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Abstract — In this paper, we combine network cod-
ing and tomographic techniques for topology infer-
ence. Our goal is to infer the topology of a network
by sending probes between a given set of multiple
sources and multiple receivers and by having interme-
diate nodes perform network coding operations. We
combine and extend two ideas that have been devel-
oped independently. On one hand, network coding
introduces topology-dependent correlation, which can
then be exploited at the receivers to infer the topology
[1]. On the other hand, it has been shown that a tradi-
tional (i.e., without network coding) multiple source,
multiple receiver tomography problem can be decom-
posed into multiple two source, two receiver subprob-
lems [2]. Our first contribution is to show that, when
intermediate nodes perform network coding, topolog-
ical information contained in network coded packets
allows to accurately distinguish among all different 2-
by-2 subnetwork components, which was not possible
with traditional tomographic techniques. Our second
contribution is to use this knowledge to merge the
subnetworks and accurately reconstruct the general
topology. Our approach is applicable to any general
Internet-like topology, and is robust to the presence
of delay variability and packet loss.

I. Introduction
Network tomography aims at inferring internal net-

work characteristics using end-to-end probes, putting the
processing burden on a few end-nodes and keeping inter-
nal nodes simple. Such information is useful for network
diagnosis and management. There is a body of work in
the tomography literature that infers the topology using
multicast, unicast, or back-to-back probes and relying on
the number and order of received probes.

In this paper, we revisit the problem of topology in-
ference using end-to-end probes between a given set of M
sources and N receivers, i.e., in an “M-by-N network”,
with network coding capabilities. We assume a unique
path from each source to each receiver, which is consid-
ered known and determined by the routing protocol, as it
is the case in the Internet. We show that by allowing in-
ternal nodes to do simple network coding operations, we
can use the received probes to infer the logical topology
accurately and faster than traditional approaches. The
key intuition is that network coding introduces topology-
dependent correlation in the content of probes, which can
then be reverse-engineered to infer the topology.

We break the problem into two steps. First, we build
on the observation that an M-by-N network can be de-
composed into a collection of 2-by-2 subnetwork compo-
nents [2, 3], each of which can be of four possible types.
We show that when network coding is used, the type of
each 2-by-2 component can be exactly identified, which
was impossible with previous approaches [2, 3]; further-
more, this can be achieved using a smaller number of
probes. The intuition is that, with a simple appropriate
code design, the content of the received probes can be
used to uniquely identify the type of a 2-by-2 topology.

We define the network coding, probing and reconstruc-
tion algorithms to be used at the intermediate, source
and receiver nodes, respectively, that achieve this goal.
The second step is to merge the 2-by-2 components to
reconstruct a 2-by-N network in two scenarios. (i) As-
suming knowledge of a 1-by-N topology, we identify the
points where a second source’s topology joins the known
topology; this scenario is the one studied in [2, 4], but
our algorithm is simpler, faster and more accurate. (ii)
Without knowledge of any 1-by-N topology, we show how
to infer the 2-by-N network only by merging 2-by-2 com-
ponents; this scenario is new to our work and makes less
assumptions. The 2-by-N case is then generalized to the
M-by-N graph. Our approach is applicable to any general
graph and is robust to delay variability and packet loss
on the links. We showcase the benefits of our approach
through simulation of an example Internet topology.

The paper is structured as follows. Section II sum-
marizes related work. Section III states the problem
and main intuition behind our algorithms. Section IV
presents our algorithms for inferring 2-by-2 components,
first considering a lossless (Section IV-A) and then a lossy
(Section IV-B) network. Section V explains how to merge
the components to reconstruct the entire topology. Sec-
tion VI presents simulation results that show the advan-
tages of our approach. Section VII concludes the paper.

II. Related Work
There are two bodies of related work: one from the net-

work tomography and the other from the network coding
literature. [5] is a good survey of developments in tomog-
raphy. Here, we focus on inferring the internal topology,
not link-level characteristics. Tomographic schemes for
topology inference require active probing, reliance on the
number, order, delay variance and loss of received probes,
and heuristic or statistical signal-processing approaches.

