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Abstract—Intra-session network coding is known to be vul-
nerable to Byzantine attacks: malicious nodes can inject bogus
packets, which get combined with legitimate blocks at down-
stream nodes, thus preventing decoding of original packets and
degrading the overall performance. In this paper, we provide
a novel approach that can identify the precise location of all
Byzantine attackers in systems with intra-session network coding.
A key ingredient of our approach is a novel homomorphic
MAC scheme for expanding subspaces (SpaceMac) that allows to
eliminate any uncertainty in identifying attackers via subspace
properties. To the best of our knowledge, our scheme is the
first that can identify precisely all Byzantine attackers, and at
the same time, has both low computation (sub-millisecond) and
communication overhead (20 bytes per data block). Simulation
results show that even when there are multiple colluding attackers
in a network, all of them can be successfully identified in a very
short time.

I. INTRODUCTION

In this paper, we are interested in content distribution sys-
tems, such as [3] or [15], that employ random network coding1

to increase throughput and facilitate distributed scheduling.
However, network coding is also inherently vulnerable to
Byzantine (a.k.a. pollution) attacks: a malicious node can
inject corrupted packets to its outgoing links, which then get
combined with legitimate packets in downstream nodes, to
prevent decoding of the original data and eventually degrade
the overall performance. The effect of a single corrupted
packet is amplified due to mixing with other packets.

The severity of pollution attacks in systems with network
coding has generated a significant amount of work in this
area. Proposed defense mechanisms can be classified into
three categories: error correction, attack detection, and at-
tacker identification. First, error-correcting mechanisms, such
as, [8], [11], deal with the problem end-to-end: they utilize
redundancy at the source to correct corrupted packets at the
receivers. Second, attack detection mechanisms can be used
at intermediate nodes and aim at detecting whether a linear
combination is legitimate or corrupted; detected corrupted
packets are dropped so they do not further pollute the system.
Work in this area includes both information theoretic [5]
and cryptographic approaches; the latter leverage null keys
[10], homomorphic hashes [4], signatures [1], or message
authentication codes (MACs) [2]. Third, there is also work
that aims at identifying the nodes where Byzantine attackers
are located, either approximately via subspace properties [7]
or exactly using a non-repudiation protocol [16].

In this paper, we are interested in the third problem: our
goal is to design a system that can accurately identify the

1Our scheme actually works for both random and deterministic network
coding. We choose to describe the scheme in the randomized setting, which
is the case in practical content distribution systems.

location of all Byzantine attackers. This allows to remove
the attackers from the system and stop the pollution attack
at its root – without wasting network resources on handling
corrupted traffic. To the best of our knowledge, none of the
existing solutions to this problem possesses all the following
desired properties:
(1) Can exactly identify all pollution attackers.
(2) Have low communication and computation overhead.
(3) Can deal with a large number of colluding attackers.

In this paper, we introduce a novel scheme that meets all the
above three requirements. Our scheme builds on and extends
the work of Jafarisiavoshani et al. [7], which exploits subspace
properties to approximately identify the location of attackers.
To eliminate the uncertainty in identifying pollution attackers
via subspace properties, we design a novel homomorphic
MAC scheme for expanding subspaces that enforces nodes to
report their true incoming subspaces. Our homomorphic MAC
scheme is inspired by the scheme by Agrawal and Boneh [1]
and has equivalent low computation overhead. However, unlike
[1], our scheme allows intermediate nodes to sign subspaces
that expand over time, as opposed to [1], which allows for
signing a fixed space. In addition, to prevent malicious nodes
from denying their behaviors and disparaging benign nodes,
we incorporate the light-weight non-repudiation transmission
protocol by Wang et al. [16], which has significantly less
communication overhead than most existing schemes. Finally,
by leveraging multiple generations, our scheme is the first that
can identify all pollution attackers even when there is a large
number of colluding attackers. To support the identification
process, our scheme requires a reliable low-bandwidth channel
between a controller and each node.

We evaluate our scheme via simulation in networks with 52
nodes and up to 18 attackers, some of which are colluding,
and demonstrate that we can rapidly identify the location of all
attackers. The contributions of this paper lie in the design of
(i) the novel homomorphic MAC scheme for expanding sub-
spaces, SpaceMac, in Section IV, and (ii) the overall system
described in Section V that combines several components so
as to be able to accurately locate all attackers.

