEs B={B,,B,,....B,} C2°
Table 1
Comparing the problems

Problem P1 Problem P2 Problem P3
We are looking for a B of » I %4
minimum cardinality
B is a partition of O I I
Bis acover of O v
Each S; in § equals the I'd v
union of some NEs
Each S;in S is a subset of 4

the union of some NEs
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such that

(i) the NEs, B, are a partition of O:

m
U B=0andBNB=Q Vi jEL2 ...m
i

(ii) each PE equals the union of some NEs:

VSkES, EM'gl, 2, 3, RN (N Sk: U Bj
JEM’

(iii) the cardinality of B is minimum: m = Bl = minE-
xample: O = {1,2,3,4,5,6,7,8}, S, ={1,2,3,
4,5}, 8,=1{3,4,5,7,8}, S3 = {3, 6}.

The problem can be represented by either of the diagrams
in Fig. 1.

A solution of the problem can be constructed as follows.
Those FEs (or objects) which belong to exactly the same
PEs (or services), S, 512, ..., &, and which do not belong
to any other PE, must be assigned to the same NE. For
example, in Fig. 1 {1, 2} belongs both to §; and to no
other PE. {4, 5} belongs both to S}, S3 and to no other PE.
{7, 8} belongs to S, only, {6} alone to S; and {3} is the only
one belonging to all S, S», S3. Therefore, the set of NEs B is:
{1, 2}, {3}, {4, 5}, {6}, {7, 8}, as drawn in Fig. 1 in dotted
lines.

By the way we constructed B, it follows that it is the
unique solution of the problem. Indeed, constraint (i) is
satisfied, as each FE is assigned to one NE either alone or
along with other NEs. Constraint (ii) is also satisfied, i.e. the
NE composing a PE contains FEs belonging to the PE, again
because of the way these NEs were constructed.

Finally, there is no other set B’ which satisfies (i), (ii) and
smaller than B. A B’ satisfying (i) and (ii) and such that [IB’ll
< |IBll, should have at least one NE bigger than the corre-
sponding NE of B. Let us say that B’ contains an NE of the
type {3, 7, ...}, bigger than {3} of B. In this case, S; should
use {3, 7, ...} to take FE-3, but it would take the useless FE-
7 too, and it would not equal the union of its NEs, which
violates constraint (ii). Therefore, B’ can only contain sub-
sets of the B solution, like {7, 8} or ({7} and {8}) which
leads to the same or larger number of NEs than B. Therefore,
the B we constructed is the one satisfying (i) and (ii), with
minimum cardinality.

Fig. 1.
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A more formal way to construct the above solution is the
following algorithm. The second diagram is given and we
want to define the NEs.

At the beginning, the list B of NEs is empty.
ForeachFEo;,=1,2, ..., n:

scan all the PEs and find which of them o; belongs to. Set
a label for 0; indicating those its
“PEs,” = {5, Sip, --» Si. }.

Search in the list of NEsi

If there is already an NE with a label equal to “PE;”,
then add o; to this NE

else

add a new NE, with label “PEg,”, at the end of the list,
which contains only o,.

At the end, the list contains the solution.

The above algorithm obviously requires polynomial time.
There are n steps, one for each FE. At each step:

K PEs are scanned.

We search the list of NEs (worst case: n steps until the
end of the list).

We assign the FE to the appropriate set of the list.In the
worst case, we make in total n(n + k' + 1) steps.

3.2. Problem P2: formulation and analysis

The second constraint of problem P1 (‘‘each PE equals
the union of some NEs’’) is very strict and it often leads to a
large number of NEs, of a few FEs each, because we
partition O in completely disjoint sets. In that case, it
would be more convenient to work directly with sets of
first and third layers without introducing the intermediate
layer, which tends to be very close to the first one.

In most applications, we are more interested in defining
our PEs/services in terms of a few ‘‘large’’ NEs rather than
in finding their exact partition into NEs. We might, there-
fore, allow an NE to have more FEs than those required by
the calling PEs. We are going to refer to those extra FEs as
‘‘useless’” for the calling PEs. In this sense, P2 is a relaxed
version of P1.

S

S2

S3
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On the other hand, we do not want to construct very large
NEs by relaxing the constraint. So an upper bound to the
number of the useless FEs has to be imposed. It is obvious
that this last requirement contradicts both the first one and
the requirement for minimum total number of NEs. How-
ever, the definition of the intermediate layer would be mean-
ingless without it.

