Opportunistic Network Coding for Video Streaming over Wireless

Hülya Seferoğlu, Athina Markopoulou
UC Irvine

- Introduction
- System Overview
- Coding Algorithms
- Performance Evaluation
- Summary

- Introduction
- System Overview
- Coding Algorithms
- o Performance Evaluation
- o Summary

Motivation

Video-aware network coding schemes to optimize Video Quality and Throughput

The Network Coding Paradigm

 Idea: allow intermediate nodes to combine incoming packets before forwarding them

- o Benefits in throughput and distributed scheduling
- o Applications in p2p and wireless mesh networks

Network Coding for Wireless (broadcast)

Current Approach

Network Coding

Network Coding for Wireless Mesh

["COPE:XORs in the Air", Katti et al., Sigcomm 06]

 Mix packets from different flows to increase information per packet

o COPE maximizes the number of receivers that decode.

Network Coding for Video

 Key observation: the content (not only the number) of packets matters

 Consider packet distortion, deadline, dependencies to maximize video quality and throughput.

Problem Statement:

Network coding for video over wireless mesh

- o Introduction
- System Overview
- Coding Algorithms
 - NCV Algorithm: Network Coding for Video
 - o NCVD Algorithm: looking into the queue in Depth
- o Performance Evaluation
- Summary

System Overview

- → Only video packets
- → Intermediate nodes combine different flows and broadcast.
- → Nodes can overhear all transmissions in their neighborhood.
- → Knowledge of contents of virtual buffers.
- → Active inactive packets.
- → ACK mechanism is employed.

Code Construction

Candidate Codes:

$$c'_{1} = A_{1}$$

 $c'_{2} = A_{1} + B_{1}$
 $c'_{3} = A_{1} + C_{1}$
 $c'_{4} = A_{1} + B_{1} + C_{1}$

$$S_k^i \quad k = 1,...,2^{\Psi i}$$

$$c_k^i = p_i \oplus S_k^1$$
$$k = 1, ..., 2^{\Psi_1}$$

Which code to choose to maximize total quality and throughput?

Coding Algorithm I: NCV

 \circ Choose code c_k^i to maximize improvement I_k^i

Coding Algorithm II: NCVD

Primary packet - $\{A_1 \text{ or } B_1\}$?

$$\max_{p_i} \max_k (I_k^i)$$

- o Introduction
- System Overview
- Coding Algorithms
- Performance Evaluation
- o Summary

Performance Evaluation Scenario

System Model:

- One hop downlink transmission with 3 receivers
- Downlink 300 kbps
- Delay budget 100 ms. Random delay in forward ch., avg= 4ms

Wireless Channel Model

- Model I: iid loss rates from 1% to 20%
- Model II: Rayleigh fading channel modeled with Gilbert-Elliot
 3 dB to 9 dB (loss rates from 1% to 35%)

Video Sequences

- o Carphone, Foreman, Mother&Daughter
- H.264/AVC, 1I:9P frames
- o 70 kbps, 30 fps, 250B packets on average.

Performance Evaluation Baseline Algorithms

- NoNC: FIFO with improvements
 - ARQ is employed
 - Active-inactive packets
 - Late packets are dropped from the output queue
- NCT: COPE with improvements
 - Active-inactive packets
 - Late packets are dropped from the output queue.
 - Consider all packets as eligible packets instead of just head-on packets

Performance Evaluation Video quality

Average PSNR for iid model with 9.4% Loss Rate, 100 ms Playout Deadline

avg PSNR (dB)	Carphone	Foreman	Mother&Daughter
No Error	29.95	28.70	40.74
NCVD	26.32	26.08	32.87
NCV	23.99	25.03	32.62
NCT	22.40	22.76	30.81
noNC	22.08	21.59	26.92

Performance Evaluation Video quality

Avg. PSNR of Foreman, iid loss

Avg. PSNR of Foreman, Rayleigh

Performance Evaluation Throughput

Application-level throughput

MAC-level throughput

NCV and NCVD improve application level throughput
 MAC level throughput is similar for NCV, NCVD, and NCT

- o Introduction
- System Overview
- Coding Algorithms
- o Performance Evaluation
- Summary

Summary

- Proposed video-aware network coding schemes for wireless mesh networks
- o Improved video quality up to 4-5 dB
- Improved application level throughput without hurting MAC throughput
- Ongoing work ...

Thank you!

{hseferog, athina} @uci.edu http://aegean.eng.uci.edu/