II. RELATED WORK

We review here work directly relevant to the problem of
attacker location identification we study in this paper. Due to
space constraints, we refer the reader to [12] for a detailed
review of error-correction and attack detection schemes.

In [7], Jafarisiavoshani et al. observe that vectors sent from
a node belong to the space spanned by the vectors sent by
the source and also the space spanned by the vectors the node
receives. Using this observation, in a general network topology



Fig. 1. An example of inferring an attacker’s location using information
about polluted edges from [7]. The attacker is at node B. Scenarios (1) and
(2) correspond to the sets of polluted edges when the attacker lies and is
honest about its incoming subspace, respectively. The controller can narrow
down the attacker to two nodes: A and B, as they initiate polluted edges.

having a single attacker, the attacker can be located with an
uncertainty of at most two nodes. When there are multiple
attackers, the uncertainty is within a set of nodes including
the attackers and their parents and children. Our scheme builds
on and extends this work: we make it possible to pinpoint the
exact location of the attackers, even in the case when there
are multiple colluding attackers.

Wang et al. [16] introduce a light-weight non-repudiation
protocol to identify malicious nodes. Their protocol ensures
that a malicious node that injected a polluted vector cannot
deny its behavior and cannot disparage any innocent node.
However, using the approach in [16], the identification requires
the distribution of multiple checksums of all source vectors to
all the nodes for every generation that experiences pollution
attack. This incurs a significant communication overhead.
Moreover, this approach is unable to identify all attackers. In
contrast, our scheme can identify all attackers rapidly without
the need of checksums.

A key ingredient of our solution is the design of a novel
homomorphic MAC scheme (SpaceMac) that allows inter-
mediate nodes to sign their own –expanding over time–
subspaces, and thus become accountable for the packets they
send, which is necessary to identify malicious nodes. This is
different from the homomorphic MAC scheme by Agrawal and
Boneh [1], which allows for signing only fixed subspaces. A
detailed comparison is provided in Section IV-B.

Independently and at the same time as our paper, a similar
homomorphic MAC construction has been proposed for a
different problem [13]. In particular, the inner-product MAC
scheme was introduced in [13] to facilitate nested authenti-
cations, prevent tag pollution attacks, and support Byzantine
attack detection. We propose SpaceMac for authenticating
expanding subspaces and identifying the location of attackers.

III. PROBLEM FORMULATION

A. Network Operation
Consider a directed-acyclic-graph (DAG) network that em-

ploys linear network coding. When sending a message, a
source node S first breaks the message into m vectors,
v̂1, · · · , v̂m, in an n-dimensional linear space Fnq , where m,n
and q are fixed ahead of time and q � 1. The source then
augments every vector v̂i with m additional components,
which form the coefficient vector of v̂i. The resulting vectors
vi’s, called augmented vectors, have the following form:

vi = (—v̂i—,

m︷ ︸︸ ︷
0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Fn+mq .

Let ΠS ⊆ Fn+mq be the subspace spanned by vectors vi’s.
Each intermediate node i in the network receives from its
parents some vectors, which are linear combinations of the
vi’s. It then creates linear combinations of the received vectors
and sends them to its adjacent downstream nodes. We use

Π
(j)
i (t) ⊆ Fn+mq to denote the space spanned by the vectors

received by node i from node j up to time t. When there is
no ambiguity, we omit the time index t.

When all the intermediate nodes are benign, the spaces
Π

(j)
i ’s are subspaces of ΠS . Assume that there is a pollution

attacker in the network. The attacker combines a subspace
ΠE with its incoming space and sends the resulting vectors
to its children; thus, these children’ incoming spaces are not
subspaces of ΠS . Formally, for every node i, its incoming
space Π

(j)
i from its parent j can be decomposed as follows:

Π
(j)
i = Π

(j)
Si
⊕ Π̂

(j)
i ,

where ⊕ denotes the direct sum of spaces, Π
(j)
Si

def
= ΠS ∩Π

(j)
i ,

and Π̂
(j)
i is the rest, which are vectors not belonging to ΠS .

We define a polluted directed edge as follows:

Definition 1. A directed edge is polluted if it transmits any
vector which is not a linear combination of vi’s.