The above ideas, can be expressed formally in problem
P2.

Given:

o the set of FEs O = {01, 03, ..., 0,} an

o the set of PEs S = {§, Ss, ..., Sk}
C 29

Find:
e asetof NEs B={B,,B,,...,B,} C 2%such that:
(i) B should be a partition of O:

EJ Bl=0 andBiﬂBj= @ Vt,]El, 2, A ({3

i=1
(i) If (S, C 27 is the smallest set: S, = U, B; D S,
where M’ C (1,2, ..., m} are indices for the appropri-
ate NEs) then the ‘‘useless’’ (i.e. those belonging to
S,; — Si) must not be much more than the ‘‘useful”’
FEs (ie. those belonging to S;), according to some
criterion:

IS¢l — IS,

J =Sl = v
IS 1Sl < err,,, Yk or ]

=em %, Vk
where err, is a given tolerance.(iii) The cardinality of B is
minimum: m = |Bll = min

First, note that if B is a partition of O as (i) demands, then
it will be automatically satisfied that ‘‘for each S, in S, there
exists a subset of B whose union is a superset of §;”’, for
example the entire O in the worst case. Then, note that the
choice of tolerance err,, is of great importance for the solu-
tion. A small or zero tolerance means that P2 actually turns
out to be P1. A very large tolerance means that the whole O
tends to be considered as one single NE.

P2 is approached as an optimization problem and, from
this point of view, its reduction to the integer programming
problem is what naturally comes next.

3.3. Reduction to 0-1 linear programming (LP) problem

This formulation is appropriate for problem P2, which is a
typical optimization problem. As far as P1 is concerned, we
saw above that it can be solved in polynomial time. There-
fore, P1’s reduction to the 0—1 LP problem has no other
meaning than the uniform formulation of both P1 and P2.

The hypothesis of both problems considers the sets O =
{01,02,...,0,} and S={S},5,,....5¢} to be given.

Therefore, the following numbers can be regarded as given:

b :
ik = 0,

We want to choose NEs among all the (non-empty) subsets
of O: {P),P,,...,Py},N=2"—1. These subsets are fully
described by the following numbers:

if 0; ESk
if 0,'& Sk

i=1L2 .,n k=12, ...K

], lfo,EP]
a; = ] i=1,2 ..,n j=1,2,..,N
0, if o, &P;

The notation {P,, P,, ..., Py}, for the candidate NEs,
should not be confused with the names of our three pro-
blems P1, P2, P3. _

Among all the candidate subsets {Pj}j,illv, we want to
choose our NEs. This choice will be indicated by the vari-
ables

{ 1, if P;is chosen to be an NE

X; =

i j=12, .., N

0, if P; is not chosen
The subsets chosen to be our NEs (x; = 1) must be a parti-

tion of O, i.e. each FE o, must belong to exactly one of the
NEs:

N
D ap=1
=1

In order to write the last constraint of the two problems, let
us in addition introduce the following variables.

Vie(l, 2, .., n}

¢ ltis obvious that Ny =L}_, ayby is the number of FEs
that candidate subset P; and PE S, have in common.
e Then

1,
Cy =
Jk 0,

indicate whether P; and S, have any FEs in common.

e Itis also easy to see that P}l = E]_, aj is the number of
FEs belonging to the candidate subset P;, or *‘size’* of P;
and that ISl = E7_ | by is the size of PE S,.

if A’jk >0

) =12, .,N k=12, ..,K
lf]ij=O

Now, we are ready to write the last constraint for each
problem.

According to P1, each PE must equal the union of some
NEs, i.e. its size must equal the sum of sizes of all the NEs
with which it has FEs in common:

N
> xexlPli=lsd vk e (1, 2, ..., K}
j=1

According to P2, each PE must be a subser of the union of
some NEs but this union cannot contain many FEs that do
not belong to Sg I, xculpl—ls,.  So:
EjN:] xicpllPIl — IS, < erry, Vk = 1,2, ..., K, where err; is
a given tolerance for each PE S,.
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Finally, the cost-function to be minimized is the total
number of NEs: min Efl:l x;.

In conclusion, P1 and P2 can be formulated as 0—1 pro-
blems as follows.
Problem P1: min E}‘;I X;
subject to:

N
(W Y ax=1,i=12 .., n
j=1

N

Gi) DO xiculpll=lIsl, ¥k (1, 2, ..., K}
j=1

Problem P2: min Ef’zl X;

subject to:

N
W) D ap=1,i=1,2 .., n
j=1

N
Gi) > xeplpli=lisl<em, Vk=1,2, ..., K

j=1
The constants a;, ci, IP,ll and IS, introduced earlier, are
considered to be known, as far as the FEs O =
{0\, 0, ...,0,} and the PEs S={§,, 5,, ...,S¢} are given.

