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Abstract—Traceback schemes aim at identifying the source(s)
of a sequence of packets and the nodes these packets traversed.
This is useful for tracing the sources of high volume traffic, e.g.,
in Distributed Denial-of-Service (DDoS) attacks. In this paper,
we are particularly interested in Probabilistic Packet Marking
(PPM) schemes, where intermediate nodes probabilistically mark
packets with information about their identity and the receiver
uses information from several packets to reconstruct the paths
they have traversed. Our work is inspired by two observations.
First, PPM is essentially a coupon collector’s problem [1], [2].
Second, the coupon collector’s problem significantly benefits from
network coding ideas [3], [4]. Based on these observations, we
propose a network coding-based approach (PPM+NC) that marks
packets with random linear combinations of router IDs, instead
of individual router IDs. We demonstrate its benefits through
analysis. We then propose a practical PPM+NC scheme based on
the main PPM+NC idea, but also taking into account the limited
bit budget in the IP header available for marking and other
practical constraints. Simulation results show that our scheme
significantly reduces the number of packets needed to reconstruct
the attack graph, in both single- and multi-path scenarios, thus
increasing the speed of tracing the attack back to its source(s).

I. INTRODUCTION

DDoS attacks are one of the hardest problems on the Inter-
net today [5], during which a large number of compromised
hosts coordinate and send unwanted traffic to the victim, thus
exhausting its resources and preventing it from serving its
legitimate clients. In particular, in bandwidth flooding attacks,
a large number of attack flows flood the victim’s access link
with unwanted traffic. Several approaches have been proposed
to deal with flooding attacks. In this work, we focus on IP
traceback schemes, which trace the attack back to its source(s).

Traceback in itself does not stop an attack, but it is an
important component in a bigger defense system, when com-
bined with additional mechanisms such as intrusion detection
or filtering for blocking unwanted traffic. There is a large body
of literature on traceback schemes [6]. In this work, we are
interested in multi-packet Probabilistic Packet Marking (PPM)
schemes, where packets are marked probabilistically with
information about the IP addresses of the routers they traverse.
The victim then uses this information to reconstruct the router
IP addresses, and trace the attack back to its source(s).

Early on [1], [2], it was observed that PPM is essentially
a coupon collector’s problem. Moreover, the coupon collec-
tor’s problem significantly benefits from the network coding
idea [3], [4]. Inspired by these observations, we propose the
PPM+NC approach. The intuition is that if we mark packets
with random linear combinations of the router IDs, instead of
individual IDs (as in traditional PPM), the number of packets
required to reconstruct the attack paths can be significantly
reduced, and the attackers can be traced faster. We implement
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this idea by taking into account the practical constraints and
using a limited number of under-utilized bits on the IP packet
header for marking. Our practical PPM+NC scheme allocates
the bit-budget optimally between the coefficients and the linear
combination in the marking field on the IP packet header.

There is a large body of literature on PPM, trying to
improve the tradeoff between the number of bits used in the
IP header and the number of packets required to reconstruct
the attack paths [7]. This can be achieved in two ways: (i)
through the content of the mark, i.e., reducing the number
of bits by using fragments [1] or hashes [8] instead of the
entire IP address, or algebraic coding ideas [9]; or (ii) through
adjusting the marking probability at each router depending on
its position on the path, as in Adjusted PPM (APPM) [10].
In this work, we propose a fragment-based network coding
marking scheme and compare it against the fragment-based
PPM [1]. Simulation results show that for similar bit-budget,
our scheme significantly reduces the number of packets needed
for reconstruction, in several attack scenarios. The network
coding marking idea is orthogonal to and can also be combined
with hashing and APPM to improve the overall performance.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the main idea
behind PPM+NC and provides analytical models. Section IV
presents the practical PPM+NC scheme based on the main
idea, but taking into account the practical constraints. Section
V provides simulation results. Section VI concludes the paper.

II. RELATED WORK

There is a large body of literature on IP traceback schemes,
as surveyed in [6]. In this work, we focus on multi-packet
Probabilistic Packet Marking (PPM) schemes. Savage et al.
[1] proposed one of the earliest such schemes, called Fragment
Marking Scheme (FMS), taking into account the limited num-
ber of bits available for marking on the IP header. FMS divides
each router’s IP address and redundancy information into some
8-bit fragments; each router probabilistically marks packets
with one of the fragments chosen uniformly at random. FMS
is good for single-path attacks, but results in high computation
overhead and high false positive rate in distributed attacks [8].