The below lemma is a direct consequence of the definition:

Lemma 1. The following statements are equivalent:
(1) A directed edge e(j, i) is polluted
(2) Π

(j)
i * ΠS

(3) Π̂
(j)
i 6= ∅

B. Key Observation
Jafarisiavoshani et al. [7] have shown that when there is a

single pollution attacker, its location can be narrowed down to
a set of at most two nodes. This is by analyzing the polluted
edges identified based on the incoming subspaces reported by
all the nodes to a central controller. An example is shown in
Fig. 1. However, when there are multiple attackers in a general
network topology, the number of suspected nodes increases.

We observe that the uncertainty about the location of the
attackers originates from the fact that the attackers can lie
about their incoming spaces. Consequently, by ensuring that
all nodes in the network cannot lie about their received spaces,
we can exactly locate the attackers. For example, if the attacker
cannot lie in the example given in Fig. 1, then the only possible
scenario is scenario (2). Thus, one can determine that the
attacker is at node B.

IV. HOMOMORPHIC MAC FOR EXPANDING SUBSPACES

In order to enforce nodes to report their true incoming
spaces, we require that when a node reports a space of one
of its parents, it has to report a MAC tag (or simply tag) of
the space as well. The tag is generated based on the secret
key shared by the parent and the controller. Since an attacker
does not know its parent’s secret key, it cannot generate a
valid tag for a space not from the parent. We note that from
the perspective of an intermediate node i, the subspace Π

(j)
i

it receives from a parent node j potentially expands when it
receives more vectors from node j. As a result, the tag of the
space Π

(j)
i dynamically changes over time.

A. Subspace Properties

The following lemma shows for each subspace Π
(j)
i , node i

may report a randomly chosen vector, yr, of the space instead
of the space itself; and by checking if yr ∈ ΠS , the controller
can determine if Π

(j)
i ⊆ ΠS to identify the polluted edges.



Lemma 2 (Jafarisiavoshani et al. [6], [7]). Let Π1 and Π2

be two subspaces of Fn+mq and assume that yr is a randomly
selected vector from Π1. Then, for q � 1, yr ∈ Π2 if and
only if Π1 ⊆ Π2.

B. Homomorphic MAC Scheme (SpaceMac)

To allow a child node to generate a valid tag for a randomly
chosen vector, yr, of the parent’s space, for every vector, y,
that the parent sends to the child, the parent also sends a tag of
y. The tag is computed based on a homomorphic MAC scheme
so that the child can combine its received tags to calculate a
valid tag for yr.

Recently, Agrawal and Boneh [1] introduced an elegant
homomorphic MAC scheme for network coding. However,
this scheme requires the sending node to know in advance
all the basis vectors of the space it is sending so that it can
sign them (i.e., generating tags for the basis vectors.) This
is required because the tag for a random vector in the space
is generated based on the tags of the basis vectors. In other
words, the scheme in [1] requires that the sending space is
fixed in advance; as such, it is not applicable here because
the space spanned by vectors y’s is not fixed but rather
continuously expands. We now describe the construction of
our homomorphic MAC scheme, called SpaceMac, which is
customized to support expanding spaces.

1) Constructions: Let K and I denote the domains of the
keys and the id’s of the spaces sent by the source, respectively.
Let [n] denote {1, · · · , n}. Our scheme uses a pseudorandom
function (PRF) F : K × I × [n+m]→ Fq .
• Mac(k, id,y):

– Input: a secret key k, the identifier id of the vector
space ΠS sent by the source, and a vector y ∈ Fn+mq .

– Output: tag t for y, where t is computed as follows:
◦ r← (F (k, id, 1), · · · , F (k, id, n+m))
◦ t← y · r ∈ Fq

• Combine((y1, t1, α1), · · · , (yp, tp, αp)):
– Input: p vectors y1, · · · ,yp, their tags t1, · · · , tp

under key k, and their coefficients α1, · · · , αp ∈ Fq .
– Output: tag t for vector z def

=
∑p
i=1 αi yi:

◦ t←
∑p
i=1 αi ti ∈ Fq

• Verify(k, id, z, t):
– Input: a key k, the identifier id of ΠS , a vector z ∈

Fn+mq , and its tag t
– Output: 0 (reject) or 1 (accept) as follows:
◦ r← (F (k, id, 1), · · · , F (k, id, n+m))
◦ t′ ← z · r
◦ If t′ = t, output 1; otherwise, output 0

Assume z =
∑p
i=1 αi yi, the correctness is given by

t′ = z · r = (

p∑
i=1

αi yi) · r =

p∑
i=1

αi(yi · r) =

p∑
i=1

αi ti .