Within this body of work, the closest to this paper
is the work by Rabbat, Coates and Nowak on multiple
source topology inference [2, 3, 4]. They showed that a
general M-by-N tomography problem can be decomposed
into a collection of 2-by-2 components. They proposed to
coordinate transmission of multi-packet probes from the
two sources and measure the packet arrival order at the
two receivers to infer some information about the 2-by-
2 topology. Assuming knowledge of a 1-by-N topology,
they then use this 2-by-2 information to merge a second
source’s 1-by-N topology with the first. This way, they
infer some information about the M-by-N topology, i.e.,
bounds on the locations of the joining points, which is not
guaranteed to be exact and requires thousands of probes
to obtain statistically significant information.

Independently, network coding ideas have been re-
cently applied to tomography problems. In [6], we revis-
ited link-loss (but not topology) tomography using active
probing and network coding. The closest to this paper is
our preliminary work in [1], where we showed that active
probes from two sources and XOR at intermediate nodes
are sufficient to infer the topology of a binary tree. The in-
sight was that the topology-dependent correlation among



Algorithm 1 Operation at Joining Point J. When two
sources multicast to N receivers, J knows that it has two incoming
links and one outgoing link. Additions are over Fq .

1: for every time window W do
2: if (J receives 2 packets within W from its incomings) then
3: as soon as the last one arrives, it adds them up, and for-

wards the resulting packet downstream
4: else if (J receives only one packet within W ) then
5: it forwards the packet downstream
6: else if (J does not receive any packet within W ) then
7: /*nothing to do*/
8: end if
9: end for

probes, introduced by network coding, can be used to
cluster the leaves in the binary tree into groups, uniquely
connect the groups, and then proceed iteratively in a hi-
erarchical clustering way. This approach generalizes to
non-binary trees, but not to arbitrary graphs. In this
paper, we use the same basic intuition but a different ap-
proach for general graphs: instead of iteratively dividing
the network into smaller clusters (top-down), we identify
the types of 2-by-2 components and then merge them to-
gether in an M-by-N topology (bottom-up).

The following papers also used random network cod-
ing for passive network tomography. In [7], passive tech-
niques have been used to distinguish among failure pat-
terns. In [8, 9, 10], subspace properties at various nodes
have been used for topology inference. In [8], each node
passively infers the upstream network topology at no cost
to throughput but at high decoding complexity. All these
papers consider that random network coding is present
for the primary purpose of increasing throughput. Pas-
sive topology inference is just a side benefit. In contrast,
we propose active probing and a simple, but specifically
designed, coding scheme at intermediate nodes, to achieve
low-complexity topology inference at the end nodes.

Our work differs from traceroute approaches, which
record node ids along a path, in that we identify multiple
source multiple receiver network structures. The logical
topology is also revealed without revealing the node ids.

III. Problem Statement

Logical Topology. We define an M-by-N topology
as a directed acyclic graph, between M sources and N
receivers, along with a given routing policy that maps
each source-destination pair to a single route from the
source to the destination. The single-path routing as-
sumption implies the following three properties of routing.
(1) There is a unique path from each source to each des-
tination. (2) Two paths from the same source to different
receivers take the same route until they branch, so that all
1-by-2 components have the “inverted Y” structure; the
node where the paths to the two receivers split is called a
branching point. (3) Two paths from different sources to
the same receiver use exactly the same set of links after
they join, so that all 2-by-1 components have the “Y”
structure; the node where the paths from the two sources
merge is called a joining point. These assumptions are re-
alistic, the same as in [2], and consistent with the routing
behavior in the Internet: the next hop taken by a packet
is determined by a routing table lookup on the destina-
tion address. We are interested in inferring the logical
topology, specified by the branching and joining points
where the measured end-to-end paths meet.1 W.l.o.g., we

1Intermediate nodes in a logical topology have degree at least
three, and in-degree and out-degree at least one. A link in the
logical topology may consist of one or more physical links.

Algorithm 2 Operation at Branching Point B. While two
sources multicast to N receivers, B has one incoming packet and
multiple outgoing links.