Song et al. [8] proposed an Advanced Marking Scheme
(AMS) to improve the computational efficiency and accuracy of
reconstructing the attack paths under large scale DDoS. They
also have an authentication scheme to deal with spoofing from
compromised routers. They assume that a map of upstream
routers is available at the victim using the traceroute tool;
the goal is then to infer which paths on the map were
traversed by the attack traffic. Yaar et al. [11] proposed Fast
Internet Traceback (FIT), which is similar to AMS in using
the upstream router map and in the packet marking format, but
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Fig. 1: PPM over a single path with d routers from the attacker to the victim.

it obtains the map using the same packet markings that it uses
for reconstruction rather than traceroute. FIT also uses a TTL
modification technique to store the distance of the marking
router in 1 bit only. We utilize their technique in Section IV.

Dean et al. [9] proposed an algebraic approach by encoding
the information of routers into a polynomial. Adler [7] studied
the tradeoff between the number of bits used for marking and
the number of packets, and proposed a 1-bit marking scheme.

In this paper, our practical PPM+NC scheme is proposed
and evaluated using fragmentation [1]. We have also proposed
combining network coding with AMS and APPM in [12].

III. MAIN IDEA

Problem Statement. Consider Fig.1; attacker A sends
packets towards the victim V , through a single path of length
d. Ideally, we would like every router on the path to append its
own IP address on each packet, so that the packet contains the
entire path when it arrives at V . Unfortunately, it is infeasible
as it requires a large and variable number of bits on the header.

The PPM scheme requires space only for one mark on the
IP header: each node i along the path makes an independent
decision whether to mark a packet with its IP address, with
marking probability Pm(i), or not. If it decides to do so,
it overwrites any previous mark. Each packet contains at
most one router’s mark after traversing the entire path. We
call perceived probability the probability that a packet still
carries router i’s mark when it arrives at V : Pp(i) = Pm(i) ·∏j=i−1

j=1 (1 − Pm(j)). The marks on the packets allow V to
sample the routers on the path. The goal of PPM is to enable
V to recover d router IDs after receiving a sufficient number
of packets, X , where X ≥ d as some marks may be duplicate.
The PPM+NC scheme tries to achieve the same goal with a
smaller X , by intelligent marking at intermediate nodes.

The PPM+NC Approach. Early on [1], [2], it was observed
that PPM is essentially a coupon collector’s problem [13]. In
the classic problem, all n coupons are obtained with an equal
chance of p = 1

n . The collector needs to collect a random
number of coupons X , which on average is Θ(n ln n) [2], to
get the entire collection. However, note that, in PPM, routers
overwrite the previous mark on a packet. Thus Pp(i) depends
on the distance of node i from V : the further from V , the
less likely that the mark will not be overwritten as the packet
moves along the path. Thus the coupon collector’s problem
with unequal probabilities models PPM more accurately [14].
If Pm(i) = p is the same for all routers, then Pp(i) = p(1−
p)i−1. If there are d routers on the path, the average number
of packets needed to reconstruct the attack path is, [14]:

E[XPPM] =
∫ ∞

0

(1−
d∏

i=1

(1− e−p(1−p)i−1x))dx (1)

Another observation, made in the network coding commu-
nity [3], [4], [15], is that the network coding idea can reduce
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Fig. 2: The marking field on an IP packet header in PPM+NC. IDi is router
i’s entire IP address; ci is selected uniformly at random out of F2b .

E[X] in the classic coupon collector’s problem from Θ(n ln n)
to Θ(n), by storing random linear combinations of coupons
instead of the coupons themselves. In fact, as we collect more
coupons, it becomes harder to find innovative ones and most
of the time is spent on collecting the last few coupons. If
each box contains random linear combinations of coupons,
instead of individual coupons, we can obtain all n coupons by
receiving n independent linear combinations and solving the
system. Intuitively, each random combination is more likely
to bring some innovative information, thus be more useful.