Compared to the homomorphic MAC scheme in [1], our
scheme replaces the Sign algorithm, which signs a fixed vector
space, i.e., generates tags for all bases of the fixed space, with
the Mac algorithm, which generates tags for any vectors in
Fn+mq . The Combine and Verify algorithms show that tags
generated by our Mac algorithm can be combined naturally to
produce a valid tag for an arbitrary linear combination.

2) Attack Game 1: We consider the following attack game
for a homomorphic MAC T = (Mac,Combine,Verify), a
challenger C, and an adversary A:

• Setup. C generates a random key k R← K
• Queries. A adaptively queries C, where each query is of

the form (id,y). For each query, C replies to A with the
corresponding tag t← Mac(k, id,y).

• Output. A eventually outputs a tuple (id∗,y∗, t∗).
Up to the time A outputs, it has queried C multiple times. Let
l denote the number of times A queried C using id∗ and get
tags for l vectors, y∗1, · · · ,y∗l , of these queries. We consider
that the adversary wins the security game if and only if

(i) y∗ 6= 0 (trivial forge otherwise),
(ii) Verify(k, id∗,y∗, t∗) = 1, and

(iii) y∗ /∈ span(y∗1, · · · ,y∗l ).
Let Adv[A, T ] denote the probability that A wins this attack

game 1. We define a secure homomorphic MAC as follows:

Definition 2. A (q, n, m) homomorphic MAC scheme T is
secure if for all probabilistic polynomial-time adversaries A,
Adv[A, T ] is negligible.

3) Security: Let B denote a PRF adversary, and PRF-
Adv[B, F ] denote B’s advantage in winning the PRF security
game with respect to F. (The definition of PRF security game
can be found in [9].)

Theorem 1. For any fixed q, n, m, SpaceMac is a secure
(q, n, m) homomorphic MAC assuming F is a secure PRF. In
particular, for every homomorphic MAC adversary A, there is
a PRF adversary B with similar running time to A such that

Adv[A,SpaceMac] ≤ PRF-Adv[B, F ] +
1

q
.

Proof: See the Appendix.
Theorem 1 implies that an adversary A can break the

scheme with probability 1
q . To improve the security, one could

either increase the field size or use multiple tags. The security
of our scheme using l tags is ( 1

q )l.

C. Non-repudiation Transmission Protocol

SpaceMac forces the attacker to report only true spaces
received from its parents since it is computationally difficult
(to forge a valid tag) otherwise; however, it does not prevent
a malicious node from sending invalid tags to its children to
prevent the children from reporting the polluted spaces.

For example, an attacker j can send a polluted vector ye /∈
ΠS and a bogus tag te 8 Mac(kj , id,ye), to its child i. When
i reports the space Π

(j)
i , if the randomly chosen vector yr

was formed by a linear combination involving ye, then the
aggregated tag tr of yr that i generates using the algorithm
Combine will be very likely invalid because of the bogus tag
te. As a result, the controller will reject yr. Consequently,
the attacker j successfully prevents its benign child i from
reporting the polluted space Π

(j)
i .

To address this, we utilize an efficient non-repudiation
transmission protocol proposed by Wang et al. [16]: For a
parent j and a child i, the controller generates a pool of secret
keys S based on the private key kj of the parent and the ID
i of the child. After that, the controller randomly selects a set
of keys P from S based on the private ki of the child and the



ID j of the parent; then, it sends P to the child. We denote
S \ P as P; also, let λ def

= |S| and δ def
= |P|.

When sending a vector, j is required to generates λ tags
instead of one, using the algorithm Mac and all keys in S.
When receiving a vector, i uses its set of keys P and the
algorithm Verify to verify δ out of λ tags. Finally, when
receiving a randomly chosen vector yr representing Π

(j)
i and

its λ tags from the child, the controller uses all keys in P and
the algorithm Verify to verify all λ− δ tags. The controller, in
this case, keeps track of a counter θ, θ ≤ λ− δ. If at least θ
tags pass the verification then the controller accepts the report.