3.4. Examples in P1 and P2

Example 1

8§, =1{1,2,3}, 8, ={3,4} (Fig. 2). All (15) subsets of O =
{1, 2, 3, 4} are candidate NEs.

The solution of P1 in this case is: {1, 2}, {3}, {4}.

P2, with tolerance of 1 useless FE for both PEs, chooses
the following NEs: {1, 2}, {3, 4}. The NE {3, 4} contains
FE-4 which is useless for .

Details on the formulation and the code used can be found
at the Appendix A.

Services S1,52,53

Solution of P1

Solution of P2

Example 2

$,=1{1,2,4},8,=1{3,4},5, = {4,5} (Fig. 3).

The solution of P1 in this case is: {1,2}, {3}, (4}, {5}.

The solution of P2 with tolerance of 1 for §;, O for S, and
1 for Sy is: {5}, {1, 2}, {3, 4}.

The solution of P2 with tolerance of 2 for §;, 1 for S,, 1
for §yis: {1, 2}, {3,4,5}.

The solution of P2 with tolerance of 1 for all PEs is:
{1,2}, {4}, {3,5).

4. Covering the set of FEs
4.1. Problem P3: formulation and analysis

Unlike P1 and P2, which are looking for a partition of the
set of FEs O into NEs, P3 tries to cover the O by NEs. In
other words, P3 allows FEs to belong to more than one NE,
that is there may be multiple copies of the same FE/object in
different nodes. As far as the other constraints are con-
cemned, it is similar to P1. The problem P3 is finally the
following.

Given:

o the set of FEs O = {0;,0,,...,0,} and
e the set of PEs S={5,,5,, ...,5¢} C 2°.Find:

e asetof NEs B={B,B,,....B,} C 2%such that:

(i) each PE can be (exactly) composed by some NEs:
VS, €S, IMC{1,2,..,m}: 5= U B;
jem’

(ii) the cardinality of B is minimum: m = IIBll = min.

It should be pointed out that Stockmeyer [2] proved the
NP-completeness of the above problem by transformation

Solution of P1

Solution of P2
(tolerance 1 or 2 for $1, 0 for S2
and 1 for S3)

Solution of P2
(tolerance 2 for St, 1 for S2
and 1 for 83)

Services $1,52,83



A. P. Markopoulou, M. E. Anagnostow/Computer Communications 21 (1998) 1452~ 1461

@bz

from the well-known Vertex Cover Problem [14]. Later,
Kou and Wong reduced it to the Clique Cover Problem.
Therefore, it makes sense to study heuristics which yield
near optimal solutions. In Refs. [3] and {4], the reduction
of this problem to another well-known covering problem,
the Set Covering Problem, is discussed.

The covering problem [8] is represented by a table, each
column of which has to be covered by at least one row. The
columns (representing those things to be covered) corre-
spond to elements instances within the PEs {S,}. Thus,
the table has in total ISl + IS, + ... + S,/ columns
(i.e. the sum of cardinalities of the PEs). For element ¢, in
S, there is the corresponding column, which we may call
““Sife;”’. The rows of the table correspond to all possible,
non-zero, subsets of OP : {P; }¥_,, which are candidates to
be chosen for NEs {B;}.

The elements of the above table are either 1 or 0 depend-
ing on the following criterion. A row representing candidate
set P; is considered to cover a column S,/e; if and only if:
e, € P; C S and the corresponding element of the table will
be set 1. Otherwise it will be set 0. That is, P; covers the
element e, of S; iff P, contains ¢;and is exactly contained by
S

4.2. Examples in P3

Let us see some examples.
Example 1

Si={a,b},5,=1{b,c},S5:={a,b,c} (Fig. 4).

Table 2 shows the Covering Problem.

Many conventional covering techniques [3,5,6] may now
be applied to simplify and finally solve the problem. We can
easily see that the solution, in our example, is obviously B,
= P4 = {a, b} and Bz =P6= {b,C}.