Based on the previous two observations, we propose the
PPM+NC scheme that combines random linear network cod-
ing [16] with PPM: each router i decides to mark a packet
with probability p. Once it decides to do so, it chooses a
coefficient ci randomly out of a field F2b , multiplies its IP
address IDi with ci, and adds the result to the current content
of the marking field. To show the basic idea, we first assume
that the IP header has enough space to store the entire 32-bit IP
address, or linear combinations of IP addresses. In Section IV,
we consider the bit limitations and other practical constraints.

Fig.2 shows the part of an IP packet header used for
marking: part of the marking field stores a certain number k of
coefficients ci, and another part stores the linear combination∑i=k

i=1 ci · IDi, computed over a field of appropriate size Fq .
q is discussed in Section IV. Our goal is to recover the router
IP addresses from the marked packets by solving a system of
linear equations, after receiving sufficient innovative packets.

We first show the benefit of this approach analytically. In
[4], it is proved that with network coding, E[X] = Θ(n)
coupons are needed to obtain n linearly independent equations,
thus n coupons. E[X] can be made arbitrarily close to n by
increasing the field size q: E[X] ∼= n as q →∞. But we have
an additional parameter p in PPM+NC: each router contributes
to the linear combination in a packet with probability p. If
p = 1, E[X] will be similar to the analysis in [4]. In practice,
p < 1: a packet contains a linear combination of some router
IDs because we do not want routers to work too much and
we have limited space for marking. We adjust the analytical
model by taking p into account; we have: E[X] = Θ(n/p).

Proof: Let Xi be the number of packets required to get
the ith router ID, assuming that we already have i− 1 router
IDs. Xi is a geometric random variable with probability pi =
Pm(i)×Pn, where Pn is the probability that the victim receives
an innovative linear combination; thus pi = p.(1 − qi−1

qn ).
Considering E[Xi] = 1

pi
and X = Σn

i=1Xi, we have:

E[X] =
qn

p
.(

1
qn

+
1

qn − q
+ ... +

1
qn − qn−1

)

We omit the details due to lack of space, but bounding E[X]
above will result in E[X] = Θ(n

p ).
In practice, p is very small and as we later see through

simulations in Fig.3, the number of packets required to obtain
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Fig. 3: Simulation and analytical results for the average number of packets
required for a single path of varying length d = 1...31, in PPM and PPM+NC.
The coefficients are chosen randomly from F22 , p = 1

25
, 500 realizations.

a full-rank system is much less than n/p. The formula of the
unequal coupon collector’s problem [14], as in Eq.(1), but with
the proper Pp(i) for PPM+NC, gives a more accurate model
for E[X] in PPM+NC. Once a router decides to mark a packet
(with prob. p), it will result in an innovative linear combination
with high probability. Thus, Pp(i) ∼= Pm(i) = p, and:

E[XPPM+NC] =
∫ ∞

0

(1−
d∏

i=1

(1− e−px))dx (2)

Fig.3 shows that the models in Eq.(1) and Eq.(2) perfectly
agree with the simulation results. It compares PPM+NC to
PPM in terms of the average number of packets required to
reconstruct the attack path, of length 1 to 31 hops, which
is the case for most Internet paths [1]. We select p = 0.04
(∀ routers), because p ≤ 1

d minimizes the number of required
packets [1], and only a few path lengths exceed 25 hops in the
Internet. We see that PPM+NC significantly outperforms PPM,
especially for longer attack paths. We also see that PPM+NC
requires much less packets than d/p, as previously mentioned.

Note that the PPM+NC coefficients are chosen from a small
field F22 , as we justify in Section IV. In Fig.3, we assume
that the 32-bit IP addresses or their linear combination can be
stored on the header. In Section IV, we consider the bit budget
and other constraints in our practical PPM+NC scheme.

In practice, an attack can be distributed, i.e., several attack
sources can flood the victim through different attack paths that
eventually form a tree with leaves being the attackers and root
being the victim. Fig.4 shows a full binary attack tree. Each
packet traverses one of the paths in the tree. In PPM+NC, once
a router in the selected path decides to mark the packet, it acts
similarly to the single-path scenario. This marking procedure
affects the reconstruction, as we discuss in Section IV-C.

We assume that: (i) attackers may send any packet; (ii) they
may be aware of traceback; (iii) they send numerous packets;
(iv) multiple attackers may act together; (v) routes between
hosts are fairly stable; (vi) routers are not compromised.