1: for each incoming packet do
2: if the incoming packet is x1 (or x2) then
3: forward it only on the outgoing links that are next hops

for S1 (S2)
4: else
5: /* The incoming packet is of the form ax1 + bx2. */
6: forward the packet to all outgoing links
7: end if
8: end for

present most of our discussion in terms of M = 2, i.e., in-
ferring a 2-by-N topology; an M-by-N topology can then
be constructed by merging smaller structures.

Other assumptions. We assume that the link delay
has a fixed part, i.e., the propagation delay, and a random
part, due to queueing of cross-traffic, and is independent
across links. Internet link delays are in the order of a few
to hundreds of ms. Regarding packet loss, we consider
both absence and presence of i.i.d. random loss. We
assume a coarse synchronization (i.e., a synchronization
offset on the order of 5-10ms) across the network nodes,
which is achievable via a handshaking scheme, e.g., NTP.

Problem Statement. Our goal is to design active
probing schemes, i.e., the operation of sources, interme-
diate nodes and receivers, which allow us to infer the
logical topology from the observations.

Sources. A pair of sources S1 and S2 multicast
x1 = [1, 0] and x2 = [0, 1], respectively, to all N receivers.
They send up to countMax sets of coordinated probes
(experiments); or less, if we can deterministically infer
the topology earlier. Successive sets of probes are spaced
apart by a large interval T , in order to make these experi-
ments independent. Each subnetwork from one source to
the N receivers forms a 1-by-N tree; the general graph is
a multiple-tree network [2]. We begin with the assump-
tion that the two sources are synchronized and we later
relax this assumption by using a sufficiently large time
window W at intermediate nodes. Some algorithms also
introduce an artificial offset u: a difference in the sending
time at the two sources; w.l.o.g., we assume that S1 sends
first and S2 second. The choice and relation of the timing
parameters, W , T , and u, are discussed later.

Intermediate nodes. Their operations are described
in Algorithms 1 and 2. Essentially, a joining point (J)
adds and forwards packets, while a branching point (B)
forwards the single received packet to all “interested”
links downstream. A link is “interested” if it is the next
hop for at least one source packet in the network code.
Additions are performed over a finite field Fq. To ensure
that packets from two sources meet at the joining points
despite link delays, we require that joining points wait for
up to a predetermined time window W . We choose W to
be much larger (i.e., on the order of seconds) than the
synchronization offset (on the order of 10ms) and than
the link delays (on the order of tens or hundreds of ms).

Receivers. Each receiver observes a linear combina-
tion of x1 and x2, as the result of additions at the joining
points. For a 2-by-2 subnetwork, let the observations be
R1 = c11x1 + c12x2, R2 = c21x1 + c22x2. We design algo-
rithms that infer the topology from these observations.

Problem Statement (Refined) and Intuition.
The first step in inferring an M-by-N network is to distin-
guish among all possible 2-by-2 topologies. The second
step is to merge these subnetworks to construct the M-by-
N network. The intuition behind using network coding in
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Fig. 1: The four possible types of a 2-by-2 subnetwork. There are two sources (S1, S2) multicasting packets x1, x2 to two
receivers (R1, R2). (The 1-by-2 topology of S1 is a tree composed of S1, B1, R1, R2. Similarly, The 1-by-2 tree rooted at S2 is
S2, B2, R1, R2. J1 and J2 are the joining points, where the paths from S2 to R1 and R2, join/merge with S1’s topology.)

Tab. 1: Lossless Case. Possible observations for types (1)
and (4) 2-by-2 topologies. (Observation #1 occurs when the
sources are synchronized. Observations #2-4 occur when S2

sends with offset u ∈ [0, W ] after S1.)

Observation Type (1) Type (4)
Number R1 R2 R1 R2

1 x1 + x2 x1 + x2 x1 + x2 x1 + x2

2 x1 x1 x1 x1
3 x1 + x2 x1
4 x1 x1 + x2

the first step, is that linear operations at internal nodes
result in some observations, whose content uniquely char-
acterizes the underlying 2-by-2 subnetwork. We use coor-
dinated multicast packets from two sources and carefully
adjust the parameters u,W, countMax to create such ob-
servations; we design proper algorithms at the receivers
to process the observations and infer the topology.

