Multiple Source Multiple Destination Topology Inference using Network Coding

> Pegah Sattari EECS, UC Irvine

Joint work with Athina Markopoulou, at UCI, Christina Fragouli, at EPFL, Lausanne

Outline

- o Network Tomography
- o Goal, Main Ideas, and Contributions
- o Proposed Approach
- o Conclusion

Network Tomography

- o In general
 - Goal: obtain a detailed picture of a network from end-to-end probes.
 - Infer what? Topology, Link-level (loss, delay).
- o Our goal:
 - "Topology inference", multiple sources, multiple receivers, and intermediate nodes both network coding and multicast.

Two bodies of related work

Network Tomography

- Multicast trees using loss correlations
- o Unicast probes
- Active probing, reliance on the number, order, delay variance and loss of received probes, and heuristic or statistical signalprocessing approach.
- Mostly related: Rabbat, Coates, Nowak, "Multiple-Source Internet Tomography," IEEE JSAC 06.

Inference with Network Coding

- o Passive
 - Failure patterns [Ho et al., ISIT 05]
 - Topology inference [Sharma et al., ITA 07]
 - Bottleneck discovery/overlay management in p2p [Jafarisiavoshani et al., Sigcomm INM 07]
 - Subspace properties
 [Jafarisiavoshani et al., ITW 07]
 - Active

0

- Loss tomography [Gjoka et al., IEEE Globecom 07]
- Binary tree inference [Fragouli et al., Allerton 06]

Main idea 1

Network coding: topology-dependent correlation

[Fragouli et al., 2006], [Sharma et al., 2007]

- Network coding introduces topology-dependent correlation among the content of probe packets, which can be reverseengineered to infer the topology.
 - Network coding can make the packets "stay together" and reveal the coding point.

Main idea 2

General Graphs (DAG)

- An M-by-N DAG, with a given routing policy that has three properties:
 - A unique path from each source to each destination.
 - All 1-by-2 components: "inverted Y".
 - All 2-by-1 components: "Y".
- o Consistent with the routing in the Internet.
- *Logical* topology.

Main Idea 2, Cont'd

2-by-2 Components

Rabbat et al., 2006

- A traditional multiple source, multiple receiver tomography problem can be decomposed into multiple two source, two receiver sub-problems.
- Four 2-by-2 types.

Main Idea 2, Cont'd Decomposition into 2-by-2

Weaknesses of Previous Work

- In the 2-by-2 inference step, they can only distinguish between type 1 (shared) and types 2,3,4 (non-shared).
- This results in inaccurate identification of the joining point locations in the merging step.
 - I.e., bounds within a sequence of several consecutive logical links.

Our Contributions

- At the 2-by-2 inference step:
 - Network coding helps us distinguish among all four 2-by-2 types by looking at the content.
- At the merging step:
 - Under the same assumption as in prior work (S₁ 1-by-N), we can localize each joining point, for each receiver, to a single logical link.
 - In addition, we can also design another merging algorithm, without such an assumption, and by only using the 2-by-2 information.

Outline

- o Network Tomography
- o Goal, Main Ideas, and Contributions
- o Proposed Approach
 - Assumptions, Node Operations
 - Step 1: 2-by-2 Components (lossless/lossy)
 - Step 2: Merging Algorithms (two scenarios)
 - Simulation Results
- o Conclusion

Assumptions

- o Delay:
 - fixed part (propagation) and random part (queuing);
 independent across links.
- o Packet loss:
 - both lossless and lossy cases.
- Coarse synchronization (~5-10ms) across nodes.
 - achievable via a handshaking scheme, e.g., NTP.
- o We design active probing schemes, *i.e.*, the operation of sources, intermediate nodes and receivers, which allow topology inference from the observations.

Node Operations

o Sources: synchronized

0

- later relaxed by large time window W
- in some algorithms, an artificial offset u
- up to countMax experiments, spaced by time T.

• Branching point: forwards the single received packet to all interested links downstream (the next hop for at least one source packet in the network code).

Node Operations

- o Sources: synchronized
 - later relaxed by large time window W
 - in some algorithms, an artificial offset u
 - up to countMax experiments, spaced by time T.

• Branching point: forwards the single received packet to all interested links downstream (the next hop for at least one source packet in the network code).

Node Operations

- o Sources: synchronized
 - later relaxed by large time window W
 - in some algorithms, an artificial offset u
 - up to countMax experiments, spaced by time T.

 Branching point: forwards the single received packet to all interested links downstream (the next hop for at least one source packet in the network code).

Outline

- o Network Tomography
- o Goal, Main Ideas, and Contributions
- o Proposed Approach
 - Assumptions, Node Operations
 - Step 1: 2-by-2 Components (lossless/lossy)
 - Step 2: Merging Algorithms (two scenarios)
 - Simulation Results
- o Conclusion

Inferring 2-by-2's, No Loss

Distinguishing among {1,4}, 2 or 3

• One probe distinguishes among Types: {1,4}, 2 or 3.

Inferring 2-by-2's, No Loss

Distinguishing between 1,4

(a) type (1): shared

(b) type (2): non-shared

(c) type (3): non-shared

(d) type (4): non-shared

- Type 1: $J_1 = J_2 = J_2$.
- Type 4: J_1, J_2 different.
- Can be achieved by Appropriately selecting u.

Observation	Тур	e (1)	Тур	e (4)
Number	R ₁	R_2	R ₁	\mathbf{R}_2
1	$x_1 + x_2$	$x_1 + x_2$	$x_1 + x_2$	$x_1 + x_2$
2	x_1	x_1	x_1	x_1
3			$x_1 + x_2$	x_1
4			x_1	$x_1 + x_2$

Selecting the appropriate offset

 $D_1 > D_2$, $D_1 < D_2$, offset from $[W-D_1, W-D_2]$ offset from $[W-D_2, W-D_1]$

- o 2-by-2's: $u \in [W-D_1, W-D_2]$
- o More general: $u \in [0,W]$

Type (4) topology

- o meetings no longer guaranteed, observations no longer predictable!
- There are common observations across all 4 types.
- Each experiment might result in different outcomes.

All possible observations

There are three groups of observations: (i) at least one receiver does not receive any packet (-), (ii) R₁ = R₂, (iii) R₁ ≠ R₂.

Obs.	Obs.	Type (1)		Obs.	Type (2)		Obs.	Type (3)		Obs.	Тур	Type (4)	
#	Group	R ₁	R_2	Group	R ₁	R_2	Group	R ₁	R_2	Group	R ₁	R_2	
1	(i)	-	-	(i)	-	-	(i)	-	-	(i)	-	-	
2		-	$x_1 + x_2$		-	$x_1 + 2x_2$		$x_1 + 2x_2$	-		-	$x_1 + x_2$	
3		-	x_1		-	$x_1 + x_2$		$x_1 + x_2$	-		-	x_1	
4		-	x_2		-	x_1		x_1	-		-	x_2	
5		$x_1 + x_2$	-		-	x_2		x_2	-		$x_1 + x_2$	-	
6		x_1	-		$x_1 + x_2$	-		-	$x_1 + x_2$		x_1	-	
7		x_2	-		x_1	-		-	x_1		x_2	-	
8	(ii)	$x_1 + x_2$	$x_1 + x_2$		x_2	-		-	x_2	(ii)	$x_1 + x_2$	$x_1 + x_2$	
9		x_1	x_1	(ii)	$x_1 + x_2$	$x_1 + x_2$	(ii)	$x_1 + x_2$	$x_1 + x_2$		x_1	<i>x</i> ₁	
10		x_2	x_2		x_1	x_1		x_1	x_1		x_2	x_2	
11					x_2	x_2		x_2	x_2	(iii)	x_1	$x_1 + x_2$	
12				(iii)	$x_1 + x_2$	$x_1 + 2x_2$	(iii)	$x_1 + 2x_2$	$x_1 + x_2$		$x_1 + x_2$	x_1	
13					x_1	$x_1 + x_2$		$x_1 + x_2$	x_1		x_1	x_2	
14					x_1	x_2		x_2	x_1		x_2	<i>x</i> ₁	
15					$x_1 + x_2$	x_2		x_2	$x_1 + x_2$		$x_1 + x_2$	x_2	
16											x_2	$x_1 + x_2$	

Some observations of group (iii) help!

- E.g., c_{12} - c_{22} <0 can only occur for type 2 or 4!
- o c_{12} - c_{22} >0 can only occur for type 3 or 4, ...

Obs.	Obs.	Тур	e (1)	Obs. Type (2)		e (2)	Obs.	Type (3)		Obs.	Type (4)	
#	Group	R_1	R_2	Group	R_1	$\mathbf{R_2}$	Group	R_1	R_2	Group	R ₁	$\mathbf{R_2}$
1	(i)	-	-	(i)	-	-	(i)	-	-	(i)	-	-
2		-	$x_1 + x_2$		-	$x_1 + 2x_2$		$x_1 + 2x_2$	-		-	$x_1 + x_2$
3		-	x_1		-	$x_1 + x_2$		$x_1 + x_2$	-		-	x_1
4		-	x_2		-	x_1		x_1	-		-	x_2
5		$x_1 + x_2$	-		-	x_2		x_2	-		$x_1 + x_2$	-
6		x_1	-		$x_1 + x_2$	-		-	$x_1 + x_2$		x_1	-
7		x_2	-		x_1	-		-	x_1		x_2	-
8	(ii)	$x_1 + x_2$	$x_1 + x_2$		x_2	-		-	x_2	(ii)	$x_1 + x_2$	$x_1 + x_2$
9		x_1	x_1	(ii)	$x_1 + x_2$	$x_1 + x_2$	(ii)	$x_1 + x_2$	$x_1 + x_2$		x_1	x_1
10		x_2	x_2		x_1	x_1		x_1	x_1		x_2	x_2
11					x_2	x_2		x_2	x_2	(iii)	x_1	$x_1 + x_2$
12				(iii)	$x_1 + x_2$	$x_1 + 2x_2$	(iii)	$x_1 + 2x_2$	$x_1 + x_2$		$x_1 + x_2$	x_1
13					x_1	$x_1 + x_2$		$x_1 + x_2$	x_1		x_1	x_2
14					x_1	x_2		x_2	x_1		x_2	x_1
15					$x_1 + x_2$	x_2		x_2	$x_1 + x_2$		$x_1 + x_2$	x_2
16											x_2	$x_1 + x_2$

Try to create group (iii) observations!

- Either naturally (loss) or artificially (u).
- o Especially for small loss rates and like the lossless case: $u \in [0,W]$

Obs.	Obs.	Тур	e (1)	Obs.	Type (2)		Obs.	Type (3)		Obs.	Тур	e (4)
#	Group	R_1	$\mathbf{R_2}$	Group	R_1	$\mathbf{R_2}$	Group	R_1	$\mathbf{R_2}$	Group	R_1	R_2
1	(i)	-	-	(i)	-	-	(i)	-	-	(i)	-	-
2		-	$x_1 + x_2$		-	$x_1 + 2x_2$		$x_1 + 2x_2$	-		-	$x_1 + x_2$
3		-	x_1		-	$x_1 + x_2$		$x_1 + x_2$	-		-	x_1
4		-	x_2		-	x_1		x_1	-		-	x_2
5		$x_1 + x_2$	-		-	x_2		x_2	-		$x_1 + x_2$	-
6		x_1	-		$x_1 + x_2$	-		-	$x_1 + x_2$		x_1	-
7		x_2	-		x_1	-		-	x_1		x_2	-
8	(ii)	$x_1 + x_2$	$x_1 + x_2$		x_2	-		-	x_2	(ii)	$x_1 + x_2$	$x_1 + x_2$
9		x_1	x_1	(ii)	$x_1 + x_2$	$x_1 + x_2$	(ii)	$x_1 + x_2$	$x_1 + x_2$		x_1	x_1
10		x_2	x_2		x_1	x_1		x_1	x_1		x_2	x_2
11					x_2	x_2		x_2	x_2	(iii)	x_1	$x_1 + x_2$
12				(iii)	$x_1 + x_2$	$x_1 + 2x_2$	(iii)	$x_1 + 2x_2$	$x_1 + x_2$		$x_1 + x_2$	x_1
13					x_1	$x_1 + x_2$		$x_1 + x_2$	x_1		x_1	x_2
14					x_1	x_2		x_2	x_1		x_2	x_1
15					$x_1 + x_2$	x_2		x_2	$x_1 + x_2$		$x_1 + x_2$	x_2
16											x_2	$x_1 + x_2$

Inferring all 2-by-2's in a 2-by-N

- Important for the merging algorithm.
- 2 sources multicast to N receivers.
- Additions over a larger field.
- Algorithms can be applied to any pair of receivers among all "N choose 2" possible pairs.

Advantages over Prior Work

- More accurate:
 - we can distinguish among all four 2-by-2 types.
- o Faster
 - One observation that uniquely characterizes the 2-by-2 type is sufficient.
 - Unlike [Rabbat et al.], we do not need many experiments for statistical significance.
- o Less Bandwidth overhead
 - Duplicate packets crossing the same link.

Outline

- o Network Tomography
- o Goal, Main Ideas, and Contributions
- o Proposed Approach
 - Assumptions, Node Operations
 - Step 1: 2-by-2 Components (lossless/lossy)
 - Step 2: Merging Algorithms (two scenarios)
 - Simulation Results
- o Conclusion

Merging Step

- Using the 2-by-2 information, we design two merging algorithms to infer the 2-by-N structure under two scenarios:
 - 1. Assuming knowledge of a 1-by-N tree topology (e.g., using classic tomography methods).
 - We can solve exactly (previously approximately solved).
 - 2. No 1-by-N tree topology is given.
 - We can also solve (previously impossible).
- We then generalize our approach to the Mby-N network.

From 2-by-N to M-by-N

- o 2-by-N can be directly extended to M-by-N.
- Starting from a 2-by-N topology, we add one source at a time, to connect the remaining M-2 sources.
 - Assume we have constructed a k-by-N topology, 2<=k<M:
 - To add the (k + 1)th source, we perform k experiments:
 - At each experiment one different of the k sources and the $(k+1)^{th}$ source send packets x_1 and x_2 .
- We then glue these topologies together by following the topological rules previously described.

Outline

- o Network Tomography
- o Goal, Main Ideas, and Contributions
- o Proposed Approach
 - Assumptions, Node Operations
 - Step 1: 2-by-2 Components (lossless/lossy)
 - Step 2: Merging Algorithms (two scenarios)
 - Simulation Results
- o Conclusion

Simulation Results

•Prev. work: 1000 probes (only type 1, {2,3,4}), loss~2%, error 5-10%.

Conclusion

- o Summary
 - Tomographic techniques for topology inference in a network with network coding.
- Future directions
 - Likelihood of the observations.
 - Structures larger than 2-by-2:
 - More than two sources and two receivers.
 - Expect a faster merging step at the cost of a more complicated inference step.