IV. PRACTICAL PPM+NC SCHEME

A. Practical Constraints

Section III described the PPM+NC idea. To design a practi-
cal PPM+NC scheme, we consider the following constraints:
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Fig. 4: An example attack tree, with 15 nodes and 8 attackers flooding the
victim V . {Ri}i=15

i=1 represent the routers and {Ai}i=8
i=1 represent the attack

sources. The tree consists of 8 paths, each from one {Ai} to V . Each attack
packet comes from one possible {Ai} and reaches V through an attack path,
i.e., the ordered list of routers between {Ai} and V that the packet traverses.

I. Bit budget. The most important constraint is the number
of bits on the IP header available for marking. Typically,
traceback schemes use some, currently under-utilized, bits on
the header: at least the 16 bits of the IP identification field [1],
or at most 25 bits (also including the 8-bit TOS field and the
unused fragment flag) [9]. Obviously, the main PPM+NC idea
of Section III, which marks with linear combinations of the
entire 32-bit IP addresses, will not work under this constraint:
even a single IP address does not fit within the bit budget, let
alone their combination

∑i=k
i=1 ci ·IDi, and the coefficients ci.

To deal with the bit limitation, each router may encode only
partial information about its IP address, using fragmentation
[1] or hashing [8]. In fact, important information in each
mark (thus the number of required packets) is traded-off for
reduced number of bits. We divide a router’s 32-bit IP address
into f fragments, each of size d 32

f e bits, and construct linear
combinations of the fragments instead of the entire addresses,
of size also d 32

f e bits. We also need dlog2fe bits for the
fragment offset (to indicate which fragment we use): once a
router picks a fragment, the subsequent marking routers pick
the same fragment; the victim learns the fragment offset by
looking at the mark. We store k random coefficients, each
selected randomly out of F2b , thus requiring b bits. We also
use a distance field (distance), to indicate the distance of
the mark from the victim. It is typically of 5 bits, to represent
maximum Internet path lengths of 31 hops [1]. However, using
the technique in [11], we can have a 1-bit distance only. f, b, k
need to be chosen such that the total number of bits fits within
our budget and we also achieve fast reconstruction (small X):

d32
f
e+ dlog2fe+ k · b + distance ≤ bit budget (3)

f was also a parameter in previous fragmentation schemes;
we use f = 4 fragments, of 8 bits each [1]. k, b are unique to
our network coding scheme. b can be small in practice, e.g.,
b = 2. Note that the linear combination is computed over F28

because of the fragment size. k is a predetermined number of
coefficients that can be stored on a packet: we need k = dd·pe
to accommodate the average number of marks in the path. In
practice, d ≤ 31 and p = 0.04 [1]; we choose k = 3 as we
justify in Section IV-B. When all k coefficients are marked, the
next routers need to get informed that they have no space to
mark, e.g., by initializing the marking field to zero and having
routers check whether the coefficient slots are still zero or not.
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II. Spoofing by the Attacker. In practice, an attacker may
mark the original packet with a spoofed (erroneous) address
to confuse the decoding at the victim. Ideally, we would like
the router closest to the attacker to zero out the marking field
before adding its value. However, there is no reliable way
to determine a router’s location on the path. One solution
is to have each marking router overwrite the current mark
on the packet, with some probability, thus cancel the forged
information. However, since it happens with low probability,
some packets might not be marked at all and arrive with their
initial marks from the attacker. An additional measure against
spoofing is to use a distance field. The idea is to have the
routers that overwrite, zero this field and all other routers
increment it. This way, we have an indication of a router’s
location on the path, which is used in the reconstruction; we
also limit the effect of spoofing to the approximate traceback
problem1. We use both techniques in our practical scheme; we
combine overwriting with the PPM+NC idea so that each node
(i) probabilistically decides to overwrite the previous mark and
(ii) increments the distance field regardless of whether it marks
or not (unless it overwrites, in which case it zeros the field).

III. Identifying Nodes vs. Reconstructing the Attack
Graph. In addition to reconstructing the router IP addresses,
it is also desirable to reconstruct the order in which they are
traversed by the packets, i.e., the attack paths and graph. In
multi-path attacks, more information is needed to reconstruct
the edges and eventually the attack graph. At an abstract level,
the same analysis holds for edge sampling algorithms that
mark with edge IDs (XOR of neighboring node IDs) instead of
node IDs (router addresses) [1]; the only difference is that the
coupon sampled is an edge not a node. At a practical level, we
use (i) a distance field and (ii) encoding of consecutive nodes
(thus revealing edges) in our practical PPM+NC scheme.
These mechanisms provide additional information that helps
us reconstruct the attack graph after collecting all IP addresses.