IV. identifying 2-by-2 subnetwork components

We now describe how to distinguish among different 2-
by-2 topologies. There exist four 2-by-2 types, as shown
in Fig. 1, which were first identified in [2, 3]. We refer
to Fig. 1(a), (b), (c), and (d) as type (1), (2), (3), and
(4), respectively. Type (1) was called “shared” in [2, 3],
since the joining points for both receivers coincide (J1 =
J2) and the branching points for both sources coincide
(B1 = B2). The other three types ((2), (3), (4)) are
called “non-shared”, since they have two distinct joining
points and two distinct branching points. The scheme in
[2] only distinguishes between shared and non-shared. In
contrast, our approach accurately identifies all four types.

A. Lossless Network

First let us assume that there is no packet loss in the
network. In the first experiment, sources S1, S2 multicast
probes x1, x2 to R1, R2; S1, S2 act simultaneously, or in
practice within the synchronization offset. As mentioned
in Section III, a choice of large W guarantees that x1 and
x2 meet at both joining points. J1, J2 add the incoming
packets over F4, which suffices for the 2-by-2 case. Thus,
R1, R2 observe the following in each 2-by-2 type:

• type (1): R1: x1 + x2 , R2: x1 + x2

• type (2): R1: x1 + x2 , R2: x1 + 2x2

• type (3): R1: x1 + 2x2 , R2: x1 + x2

• type (4): R1: x1 + x2 , R2: x1 + x2

Types (2) and (3) result in unique observations that make
them distinguishable from any other type, i.e., they are
identified in one experiment. However, types (1) and (4)

Algorithm 3 Lossless Case - Inferring a 2-by-2 compo-
nent. Sources S1, S2 multicast x1, x2. Receivers observe R1 =
c11x1 + c12x2 and R2 = c21x1 + c22x2.

1: n=1; /*first experiment*/
2: if c22 > c12 then
3: Output type (2).
4: else if c22 < c12 then
5: Output type (3).
6: else
7: /*It is R1 = R2*/
8: while n < countMax & R1 == R2 do
9: Draw offset u uniformly at random out of [0, W ].

10: Send probes; S2 transmits u time later than S1.
11: if R1 6= R2 then
12: Output type (4); Exit;
13: end if
14: n++;
15: end while
16: Output type (1); /* It is n == countMax*/
17: end if

result in similar observations; we need more experiments
to get observations that uniquely characterize (1) or (4).

To design the next experiment, we observe that type
(1) is the only 2-by-2 where the two joining points co-
incide (J1 = J2 = J). Therefore, the observations at
the two receivers are always the same: either x1 + x2
when the two packets meet at J ; or a single packet (x1
or x2) when the two packets do not meet at J . In con-
trast, type (4) has two different joining points J1 6= J2.
If we force the packets to meet only at one of the joining
points but not at the other, the receivers will have dif-
ferent observations. These are observations #3 and #4
in Table 1 and they uniquely characterize type (4). They
can be achieved by appropriately selecting the difference
between the sources’ sending times, i.e., the offset u. u
needs to be large enough so that after addition to the link
delays, it can affect W . In particular, if D1, D2 are the
end-to-end delays on the paths from S2 to J1, J2 respec-
tively, then u must be in between W −D1 and W −D2

2

to force different observations at the two receivers.
Alg. 3 summarizes the 2-by-2 inference for lossless net-

works. Types (2), (3) are identified in the first trial. Type
(4) is identified by the first different observation between
the two receivers. Otherwise, similar observations at both
receivers in countMax trials implies type (1). countMax

2In 2-by-2 components, this interval is close to W since D1, D2

(sum of link delays) are small compared to W . However, in a
more general 2-by-N network, there exist multiple links between
the sources and joining points. Internet link delays are from a few
to hundreds of ms; 500ms is a loose upper bound. W is a few
seconds. Thus, we can safely choose u ∈ [0, W ] in the general case.