An obvious disadvantage is the size of the table.
However, an important observation, made in Ref. [3], can
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——————— Services 51,52, 83

Network entities

Functional entities

considerably eliminate the number of rows. The constraint
that the sets of the third layer must be exactly composed by
sets of the second layer, ie.
VS, €S:8,=UB;, jEM CM, implies that it suffices
to regard as candidate sets not all the 2" — 1 non-zero sub-
sets of O, but only those which are ‘‘exactly contained’’ in
the PEs, i.e. the PEs themselves and their intersections (in
combinations of 2, 3, ..., K). In the above example the can-
didate sets should be the PEs S, S,, S; and
{b}=5,N8,=5, N5, NS, (see Table 3).
Example 2: see Fig. 5.

Instead of all (2! — 1 = 1023) possible subsets of O =
{a,b,c,d,e.f,g, h,i,j}it suffices to consider eight candi-
dates sets:

the PEs:

P=8={ab,ce}
PZ =Sz={€,d,f}
P3=S3={g’hvi’j}
P,=S,={a,b,c,d e}
PS ‘=SS= {.fvg’h?i’j}

the intersections of every two PEs:

S NS, ={a,b,c,e} N{e,d.f} ={e}
Sl |1S3=SI ﬂS5 =®

S; NS, =S5,

SQ IWS';:@

S, NS, ={e,d} =P,

S, NSs={f} =Py

Ps

S3 ﬂS4=@
53 |’1 S5=S3
S4 I’] S5= @

o the intersections of every three, four, five PEs: no new

sets are generated.

Table 4 shows the Covering Problem.

Table 2
The Covering Problem table for Example 1

S Sz S3

a b b c a b c
P, = {a} 1 0 0 0 1 0 0
Py = (b} 0 1 1 0 0 1 0
Py={c} 0 0 0 1 0 0 1
P, ={a,b} 1 1 0 0 1 1 0
Ps={a,c} 0 0 0 0 1 0 1
Pg = {b,c} 0 0 1 1 0 1 1
P;={a, b} 0 0 0 0 1 t 1
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S4 S4

In Section 4.3, P3 will be reduced to the 0—1 LP problem
and the previous two examples will be solved using 0-1
code.

4.3. Reduction to 0—1 LP problem

P3 has been proved to be in the same class of complexity
as the 0—1 LP problem. So, the use of 0-1 code to solve our
problem, makes sense in terms of complexity.

It is easy to see that P3 has to be formulated as a 0-1
problem, in a different way than P1 and P2. Indeed, without
the partition constraint, the last constraint (that each PE
equals the union of some NEs) cannot be written in a linear
form. However, P3’s formulation becomes straightforward
from its reduction to the Covering Problem.

As soon as the table of the Covering Problem is con-
structed, its elements are known:

1, lfe,EPngk
ay =

0,
Which candidate sets will be finally be chosen to be our NEs
is described by the decision-variables:

.

We want to cover every column by at least one row:
Problem P3: min Z)_, x;
subject to:

V=

1, ..., N', l=kfi
else

1,
0,

if P; is chosen to be a BS

if P; is not chosen

N
> ap =1, ¥ column I=1, 2, ..ISl, IS, +1, ...,
J=1

IS U0, .., S+ .. Sl

Note that, when we constructed the table of the Covering
Problem, we eliminated the candidate sets from N =2" — 1
toN' < N.

A. P. Markopoulou, M. E. Anagnostouw/Computer Communications 21 (1998) 1452-1461

Ss Physical entities

{or Services)

Network
Entities

a,b,c...: Functional entities

Fig. 5.

‘We will now apply the 0—1 formulation to the examples
of the Section 4.2. The corresponding tables will not be
repeated here. The solutions that we find are already
drawn in Figs. 4 and 5.

Example 1

In Section 4.2 we studied
S, =1{a,b}, S, =1{b,c},S3 ={a,b,c}.

The reduction is as follows:

the  problem:

min: x; + X, + X3 + X4
subject to:

X,> =1

X1+ x> =1

X1+ x3> =1

X3> =1

X4+X2> =1

X1+ X+ X34+x,> =1
X3+ x> =1

The solution of the 0—1 problemis x; =x3 =1 and x; =
x, = 0 which means that the following sets have been
chosen to be our NEs: P, ={a, b}, P;={b,c}.