We describe below the two theorems (based on theorems
in [16]) that provide the security of the non-repudiation
transmission protocol when applying to our context.

Theorem 2 (Non-repudiation of the receiver–Wang et al. [16]).
The probability that a malicious child node can successfully
report to the controller that its parent sends it a vector y,
which is never sent by the parent, is at most

λ−δ∑
i=θ

(
λ− δ
i

)
1

qi

(
1− 1

q

)λ−δ−i
.

Theorem 3 (Non-repudiation of the sender–Wang et al. [16]).
The probability that a malicious parent can make the con-
troller reject the parent’s space reported by one of its children
by sending the child some vectors with invalid tags is at most

max
0≤x≤δ+θ−1

p(x), where p(x) ≤
min(δ,x)∑

i=max(x−θ+1,0)

(
δ
i

) (
λ−δ
x−i
)(

λ
x

)
qδ−i

.

Because of the space constraint, we refer the readers to our
technical report [12] for full proofs of both theorems. Finally,
we remark that both probabilities above can be made very
small by choosing the appropriate values for q, λ, δ, and θ.

V. FULL DESCRIPTION OF OUR PROPOSED SCHEME

We assume that there is a controller who knows the com-
plete topology and the source space Πs; each node knows
the identifiers of its adjacent nodes; both the source and the
receivers are trusted; and there is a reliable low-bandwidth
end-to-end communication path between the controller and
each node. Let (pk, sk) and (pkj , skj) be the public and secret
key pairs of the controller and node j, respectively. We assume
that each node has an authentic copy of pk, and the controller
has authentic copies of pkj’s. Let Enck denote symmetric-key
encryption using key k.

1. Initialization. Every node j sends kj to the controller
using a key transport protocol which provides strong authenti-
cation, such as, the X.509 protocol [14]. Let Ij be the set
of IDs of adjacent downstream nodes of j. For i ∈ Ij ,
the controller generates a set Sji of λ keys using a PRF
F1: K × I × [λ ] → K, where K is the domain of key
kj , and I is the domain of the identifiers of the nodes:
Sji ← {F1(kj , i, l), for l = 1, · · · , λ} .

For i ∈ Ij , consider an array L whose elements are distinct
subsets of size δ of Sji. Note that L has length

(
λ
δ

)
. The

controller uses another PRF F2: K×I → [
(
λ
δ

)
] to select from

L a subset of size δ: Pji = L[t], where t ← F2(ki, j). The
controller sends Encki(Pji) to node i. Denote Sji\Pji as Pji.

2. Sending and Receiving. Let id be the identifier of the
current source space Πs. When a node j sends a vector y to its

downstream node i, beside the id, it has to send along λ tags,
which are computed using the Mac algorithm and keys in Sji.
Let Tji(y) denote this set of tags. Node j sends (id,y, Tji(y)).
When node i receives (id,y, Tji(y)) from node j, it uses Pji
and the Verify algorithm to check the validity of δ out of λ tags
of Tji. It drops y as long as there is an invalid tag. Otherwise,
it stores the received tuple in its buffer.

3. Pollution Detection and Alert. One way to detect pollu-
tion at the receivers is to implement the homomorphic MAC
scheme proposed in [1], where, in this case, only the source
and the receivers share the same MAC key. A receiver, upon
detecting a pollution, sends an alert (id, r, t) to the controller,
where id is the identifier of the source space; r is the receiver
ID; and t is a tag computed for (id, r) using a traditional MAC,
e.g., HMAC, with key kr. When the controller receives an
alert, it first verifies the tag t and drops the alert if t is invalid.
Then, it determines if id is reported before, if so, it ignores
the alert. Otherwise, it sends a request (id, tj) to each node
j, which demands each node to report its incoming subspace,
where id is the identifier of the source space, and tj is the tag
computed for id using a HMAC with key kj .