Tab. 2: Lossy Case. Possible observations for all four types of 2-by-2 topologies. (Sources send synchronized and W is large.
Observation #13 for types (2) and (3) occurs only when S2 sends with offset u ∈ [0, W ] after S1.) We divide the observations
into three groups: (i) at least one receiver does not receive any packet (ii) R1 = R2 (iii) R1 6= R2.

Obs. Obs. Type (1) Obs. Type (2) Obs. Type (3) Obs. Type (4)
# Group R1 R2 Group R1 R2 Group R1 R2 Group R1 R2

1 (i) - - (i) - - (i) - - (i) - -
2 - x1 + x2 - x1 + 2x2 x1 + 2x2 - - x1 + x2
3 - x1 - x1 + x2 x1 + x2 - - x1
4 - x2 - x1 x1 - - x2
5 x1 + x2 - - x2 x2 - x1 + x2 -
6 x1 - x1 + x2 - - x1 + x2 x1 -
7 x2 - x1 - - x1 x2 -
8 (ii) x1 + x2 x1 + x2 x2 - - x2 (ii) x1 + x2 x1 + x2
9 x1 x1 (ii) x1 + x2 x1 + x2 (ii) x1 + x2 x1 + x2 x1 x1
10 x2 x2 x1 x1 x1 x1 x2 x2
11 x2 x2 x2 x2 (iii) x1 x1 + x2
12 (iii) x1 + x2 x1 + 2x2 (iii) x1 + 2x2 x1 + x2 x1 + x2 x1
13 x1 x1 + x2 x1 + x2 x1 x1 x2
14 x1 x2 x2 x1 x2 x1
15 x1 + x2 x2 x2 x1 + x2 x1 + x2 x2
16 x2 x1 + x2

must be large enough to ensure small error probability.3

B. Lossy Network

We now consider that packets may be lost on some
links. In this case, we can no longer guarantee meet-
ings of x1 and x2 at the joining points and predictable
observations at the receivers. There are two differences
from the lossless case. First, each experiment might re-
sult in different outcomes, shown in Table 2, as a result
of probabilistic packet loss. Second, there are common
observations across all four types, as opposed to just be-
tween types (1) and (4). We divide the observations in
Table 2 into three groups: (i) at least one of the receivers
does not receive any packet (“-”) due to loss, (ii) both
receivers have the same observation R1 = R2, and (iii)
the two receivers have different observations R1 6= R2.

We choose to ignore the observations of group (i) be-
cause they can be the result of any of the four 2-by-2
types4 and thus do not help to distinguish among them
in the deterministic way adopted in this paper. In future
work, we will also consider the likelihood of these obser-
vations for each type. Observations of group (ii) can also
be the result of any 2-by-2 type: unlike the lossless case,
where R1 = R2 is unique to type (1) or (4) topologies,
here any of the four topologies may result in such obser-
vations if some packets are lost. However, group (ii) are
the only possibility for type (1) topology, apart from the
group (i) that we ignore, while all other three 2-by-2 types
may result in either R1 = R2 or R1 6= R2. Therefore, if
after countMax trials, we have only observed group (ii)
packets, then the topology is declared type (1).

In observations of group (iii), it is R1 6= R2, which
means that c12 6= c22 and/or c11 6= c21. The difference
of these coefficients between the two receivers contains
topology-related information. W.l.o.g, we focus on the
coefficient of x2 and look at the difference c12 − c22. Ta-
ble 2 shows that c12 − c22 < 0 can only occur in type (2)
or type (4) topologies; while c12− c22 > 0 can only occur
in a type (3) or (4) topology. By performing several inde-
pendent experiments and collecting several observations
of group (iii), we can distinguish among the candidate

3However, as discussed in Section VI, countMax is much smaller
than the number of experiments required in [2, 3], because at least
one observation in Table 1 is sufficient to identify the type, and no
large number of probes is needed for statistical significance.

4The only exceptions are the two cases (−, x1 + 2x2) and (x1 +
2x2,−) that uniquely identify type (2) or (3) respectively; however,
we cannot generalize such observations to the 2-by-N case.

Algorithm 4 Lossy Case - Inferring a 2-by-2 component.
Sources S1, S2 multicast x1, x2. Receivers observe R1 = c11x1 +
c12x2 and R2 = c21x1 +c22x2. type is an indicator of the type that
gets updated during the experiments.

1: n = 1; /*first experiment*/
2: type=0; /*initialization*/
3: while n ≤ countMax do
4: if R1 6= [0, 0] & R2 6= [0, 0] then
5: if c22 > c12 then
6: if type 6= 3 then
7: type=2;
8: else
9: type=4; Break;

10: end if
11: else if c22 < c12 then
12: if type 6= 2 then
13: type=3;
14: else
15: type=4; Break;
16: end if
17: else if type == 0 & R1 == R2 then
18: type=1;
19: end if
20: end if
21: n++;
22: Draw offset u uniformly at random out of [0, W ].
23: Send probes; S2 transmits u time later than S1.
24: end while
25: Output type.

topologies. If after countMax experiments, there are only
observations of group (ii) or (iii) with c12 − c22 ≤ 0, the
topology is declared type (2). If there are only observa-
tions of group (ii) or (iii) with c12− c22 ≥ 0, it is declared
type (3). If there are observations of group (ii) or (iii)
with both c12 − c22 < 0 and c12 − c22 > 0, it is type (4).

In our experiments, we try to create observations that
reveal the topology. These can occur either naturally, as
the result of packet loss, or artificially, by us introduc-
ing an offset u in S2’s sending time with respect to S1.
To help these observations occur, especially for small loss
rate, and similarly to the lossless case, we use a random
offset u ∈ [0,W ]. To make these experiments indepen-
dent, we space apart successive sets of probes by T = 3W .
Alg. 4 summarizes the 2-by-2 inference for lossy networks.

In summary, our algorithm is simple and follows a de-
terministic approach: one observation, or a set of observa-



Algorithm 5 Merging Algorithm: Given the two sources S1

and S2, a set of receivers R1, R2, ..., RN , the 1-by-N S1 tree topol-
ogy, and the 2-by-2 results from Algorithm 4 for any pair of receivers
Ri, Rj , this algorithm identifies a single link for the location of every
Ji (the joining point for Ri), on S1 topology.

1: for each receiver Ri do
2: if ∃k < i such that the S1, S2, Rk, Ri 2-by-2 is shared then
3: Ji = Jk;
4: else
5: Let B be the closest branching point to Ri

6: while Ji is not localized to a single link do
7: Let Rj be any child of B (j 6= i)
8: Based on the type of the 2-by-2 component

S1, S2, Ri, Rj , locate Ji above/below B
9: if (Ji is below B) || ((Ji is above B) && (@ other

branching point above B on S1’s 1-by-N)) then
10: Ji is localized to a single link.
11: Output this link; Break;
12: else
13: B = the next upstream branching point
14: end if
15: end while
16: end if
17: end for

tions, is sufficient to uniquely distinguish among types.5
As a result, we require much less experiments compared
to thousands of arrival order measurements required by
[2, 3] for statistical significance. In addition and more
importantly, we can identify the exact 2-by-2 type, while
[2] can only distinguish between shared and non-shared.6

C. Inferring all 2-by-2’s in a 2-by-N Network

Algorithms 3 and 4 can be directly applied to a 2-by-N
network, i.e., a network where two sources multicast to
all N receivers. A difference is that intermediate nodes
need to perform addition over a larger finite field.7 Algo-
rithm 3 and Algorithm 4 can then be performed on any
pair of receivers among all

(
N
2

)
possible pairs. The same

set of 2-by-N probes is used to infer, in parallel and inde-
pendently, the type of all 2-by-2 topologies. This reduces
the number of probes, as we re-use them, instead of send-
ing

(
N
2

)
different sets of probes. The 2-by-N structure is

important for the merging algorithm in the next section.

V. Merging Algorithm

Assuming knowledge of 2-by-2 topologies from Sec-
tion IV, we now infer the general M-by-N network in two
scenarios: (i) given knowledge of a 1-by-N tree topology,
which is the same problem studied in [2]; and (ii) without
knowledge of any 1-by-N, which is new to our work. Ex-
ploiting the accurately identified 2-by-2’s, we can solve (i)
exactly, which was previously only approximately solved;
and also solve (ii), which was previously impossible.

A. Building a 2-by-N given a 1-by-N (and 2-by-2’s)

In this section, we assume that the 1-by-N from S1 to
N receivers is known, using either the classic methods in
[5], or the approach in [1]. Clearly this 1-by-N graph is a

5E.g., at least one observation of group (iii) rules out the type (1)
topology. A pair of group (iii) observations with both c12− c22 > 0
and c12 − c22 < 0 indicates type (4). Etc.

6A large W does not guarantee meetings in this case due to the
loss effect. Therefore, a large W is not always required in practice.

7Additions are performed at joining points. In the worst case,
there can be N joining points in a row and thus the field size is the
first prime greater than N.

tree rooted at S1 and contains only branching points. We
also assume that the 2-by-2’s between S1, a new source
S2, and any pair of receivers are known, using the algo-
rithms of Section IV. Our goal is to locate the joining
points where paths from S2 to the same N receivers join
S1’s topology. We use the assumptions in Section III.

This problem was posed in [2, 4] and solved there in an
approximate way. Bounds on the joining points locations
in the S1 topology were provided within a sequence of
consecutive logical links. This was a result of the fact
that 2-by-2’s are only identified as shared or non-shared in
[2, 3]. We design Algorithm 5, which localizes each joining
point for each receiver to a single logical link, between
two branching points, in the S1 topology. Our algorithm
is simpler, faster, and more accurate: it can identify all
joining points for any topology and with lower complexity,
thanks to our complete knowledge of the 2-by-2 types.

Let us discuss the example of Fig. 2(a) taken from [4].
This is an Internet topology connecting hosts at academic
institutions in the United States and Europe. Consider
R1: it forms a type (1) 2-by-2 with R2. Thus J1 must lie
above B1,2, so that there exists a unique path from each
source to R1. But then B1,7 is on the way. R1,R7 form
a 2-by-2 of type (4), thus J1 must be below B1,7. Now
J1 is localized to one link and the algorithm ends here
for R1. Other receivers are considered similarly. Since a
joining point can be placed on any link from the receiver
to S1, the number of steps our algorithm performs for
one receiver is at most the height of the S1 tree topology.
Also, when there is a group of receivers within which all
pairs are of type (1), the algorithm is run once and the
same joining point is assigned to all of them. The total
time is thus upper bounded by (#shared groups)·(height
of S1-tree). This is an improvement over the O(N3) time
in [2]. For the same example, the merging algorithm in [4]
cannot completely resolve all joining points and provides
bounds within a sequence of several logical links instead.

B. Building a 2-by-N by merging 2-by-2’s

In this section, we infer a 2-by-N topology without
prior knowledge of any 1-by-N, just by directly send-
ing probes over the 2-by-N and merging all

(
N
2

)
2-by-2

components. Topology inference under these relaxed as-
sumptions is possible thanks to our complete knowledge
of 2-by-2 components, and was not possible before [2, 4].

In the first step, we consider all shared (type (1)) 2-
by-2 components and assign them the minimum number
of branching and joining points required. For example in
Fig.2(a), B1,2, B3,4, B5,6, B8,9 and J1 = J2, J3 = J4, J5 =
J6, J8 = J9 are identified in this step. In the second step,
we consider all non-shared 2-by-2 topologies (of type (2),
(3), or (4)). We use the information about the locations
of the branching and joining points in each type to: (1)
add the minimum number of branching points required
to the ones already identified from the shared pairs; and
(2) assign joining points to those receivers that have not
been already assigned one. In the example of Fig. 2(a), no
additional branching point is required: B8,9 is connected
to all J1 = J2, J3 = J4, J5 = J6, and a new J7 placed on
the path to R7, to satisfy all the non-shared 2-by-2 types.