Example 2

j=1,2, ..., N, N'<N

The second example of Section 4.2 was
Sy={a, b, c, e}, S, ={e, d, f},
Sy=1{8 h i, j}, Sa={a, b, c, d, e}, Ss=1{f, g h, i, j}
The reduction is as follows:

min:x1+x2+x3+x4+x5+x5+X7+x3
subject to:

Xl> =l

X, +Xg> =1

Table 3
The simplified Covering Problem table

S1 S2 §3

a b b c a b c
P, = {b} 0 1 1 0 0 1 0
Py={a,b} =S, 1 1 0 0 1 1 0
Pg={b,c} =S, 0 0 1 1 0 1 1
P,={a,b,c} =85, 0 0 0 0 1 1 1
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Table 4
The Covering Problem table for Example 2

S S, §s

S4 Ss

a b c e e d f g h

Py = 1 1 1 1 0 0 0 0 0
{a,b,c,e}

P,={e,d.f} 0 0 0 0 1 1 1 0

P; = 0 0 0 0 0 0 0 1 1
{8, h,i, j}

Py= 0 0 0 0 0 0 0 0 0
{a, b, c, e, d)

Ps= 0 0 0 0 0 0 0 0 0
{8 hij}

P = {e) 0 0 0 1 1 0 0 0 0
P; = {e,d)} 0 0 0 1 1 0 0 0
Ps=1{f} 0 0 0 0 0 0 1 0 0

0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1
0 J 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

X, + X+ x> =1
X+ x> =1
X+ Xg> =1
X3 > =1

X1+ x> =1
Xs+x7> =1

The solution of the 0—1 problem is x; = X3 = x7-yxg =
1 and x, = X; = X5 = Xg = 0 which means that the
following sets have been chosen to be our NEs: P, =
{a,b,c,e},Py=1{g.h,i,j}, P; = {e, d}, Py = {f}.

5. Related work

Our last problem P3 is known as ‘‘The Set Basis Pro-
blem’’. It was clearly stated for the first time in Gimpel’s
paper on the minimization of spatially multiplexed character
sets [3]. From his point of view, Gimpel considered O to be
a set of characters and each one of the (S;}:=X to be a
character set, such as alphabetics, numerics, alphanumerics.
He observed that the character tables, describing the above
sets and scanned during the lexical analysis of a source
program, needed a large amount of space for storage. So,
he proposed that the intermediate layer of sets (B;}i=m
should be found and stored instead of the initial character
sets {S;}:=% in order to save space.

Similar ideas appear earlier in the work of Bartee [7] and
of Pyne and McCluskey [5] in the area of minimization of
prime implicant tables. The determination of the simplest
sum-of-products expression for a Boolean function can be
decomposed into two subproblems. The first one is the deter-
mination of the prime implicants and the procedures for their
generation. The second subproblem involves the selection of a
least-cost subset of these prime implicants, the disjunction of
which includes every ONE state of the function (i.e. minterm).

Our problem is somewhat similar to the second
subproblem when multiple-output 2-level functions are to

be minimized. Each PE/service corresponds to a logical
output (second level output or OR gates) and each FE to a
minterm. Each NE is a selected set of FEs, in the same way
that each prime implicant is a conjunction of minterms (or a
set of ONE states of the function). If we consider the minimal
expression to be the expression containing the least number of
product-terms (i.e. AND gates or prime implicant or first-level
outputs), then the similarity to our problem is obvious.

A similar problem also arises in feature extraction and
other areas of picture processing. For example, McCluskey
[8] noticed that redundancies in a set of patterns can be
determined without scanning paths being assumed. From
the typical code matrix for the code schedule, he created
the pair matrix which corresponds directly to the prime
implicant table. Another relative reference, in the same
area, is to be found in Ref. [9].

All the above problems could, if realized, be formulated
as a covering problem [3], and could finally have been
reduced to integer programming [5,8,12,13].

Our first problem P1 is not clearly mentioned in any of
the previous studies. However, it is equivalent to a reduction
technique introduced by Gimpel [3], suggested for P3,
before this last one is placed in a covering form. In Section
3.1, Section 3.4 we have seen P1 in detail and have proved
that it has a unique solution, for which we proposed an
efficient algorithm.

Problem P2 differs from P1 only in that it has relaxed the
last constraint. So, both P1 and P2 look for a partition of O
of miniraum cardinality but in P1 each PE must equal the
union of some NEs, whereas in P2 it suffices that each PE is
a subset of this union. Problem P2 is not mentioned at all in
any of the references cited above.

6. Other optimization criteria

In all three problems, we chose the cost-function to be the
total number of NEs: L_ x;. However, depending on the
application and on the real cost to be minimized, different
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criteria may be used without other changes in the formula-
tion of our problems.

For example, we could want to minimize the number of
calls to NEs per PE: (min L)_ | x;cj, k = 1,2, ..., k' if and
only if NE-j is called by PE-k).

Let us suppose that every time that a PE *‘calls’” an NE, it
is billed by the PE machine. Then, the above criterion means
that we want to minimize the bill per PE. Its influence to the
choice of NEs will be the following.

Problem P1 has always its unique solution.
Problem P2 will tend to choose useless FEs, “‘in the
neighborhood of the PE’’, which is an improvement in
its behavior.

e Problem P3 will choose each PE to be an NE, by its own.

Finally, we could choose a cost-function with weights:
min Ej-v= | w;x;, where w; will have a meaning depending on
the application. For example, w; could be some sort of cost
for NE-j, or a counter indicating how often this NE-j is
called. In all cases, such a criterion will express something
like the total cost and it will favor the candidate sets with the
least weights-costs.

7. Summary

In the design of a distributed service machine there are
several decisions to be made. The service components must
be distributed across the nodes of the network so that the
desired services are finally implemented/provided by calling
the appropriate nodes. We also care about minimizing the
network traffic due to such functions.

In this paper we studied three problems which arose dur-
ing this design process. The first problem creates a partition
of the FEs into NEs which are able to exactly compose the

Table 5
Example 1, Section 3.4

PEs (or services). The second problem is a relaxed version
of the first one, i.e. the NEs are allowed to contain FEs
useless for some PEs, in order to eliminate the total number
of NEs. The third problem creates a cover of the FEs by NEs
which must exactly compose the PEs.

We clearly stated the above problems and we explored the
ideas behind their constraints and optimization criteria. We
saw their complexity and we formulated them as O-1
problems. We also used O-1 code [10] to solve several
examples and we compared the solutions of the problems.
We reviewed similar problems in areas completely different
from the field of communications, from where our interest
initially arose.
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Appendix A Example 1, Appendix 3.4. Details on the
formulation and solution using 0-1 code

First of all, we had to calculate the coefficients a;;, cj,
P}, ISl (see Table 5). Then we wrote P1, P2 as 0-1 pro-
blems:

/* problem P1, written as ILP */

/* objective function: min number of NEs */

min: x1 + x2 4 x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15;

/* Partition; each FE must belong to exactly one NE */
x1 + x5 4+ x6 + x7 + x11 + x12 4+ x13 + x15 = 1;
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X2+ x5+ x8+x9+x11 +x112 + x14 + x15=1;
x3 + x6 + x8 + x10 + x11 + x13 + x14 + x15 = 1;
x4 + x7 + x9 + x10 + x12 + x13 + x14 + x15=1;
/* applications S1, S2 must be composed exactly by
some NE */

/* The union of NE S1' must have exactly three FEs (S1
has three FEs) */

x1 +x2 4+ x3 4+ 2x5 + 2x6 + 2x7 + 2x8 + 2x9 + 2x10
+ 3x11 + 3x12 + 3x13 + 3x14 + 4x15 = 3;

/* The union of NE S2’ must have exactly 3 FEs (S2 has
3 FEs) */

X3 4+ x4 + 2x6 + 2x7 + 2x8 + 2x9 + 2x10 + 3x11 +
3x12 + 3x13 + 3x14 + 4x15 = 2;Solution: x; = x, =
X =1

/* Relaxed Broblem P2, written as ILP */

/* objective function: min number of NEs */

min: X1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15;

/* Partition: each FE must belong to exactly one NE */
X1 4+ x5 4+ x6 4+ x7 + x11 + x12 + x13 +x15=1;
X2 4+ x5+ x8 +x9 + x11 + x12 + x14 + x15=1;
X3 + x6 + x8 + x10 + x11 + x13 + x14 + x15 = 1;
x4 + x7 4+ x9 + x10 + x12 + x13 + x14 4+ x15 = 1;
/* The union of NE may contain one FE ( = an FE
which does not belong to the corresponding PE */
#IS1-IS1l < =1 %

x1 +x2 + x3 + 2x5 + 2x6 + 2x7 + 2x8 + 2x9 + 2x10
+ 3x11 + 3x12 + 3x13 + 3x14 + 4x15 < = 4;
/%18271-1821 < =1 %/

X3 + x4 + 2x6 + 2x7 + 2x8 + 2x9 + 2x10 + 3x11 +
3x12 + 3x13 + 3x14 + 4x15 < = 3;Solution: x5 =
X, 0=1
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