4. Reporting Subspaces. Upon receiving the request
(id, ti) from the controller, each node i verifies ti us-
ing ki and drops the request if ti is invalid. Otherwise,
let (y1, t1,1, · · · , t1,λ), · · · , (yl, tl,1, · · · , tl,λ) be vectors of
source space id and their tags that node i received from node j.
For each parent node j of i, node i sends (i, j,yr, t1, · · · , tλ, t)
to the controller, where αi

R← Fq (i ∈ [l]); yr =∑l
i=1 αiyi; ti =

∑l
j=1 αjtj,i (i ∈ [λ]); and t is a tag of

(i, j,yr, t1, · · · , tλ) computed using a HMAC with key ki.
5. Identifying the Attackers. After sending out the requests,

the controller waits for the reports. After ∆t seconds, it starts
identifying the pollution attackers. First, it drops reports that
have invalid HMAC tags. Then, it classifies any node that
does not report all of its incoming spaces as a malicious node.
Subsequently, it accepts reports with at least θ valid SpaceMac
tags, where the validation uses keys in Pji’s. Then, it identifies
the polluted edges in the network based on the reported spaces
and the source space. We note that checking if a reported space
is polluted can be done quickly and efficiently in O(n) in terms
of multiplication operations by leveraging the global coding
coefficients of the reported vector and the basis vectors of the
source space. Finally, any node that does not have a polluted
incoming edge but has a polluted outgoing edge is classified
as malicious.

6. Releasing the Result. After identifying the set of attackers
A, the controller sends (A, ti) to each benign node i, where
ti is a tag computed for A using HMAC with key ki. Upon
receiving the tuple (A, ti), each node i in the network verifies
ti using ki, then if valid, it adds nodes in A into its blacklist.
Every node in the network will neither send nor receive traffic
from nodes in its blacklist in subsequent communication.

VI. SECURITY ANALYSIS

1. Single Adversary. We consider two different cases, where
an attacker injects erroneous vectors into one or more than one
of its downstream links. Jafarisiavoshani et al. [7] have shown
that in a general network, the location of the adversary can
be narrowed down up to a set of at most two nodes in both
cases by partitioning the edges into two set: the set of polluted



edges, Ep, and non-polluted edges, Es, then analyzing the
nodes with respect to the identified Ep and Es. They also
note that the partitioning of Ep and Es is not unique since
the adversary might lie. Using our scheme, the probability
that the attacker lies about its incoming spaces is very small
(theorem 2.) Furthermore, the probability that the attacker can
prevent its children from reporting the subspaces polluted by
itself is very small, too (theorem 3.) As a result, with high
probability (depending on q, λ, δ, and θ), our scheme can
produce an unambiguous partitioning of Ep and Es, which
helps to uniquely identify the attacker.

2. Multiple Adversaries. In the presence of multiple adver-
saries, an attacker might be “in the shadow” of some other
attackers, which means that it might pollute only already
polluted data and thus does not produce any detectable effect.

Definition 3. An attacker is shadowed if it has at least one
polluted incoming edge and is exposed otherwise.

a) Independent Adversaries. In this case, we note that with
high probability, our approach is already able to identify all
exposed attackers. We utilize the following observation to
identify all shadowed and exposed attackers.

Lemma 3. For any directed acyclic graph with pollution
attack in presence, there is at least one exposed attacker.

Proof: Consider a topological ordering of the graph, the
first malicious node in the ordering is an exposed attacker.

Exploiting this, we can use multiple generations, i.e., trans-
missions of (different) source spaces, to identify all attackers.

Lemma 4. In a network with M independent attackers. With
high probability (depending on q, λ, δ, and θ), all attackers
can be identified after N generations which experience pollu-
tion attack, where N ≤M .

b) Colluding Adversaries. We note that each pair of parent
j and child i uses distinct key sets Sji and Pji; thus, the
collusion of malicious nodes does not provide knowledge
about the key sets of benign nodes. However, when the
distance between any two attackers equals to one, where
distance refers to the length of the shortest path connecting
two nodes, these attackers can collude to report a false space.