This approach identifies the locations of all joining
points, between the S1 and S2 1-by-N topologies, but
does not identify all the branching points in the S1 tree
topology. Only the “minimum” S1 topology is identified,
i.e., the tree made by the necessary branching points.8

8We define as “necessary” branching points the ones located be-
low a joining point of S1 and S2 in the 2-by-N structure. An “un-
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Fig. 2: Example logical Internet topology from [4]. Simulation Results for the Lossless (Alg.3) and Lossy (Alg.4) case.

C. From 2-by-N to M-by-N

We can directly extend the 2-by-N inference technique
to the M-by-N case [4]: we start from a 2-by-N topology,
and add one source at a time, to connect the remaining
M − 2 sources. Assume that we have constructed a k-by-
N topology, 2 ≤ k < M . To add the (k + 1)th source, we
perform k experiments, where at each experiment one dif-
ferent of the k sources and the (k+1)th source send x1 and
x2. We then glue these topologies together by following
the topological rules in Section V-A (with single-source
topologies given) or V-B (without such an assumption).

VI. Simulation Results

In this section, we consider the example 2-by-9 topol-
ogy of Fig. 2(a) and we simulate Algorithms 3 and 4 in
the absence and presence of packet loss, respectively. We
identify the 2-by-2 types and report the error as a func-
tion of the number of experiments countMax. We assume
that individual link delays vary randomly between 1ms-
500ms (a conservative upper bound on the Internet). We
choose a large time window W = 3sec. Offset u is drawn
uniformly at random from [0, W ] when needed.

Fig. 2(b) shows the error after applying Algorithm 3 to
the lossless network. We infer all

(
9
2

)
2-by-2 types. Here,

the only possible error is to falsely declare a type (4) as
type (1). We see that the error probability decreases very
rapidly with countMax and reaches 0 at countMax ' 50.

Fig. 2(c) shows the error assuming that there is packet
loss in the network (with prob. p independently on every
link) and after applying Algorithm 4. An error in this
case can result either from declaring type (2) or (3) or
(4) as type (1); or from declaring type (4) as type (2) or
(3). We consider values of p ∈ [0, 15%] and countMax =
50, 100, 200. First, we observe that the error probability is
decreasing rapidly with countMax: it was negligible with
100 - 200 experiments. This is a significant improvement
over [3, 4] for the same example topology: they used 1000
measurements to distinguish only between type (1) and
the other three types, for very small loss rates of up to 2%,
and they achieved error probability 5-10%. In contrast,
with an order of magnitude less probes, we distinguish
among all four types, and we have a very small error
probability for larger loss rates (up to 15%). Second, we
observe that the error probability is not monotonic with p:
for small loss rates, Algorithm 4 results in more erroneous
cases while Algorithm 3 could give better results. The

necessary” branching point is the child of another branching point
with no joining point in between. This approach does not iden-
tify B3,5, B1,7, and directly connects their children (J1 = J2, J3 =
J4, J5 = J6, J7) to the upstream branching point (B8,9).

effect of loss is to increase the number of observations
of all three groups. However, for moderate loss rates,
we get enough observations of group (iii), thus a small
error probability. For larger loss rates, the increase in the
observations of group (i), which we ignore, increases the
error probability again, especially for small countMax.

We note that, in both our approach and in past work
[2, 3], the error in the identification of 2-by-2 components
may propagate to the Merging algorithm in the next step.
However, there is no additional error introduced by our
Merging algorithm itself, and thus no need to simulate it.

VII. Conclusion

In this paper, we designed active probing algorithms
that, together with simple network coding at intermediate
nodes, can accurately infer a general M-by-N topology.
We follow a deterministic approach: we try to create ob-
servations that uniquely identify 2-by-2 components; we
then merge them to obtain the larger topology. Our ap-
proach outperforms traditional multiple source multiple
destination tomographic schemes. It can be most benefi-
cial in scenarios where intermediate nodes prefer to sup-
port the described operations rather than traceroute.
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