B. Marking Procedure
We now design a practical PPM+NC scheme that imple-

ments the basic idea of Section III, but also takes into account
the practical constraints of Section IV-A. We divide each router
Ri’s IP address into 4 fragments: “R0

i .R
1
i .R

2
i .R

3
i ”, each Rj

i
of 8 bits. We allocate 8 bits to the linear combination of frag-
ments, 2 bits to the fragment offset, and k× b = 6 bits to the
coefficients. We use the technique in [11], which re-uses the
TTL field in the IP header, to have distance = 1 bit only. We
later discuss how this bit allocation is optimal for our scheme.

1The approximate traceback [1] finds a candidate path that contains the true
attack path as a suffix. Spoofed packets will have a distance value greater than
or equal to the true attack path length and cannot affect the valid suffix. In
distributed attacks, this applies to the packets from the closest attacker only.

Algorithm 1 Practical PPM+NC: Marking at router RL

1: for each packet P do
2: Pick u uniformly at random from [0, 1]
3: if u < Pm(RL) then
4: /*decide to overwrite*/
5: Zero-out all fields, including P.distance := 0
6: Pick cL to be a random coefficient out of F22

7: Pick the jth fragment offset randomly from {0, 1, 2, 3}
8: Let Rj

L be the corresponding fragment of RL with offset j

9: Write P.linear combination := cL ·Rj
L

10: Write P.offset := j
11: Write cL into the first slot of P.random coefficients
12: else
13: /*decide not to overwrite*/
14: Increment the distance field P.distance + +
15: if there is space (i.e., zero slot) in P.random coefficients then
16: Read the stored fragment offset P.offset = j
17: Let Rj

L be the corresponding fragment of RL at that offset
18: Pick cL to be a random coefficient out of F22

19: Write cL in the first available slot of P.random coefficients
20: Update P.linear combination+ = cL ·Rj

L
21: end if
22: end if
23: end for

Let us call these fields of the packet P : P.linear combination,
P.offset, P.random coefficients, and P.distance respectively.
We need 17 bits in total, which is still within the bit budget
(the 16-bit IP ID field and the 1-bit fragment flag [9]).

Alg. 1 summarizes the marking scheme. Initially, the mark-
ing field of each packet contains all zeros (unless spoofed to
some other value). When the packet arrives at the victim, it
contains the linear combination of up to k = 3 consecutive
router IP addresses. Fig.5 shows an example: the first router,
RL+1, decides with probability Pm(RL+1) whether to over-
write the previous mark on the packet. Assume that it decides
to do so. First, it zeros out the entire marking field, including
distance, then: (i) it picks a random coefficient cL+1 and
writes it in the first slot available for the coefficients; (ii) it
picks the ith fragment of its IP address, Ri

L+1, and writes the
offset i; and (iii) it writes the linear combination cL+1 ·Ri

L+1.
The next router, RL, also decides to overwrite: it zeros the
entire field and writes its own values cL, j, and cL ·Rj

L.
The third router, RL−1, decides not to overwrite: it checks

for empty slots in the vector of random coefficients. If there is
space, e.g., in this example, then: (i) it reads the offset j set by
the previous router and picks its own jth segment Rj

L−1; (ii) it
picks a random coefficient cL−1 and writes it in the first zero
slot; and (iii) it adds its information to the linear combination
by updating it to cL ·Rj

L + cL−1 ·Rj
L−1 (computed in F28). If

there were no space (all 3 coefficients were non-zero), it would
not mark at all. In any case, a router that does not overwrite
always increments the distance field. Note that once a router
decides to overwrite and mark, the two next consecutive nodes
must also mark unless no more routers exists on the path.

The distance field helps to reconstruct the attack graph, by
telling the victim from how far away the packet is marked,
and also to minimize spoofing. If the mark was from any (not
consecutive) three nodes, we would need 3 distance values for
reconstruction, which is not space-efficient. Consecutive marks
require the distance from the last overwriting node (RL) only.
The other distances (RL−1,RL−2) differ by 1 and 2 from that.
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Optimal allocation of the bit budget. We now explain how
we select f, k in Alg. 1. We need to use the limited bit budget
available for marking so as to optimize the following tradeoff.
On one hand, we want to store more random coefficients
to increase the chances of a packet containing an innovative
linear combination: having a large number of marking routers,
thus more coefficients, makes it unlikely that all routers pick
the exact same coefficient twice in a row, thus two packets
be linearly dependent. On the other hand, we want to have
larger fragments, thus larger linear combinations; otherwise,
we would need to collect many smaller fragments of a single
router. Given a limited space, we cannot have both at the same
time. We optimize the bit allocation between the 2 parts of the
marking field, i.e., the coefficients and the linear combination.

Fig.6 shows the effect of increasing k on the performance,
for bit budgets 16 to 25. We set d, p, b to 14, 1

25 , 2 respec-
tively. Consider bit budget 17 (the red curve): we extend the
coefficient space by increasing k from 1 to 5. As a result, the
space for the linear combination reduces from 14 to 6 bits.2
We observe that the number of packets initially decreases, be-
cause of the “longer”/innovative linear combinations received
from each packet. However, after some point, the innovative
combinations no longer help; the effect of the larger number
of smaller fragments we need to collect becomes dominant,
and makes the number of packets increase. There is always
an optimal k that minimizes the number of packets. For bit
budget 17, it is k = 3, which justifies our selection. For all bit
budgets, practical PPM+NC always needs a relatively small k.

C. Reconstruction Procedure
After collecting sufficient marked packets, the victim needs

to infer the IP addresses of routers traversed by the packets, as
well as the attack paths formed by the routers (connecting the
attackers to V ). We describe the procedure under 2 scenarios:

1) Single-path attack: In this case, e.g., Fig.1,5, we
can use a simple algorithm. Each packet P , marked by
a triplet of consecutive routers, RL, RL−1, RL−2, contains:
P.linear combination (the linear combination of 3 fragments);
P.random coefficients = (cL, cL−1, cL−2); P.offset = j (the
same fragment offset for all routers); and P.distance = L (the
distance from the last overwriting router (RL) to V ). Once the
victim receives P , it forms the following linear equation:

2There is another tradeoff in the number of bits allocated to the linear
combination vs. those allocated to the offset. When less bits are used for the
linear combination, the fragments become smaller and the offset size increases.

cL ·Rj
L + cL−1 ·Rj

L−1 + cL−2 ·Rj
L−2 = P.linear combination (4)

The unknowns in Eq.(4) are the jth fragments of the three
routers. Eventually, the victim wants to find all fragments of all
IP addresses Rj

i , ∀i = 1...d, j = 1...f . It can do so by solving
a linear system after receiving d× f innovative packets.

2) Multi-path attack: This case differs from the single-path
attack in that there exist multiple routers at the same distance
from the victim; thus the victim needs to differentiate between
equations coming from different paths. For example in Fig.4,
assume that two packets, both with distance = 4, one marked
by R8, R4, R2 and the other one marked by R15, R7, R3, arrive
at V . The victim cannot decide whether the two marks belong
to the same triplet or not. In general, it cannot assign the packet
markings in the form of Eq.(4), i.e., packets with distance =
L, to a unique triplet of unknowns, as there are several paths
with such triplets. We can resolve this ambiguity in two ways.
We omit the details due to lack of space, and we only explain
the main ideas. Further discussion can be found in [12].

In the first solution, we can use the 8 remaining bits, out of
the entire 25 bits available for marking, to store an additional
checksum, which helps to identify a triplet of marking routers.
E.g., we can have each router pre-compute an 8-bit hash of
its IP address. During marking, the overwriting router sets
the checksum to its 8-bit hash while each of the consecutive
routers XORs the existing checksum value with its 8-bit hash.
Assuming there are nt possible triplets at distances L, L −
1, L−2, 8-bit hashes result in nt

28 collisions at those distances.
The less bits we use, the larger the probability of collision.

In the second solution, we can use the standard assumption
that the victim has a map of upstream routers [8], [11]. It can
be generated before the attack occurs, e.g., using traceroute.
The goal is then to identify the attack graph contained in the
map (the routers traversed by the attack packets). The victim
can use a different technique: once it receives a marked packet,
instead of assigning it to a triplet, it looks up the distance
value and locates all triplets at this distance in the map. For
each candidate triplet, it computes the linear combination of
fragments, using the ci’s and f given in the packet. If the
result matches the mark, the routers were indeed traversed by
the packet. This procedure does not solve a linear system and
starts the reconstruction from the first incoming packet; the
more packets received, the more accurate the reconstruction.
If a router is added to the attack graph after validating its all f
fragments, there will be nt

232 false positive triplets at distances
L,L−1, L−2. In both solutions, the frequency of the arriving
fragments can also help to further reduce the error as in [11].

D. Processing Costs
Our proposal generates more random numbers, not only for

the marking decision but also for the coefficient, compared to
traditional PPM. However, a random coefficient is needed only
when there is space for marking, and a few random numbers
can be pre-computed and used for all packets. Each router
can compute the linear combination quickly in F28 using a
translation (log) table. In the reconstruction, we solve a system
of linear equations, or try addresses against a given linear
combination. Thus, the benefit of our proposal is at the cost
of increased computational complexity and processing time.
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(a) A single attack path, 1 ≤ d ≤ 31.
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(b) Full binary attack trees of 3-127 nodes.
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(c) Power-law attack graph by BRITE.

Fig. 7: Comparison of modified FMS and practical PPM+NC in single- (a) and multi-path (b,c) attacks. p = 1
25

, 500 realizations.

V. SIMULATION RESULTS

We now compare the practical PPM+NC against the
fragment-based PPM without NC, i.e., FMS in [1], in terms
of the expected number of packets to be collected, for both
single- and multi-path attacks. We first make the comparison
fair. FMS uses 16 bits in total: 8 bits for the fragment, 3
bits for its offset, and 5 bits for the distance.3 While practical
PPM+NC uses 17 bits, with a 1-bit distance. We take this
difference into account by considering a larger fragment size
for FMS: we modify FMS such that it uses 17 bits in total, with
the TTL-based distance. Note that in multi-path attacks, the
checksum technique is used for both FMS and PPM+NC; thus
the comparison would still be fair. The modified FMS allocates
2 bits to distance4, 12 bits to the fragment, and 3 bits to its
offset. We collect 6 fragments for each 64-bit address.

Fig.7 shows the results. Fig.7(a) shows the comparison of
modified FMS and practical PPM+NC in a single-path attack,
for different path lengths of 1 to 31. Fig.7(b) compares the two
schemes for full binary attack trees with a varying number of
nodes (3-127). We also simulated full ternary and m-ary trees,
the results were similar. Fig.7(c) shows the results for non-
regular attack trees, based on a realistic power-law topology
generated by BRITE [17]. We used the router-only mode and
the GLP model. Preferential connectivity, incremental growth,
and random node placement were selected. The parameter m,
which sets the number of links added per new node, was set to
2. We first generated a 150 node graph, extracted a tree out of
it with its root being the victim, and tried different numbers of
attackers from 15 to 75, located at the leaves. All results are
averaged over 500 realizations and p = 1

25 . In all cases, we
observe that for practically the same bit budget, the NC-based
scheme significantly reduces the number of packets required
for reconstruction. Thus, it can trace the attackers much faster.
In multi-path attacks, it performs even better for larger trees.

VI. CONCLUSION AND FUTURE WORK

We proposed a network coding approach to PPM, based on
the idea of marking packets with random linear combinations

3 In FMS [1], a mark contains a randomly selected fragment of an edge
ID (XOR of neighboring node IDs), its offset, and distance. The size of each
node ID, thus edge ID, is doubled to 64 bits by being bit-interleaved with a
32-bit hash of itself. It helps to avoid combining fragments of different edges
in multi-path attack reconstruction. Each edge ID has eight 8-bit fragments.

4In edge-based marking schemes, the distance requires at least 2 bits [11].

of router IDs, instead of individual IDs. We implemented this
idea considering the bit budget and other practical constraints.
Through analysis and simulations, we showed that our scheme
significantly reduces the number of packets, in several attack
scenarios. The network coding idea can also be combined with
and improve other PPM schemes, as it is orthogonal to their
contribution (hashing, authentication or adjusted probabilities).

We only proposed the basic NC-based PPM in this work. In
the future, we plan to: (i) extend our intra-path coding scheme
by taking advantage of sliding window protocols, as in TCP,
to further improve the reconstruction at the victim; (ii) also
perform inter-path coding to further exploit the NC benefits.
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