Assume that in a network, there are colluding attackers j
and i connected by a directed edge e(j, i) and there is no other
pair of attackers in the network having distance one. We ask
the question: “What can j and i achieve by manipulating edge
e(j, i)?” Consider a topological ordering O of the nodes. If i
makes e(j, i) ∈ Ep then j is exposed and identified after all
malicious nodes that come before j in O are identified. After
j is identified, i and the rest of the attackers will be eventually
identified. Otherwise, if i makes e(j, i) ∈ Es then i is exposed
and identified after all malicious nodes that come before i in O
are identified. Analogous to the other case, after i is identified,
j (if not already identified) and the rest of the attackers will
be eventually identified. Consequently, by manipulating the
status of edge e(j, i), the attackers can, at best, change the
order in which j and i are identified. The above analysis can
be extended to the general case where there are multiple pairs
having distances one by considering the pair (j, i), where i
has a polluted outgoing edge, that appears first in O first. Fig.
2 shows an example. As a result, we can generalize lemma 4:

S

B
A C

D

E R2

Polluted

Not polluted

R1

S

B
C

D

E R2R1

S

C

D

E R2R1

A is identified in generation 1

Manipulated

B is identified in generation 2 E is identified in generation 3

Fig. 2. An example where there are three attackers B, A, and E. Attackers
A and B collude to make BA, which is polluted, non-polluted. Nevertheless,
all are identified after 3 generations.

Number of attackers 4 8 12 16 20
Average number of generations 1.89 2.91 3.85 4.69 4.89
Average delay (ms) 219 334 439 532 549

TABLE I
The average number of generations and delay required to detect all attackers.

Lemma 5. In a network with M attackers. With high probabil-
ity (depending on q, λ, δ, and θ), all attackers can be identified
after N generations which experience pollution attack, where
N ≤M .

VII. EVALUATION

1. Colluding Adversaries. We generate between a pair of
source and receiver nodes a random network of 50 nodes. The
ratio of edges to nodes is a random number in [1, 5]. All edges
have a random propagation delay between 10 and 100 ms. In a
single generation, 5 augmented vectors in F1024

28 are generated
and sent by the source node. The attackers in the network
are chosen randomly from the population of the 50 network
nodes in a way that the removal of them does not disconnect
the receiver from the sender, and each attacker can still pollute
when the rest attackers are removed. The attackers pollute all
of their outgoing edges. When asked by the controller, most of
them honestly report their incoming subspaces; however, some
of them, whose have malicious parents, lie about their received
subspaces from those parents. We evaluate the average number
of generations to identify all M attackers in the network,
where M varies from 4 to 20. For each M , we perform the
simulation for 100 rounds to get the average value. We also
evaluate the average delay it takes to identify all attackers,
where the delay refers to the time between when the source
starts sending and when all the attackers are identified. The
results shown in table I indicate that we succeed in identifying
all attackers after much smaller than M generations.

2. Computation Overhead. The main computation overhead
is attributed to the operations Mac, Combine, and Verify
performed at each intermediate node. As discussed in [1], one
can achieve low computation overhead by implementing mul-
tiplication using offline table look-up, addition using simple
XOR, and PRFs using AES from OpenSSL. Table II shows
the estimated computational delays based on results from [1].
We note that for each new generation, the first Mac and
Verify operations introduce larger delays (as shown in table
II) because they have to use PRFs; however, results of the
PRF calls can be precomputed (if id’s are known) as well as
cached to use for the whole generation, which makes their
subsequent delays as small as Combine’s.

3. Communication Overhead. The major communication
overhead of our scheme comes from the tags accompanying
each data block. Table III shows that with an overhead of
about 20 bytes per data block, the probability that a malicious
parent succeeds in preventing its child to report, Pr[j], and the
probability that a malicious child succeeds in disparaging its



Parameters Computation Time per Tag (µs)
q m n+m Mac Verify Combine
28 5 1024 < 1000 < 1000 < 1

TABLE II
Estimated computational delays based on [1]

q λ δ θ Pr[j] Pr[i] Space Overhead
28 19 9 3 2−10 2−17 20 bytes
28 24 12 3 2−14 2−16 25 bytes
28 29 14 4 2−16 2−21 30 bytes

TABLE III
The probability a malicious parent succeeds in preventing its child to report,

Pr[j], the probability a malicious child succeeds in disparaging its parent,
Pr[i], and the space overhead correspond to different parameter sets.

parent, Pr[i], are both very small.

VIII. CONCLUSION

In this study, we proposed a defense scheme to combat
pollution attacks for intra-session network coding. Our scheme
can identify and eliminate all attackers. The key element of
our approach is the novel homomorphic MAC scheme for
expanding subspaces (SpaceMac) that we utilized together
with subspace properties to allow the exact identification of
all attackers, even when a large number of them collude.
Moreover, our scheme has both low computation and com-
munication overhead. The simulation results show that when
there are multiple colluding attackers, all of them can be
successfully identified in a very short time.
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APPENDIX
The proof of theorem 1 is by using a sequence of games denoted Game 0

and Game 1. Let W0 and W1 denote the events that A wins the homomorphic
MAC security in Game 0 and Game 1, respectively. Game 0 is identical to
Attack Game 1 applied to the scheme SpaceMac. Hence,

Pr[W0] = Adv[A, SpaceMac] (1)
Game 1 is identical to Game 0 except that the challenger C computes r ←
(r1, · · · , rn+m), where ri

R← Fq instead of ri ← F (k, id, i), and everything
else remains the same. Then, there exists a PRF adversary B such that

|Pr[W0]− Pr[W1]| = PRF-Adv[B, F ] (2)
The complete challenger in Game 1 works as follows:

Queries. A adaptively queries C, where each query is of the form (id,y). C
replies to query i of A as follows:

if id is never used in any of the previous queries:
ri := (ri1, · · · , rin+m), where rij

R← Fq , j ∈ [n+m]
else:

ri := the one used in the previous response
send t := yi · ri to A

Output. A eventually outputs a tuple (id∗,y∗, t∗). When y∗ does not equal
0, to determine if A wins the game, we compute

if id∗ = idi (for some i) then // case (i)
set r∗ := ri

else // case (ii)
set r∗ := (r∗1 , · · · , r∗n+m), where r∗i

R← Fq , i ∈ [n+m]
Let l denote the number of times A queried C using id∗ and get tags for
l vectors, y∗

1 , · · · ,y∗
l , of these queries. The adversary wins the game, i.e.,

event W1 happens, if and only if

t∗ = y∗ · r∗ , and (3)
y∗ /∈ span(y∗

1 , · · · ,y∗
l ) . (4)

We will show that Pr[W1] = 1
q

. Let T be the event that A outputs a tuple
with a completely new id∗, i.e., A never made queries using id∗ before.
• When T happens, i.e., in case (ii), since r∗i ’s are indistinguishable from

random values and y∗ 6= 0, the right hand side of equation (3) is a completely
random value in Fq . Thus,

Pr[W1 ∧ T ] =
1

q
Pr[T ] . (5)

•When T does not happen, i.e., in case (i): r∗ of equation (3) equals ri for
some i, and r∗ has been used to generate tags for vectors y∗

1 , · · · ,y∗
l . In this

case, we proceed by showing that for a fixed y∗, t∗ looks indistinguishable
from a random value in Fq . To this end, let Π = span(y∗

1 , · · · ,y∗
l ) and d

be the dimension of Π. d < m + n because otherwise Π = Fn+m
q , which

implies y∗ ∈ Π. Let {b1, · · · ,bd} be a basis of Π. Let r∗1 , · · · , r∗n+m
be the unknowns. Remark that r∗ = (r∗1 , · · · , r∗n+m). The queries and the
output form the following system of linear equations:

y∗
1 · r∗ = ty∗

1

· · ·
y∗
l · r

∗ = ty∗
l

y∗ · r∗ = t∗

This system is equivalent to the below system:

b∗
1 · r∗ = tb∗

1

· · ·
b∗
d · r

∗ = tb∗
d

y∗ · r∗ = t∗

Note that tb∗
i

is a linear combination of some ty∗
i

’s, and that y∗ is
linearly independent of b∗

i ’s . Now, the above system of equations is consistent
regardless of the value of t∗ because the coefficient matrix has rank d + 1,
which equals the number of equations. Furthermore, for any value t∗, the
solution space always has the same size qm+n−d−1. Thus, for a fixed y∗,
its valid tag t∗ could be any value in Fq equally likely, given that r∗i ’s are
chosen uniformly at random from Fq . As a result, the probability that the
adversary chooses a correct t∗ is 1/q. Thus,

Pr[W1 ∧ ¬T ] =
1

q
Pr[¬T ] . (6)

• From equations (5) and (6), we have

Pr[W1] = Pr[W1 ∧ T ] + Pr[W1 ∧ ¬T ] =
1

q
. (7)

Equations (1), (2), and (7) together prove the theorem. �


