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Abstract. In order to assess the performance of Internet telephony, it is often necessary to 
translate network impairments (such as packet loss, delay and jitter) into human perceived 
quality (which is quantified in terms of subjective voice quality ratings). Subjective quality 
testing is expensive and typically involves a large number of questions and humans.  It is 
therefore important to design simple and reliable subjective testing experiments. This paper 
presents a method to assess the subjective quality of a number of speech samples that have 
incurred various degrees of the same network impairment. Questions are asked according to an 
adaptive algorithm until all voice ratings are elicited within a desired accuracy. Our algorithm (i) 
uses information theory to minimize the expected number of questions needed and (ii) uses 
binary questions, which are simpler than the types of questions used by standard subjective 
testing procedures.     

1. INTRODUCTION 

In the last decades, voice communication is taking place not only over the 
traditional telephone network, but also over wireless cellular networks and over the 
Internet.  Transmission of voice over a communication network is subject to various 
impairments. To assess the effects of these impairments, as perceived by the users, 
formal testing procedures have been developed and standardized, known as   
“subjective voice quality testing”. Subjective quality testing consists of asking the 
opinion of people on the quality of speech samples. In general, subjective evaluation is 
considered expensive, because it requires special lab conditions, a large number of 
questions and listeners. Therefore, designing a simple reliable experiment is of major 
importance. More specifically, it is desirable to elicit the opinion of the humans 
involved, as accurately as possible, using the least number of questions. 
 

We observe that the problem of subjective voice quality evaluation fits well within 
the realm of utility elicitation techniques in decision analysis. The analogy arises from 
the properties of the voice quality rating curves that increase monotonically as the 
impairments decrease (or decrease monotonically as the impairments increase). If, in 
addition, the rating curves are normalized from zero to one over a continuous scale, 
then many of the algorithms proposed for utility elicitation can be applied to the 
elicitation of subjective voice quality ratings. In this paper, we apply a Bayesian-
maximum entropy technique, developed for utility elicitation in [1], to elicit the 



opinion of a single person on the quality of a number of samples, impaired with 
increased amount of (the same type of) impairment. Our approach can assist people 
working in Speech Subjective Testing Labs, to design efficient and simpler 
questionnaires.  In order to demonstrate our algorithm, we simulate a widely known 
(and standardized) experiment, in which 10-packet loss conditions were translated to 
speech quality. Our results show that we obtain the correct values of subjective ratings 
after only a few binary questions.  

2. APPLICATION CONTEXT 

2.1 Voice transmission over a network 

We are all familiar with the use of telephony for communication. Traditionally, 
telephone calls take place over the public switched telephone network. In the last 
decades, wireless and cellular networks have been used to provide telephony services 
to mobile users. Finally, the Internet infrastructure has enabled cheap –and often free- 
voice communications, typically at low quality. 

A “good” telephone call is one in which the participants can communicate without 
difficulties, or annoying and distracting effects. However, when taking place over the 
above-mentioned communication networks, voice conversations are subject to various 
impairments. For example, we are all familiar with delay impairments that may occur 
during cross-Atlantic phone calls: the response from the other person is long, and the 
participants end up talking at the same time or talking in turns. Echo impairments may 
also become noticeable when delay is high. Another possible impairment is speech 
distortion: modern encoders achieve high compression at the cost of distortion of the 
speech signal. Parts of the speech signal may be further lost during transmission over 
lossy networks, such as wireless network or the Internet during congestion.  
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FIGURE 1.  Example of a call taking place over the Internet. 



Fig.1 shows an example of a conversation that is taking place over the Internet. The 
person at the left is sitting on his desktop and is talking to the person at the right. The 
“sender” software on his desktop performs the following functions: records the voice, 
encodes the speech sample, puts it in packets of equal size and sends them over the 
Internet at fixed time intervals. As they go through the Internet, some packets may be 
lost and some packets may be delayed more than others. At the other end, the 
“receiver” software performs the following functions: receives the packets, puts them 
in a buffer to be played out at fixed intervals, reconstructs the information of any lost 
packets and plays out the reconstructed voice signal at the speaker or headphone. 
Similar steps happen from right to left when the second person speaks.  

2.2 Subjective Quality Testing  

The ultimate judges for the quality of a conversation are the users themselves and 
the most appropriate metric is their opinion; thus the term “subjective quality” has 
been associated with the ratings. Standards have been published by the International 
Telecommunications Union (ITU-T), and in particular by Study Group 12 (SG-12), in 
order to define subjective quality and to specify the ways to measure it. Most tests are 
carried out by interviewing people in a standardized test environment.    

The ITU-T Recommendation is ITU-T P.800 [2] defines the most commonly used 
subjective metric: MOS, which stands for “Mean Opinion Score”. In these tests, a set 
of K listeners, listen to speech samples and give them a rating on a discrete scale from 
1 to 5 (1 is the worst and 5 is the best possible rating). These ratings are then averaged 
over the K listeners, and this average is the rating for the sample, the Mean Opinion 
Score. MOS greater than 3.6 is considered acceptable for today’s Internet, while MOS 
above 4.0 is desirable for the quality to be comparable to the traditional telephone 
network. The above rating system is summarized in Fig.2, which is taken from [3]. 
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FIGURE 2. Subjective Voice Quality and Mean Opinion Score. 



Special labs exist for the purpose of conducting subjective quality tests, according 
to the ITU-T standards, such as COMSAT. Also, large telecommunication companies, 
such as Nortel, AT&T and Lucent, have their own labs and a group of specialists 
dedicated to subjective testing.  

2.3 Mapping Network Impairments to subjective quality  

The reader might have already noticed that there is a gap between the network 
impairments (section 2.1) and subjective quality (section 2.2). On one hand, network 
impairments can be described and measured using objective parameters. On the other 
hand, subjective quality is really what matters but requires asking the opinion of a 
number of humans, which may not always be feasible or desirable. As an example of 
objective parameters vs. subjective quality, Fig.3a shows an original speech sample. 
Fig. 3b shows the same sample, with 50% of it (shown in red) considered lost in the 
network. When the sample of Fig. 3b is played out, the missing parts will be perceived 
as interruptions or noise. The more packets are lost, the more annoying the perceived 
effect. However, how much more annoying? Does the annoyance increases linearly or 
with the square of packet loss? Fig. 3c shows another kind of impairment: the speech 
sample is received correctly but it is played out twice as fast. This will be perceived as 
a change in the pitch of voice. However, how annoying is this effect? How does the 
annoyance increase with playing speed? E.g. does double speed cause double or more 
annoyance?  
 
 

 
 
 
 
 
 
 
 
 

FIGURE 3. Example impairments (a) original sample (b) packet loss (e.g. 50% packets uniformly lost)  
(c) change in pitch (sample played twice as fast).   

 
Network impairments can be objectively measured by a telephone company using a 

monitoring device attached to the network and collecting metrics such as packet loss, 
average delay, delay jitter etc. A customer may also be interested in such 
measurements to make sure that he indeed received the promised service. A translation 
from the measured network metrics to subjective quality is useful to understand the 
effect perceived by the user. As it is practically impossible to have people sitting on 
the phone and giving statistics about the quality of phone calls on a continuous basis 
and for all network paths, experiments are conducted in special labs that quantify the 
relation between the objective and subjective measures. 

 



Fig. 4 shows the results of three such experiments, as provided by the ITU-T 
recommendations G.107 [4] and G.113 [5].  The purpose was to quantify the effect of 
packet loss to subjective quality. The designers of the experiment took some 
standardized samples encoded using ITU-T G.711. They asked a number of people for 
their opinion on these samples and obtained the MOS for packet loss 0%. Then, they 
artificially erased 1%, 2% …20% of the speech, considering 10ms continuous 
segments of speech lost in a uniform or burst way. They asked the opinion of each 
person for each impaired sample, obtained and plotted the MOS for every packet loss 
percentage. The scenario for the top curve uses packet loss concealment (PLC) and 
uniform packet loss. The scenario for the middle curve used packet loss concealment 
and bursty packet loss. The bottom curve corresponds to uniform packet loss but does 
not use PLC used at the receiver, thus the greater impairment. For all three scenarios, 
the curves are monotonically decreasing. This is expected as speech quality can only 
decrease when loss percentage increases.  
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FIGURE 4. Mapping packet loss to subjective quality for G.711 encoded speech. These curves are 
taken from the ITU-T standards G.107 and G.113. 
 

Although ITU-T P.800 specifies the conditions of the experiment, it does not 
specify the questionnaire to be asked. The current practice for obtaining MOS-
impairment curves is to ask nK questions. Indeed, if the number of humans is n and 
the number of impairment conditions is K, then nK questions are required in total to 
obtain one of the MOS-Impairment curves.   

Clearly, there are several issues with this practice.  
First, the number of questions is large. In this paper, we are able to minimize the 

number of questions per listener, using entropy-coding principles. We are able to 
further reduce the number of questions per listener, capitalizing on the observation that 
impairment conditions are ordered and quality decreases with increasing degree of 
impairment (e.g. 5% packet loss will lead to MOS no larger then that of 2% loss). 
Therefore, the rating of each speech sample provides bounds for the other ordered 
samples. E.g. if a human subject believes that the speech sample with 2% loss sounds 



worse than quality 3 (i.e. (MOS(2%)<=3), this implies that all samples with more loss 
than 2% should also have a quality less than 3 (i.e. (MOS(l%)<=3 for all l>=2), 
assuming of course that the human subject gives consistent answers. 

Second, the questions asked according to ITU-T P.800 are not easy to answer. E.g. 
it is often difficult to decide whether a sample should be rated with 2 or 3 in the 1-5 
discrete scale. Furthermore, there is an inherent tradeoff between granularity in the 
scale and repeatability/consistency of the experiments. In our approach, we replace the 
1-5 discrete scale with a 0-1 continuous scale (using the Von Neuman and 
Morgenstern Standard Gamble approach) and at the same time we replace the ITU-T 
P.800 test questions, with easier binary questions. E.g. we are asking whether a sample 
sounds better or worse then 3.5 instead of asking an exact number among 1,2,3,4 or 5. 
The binary question has two advantages: (i) it is easier for the human subject to 
answer and at the same time (ii) it allows for increased granularity, using the entire 
spectrum [1,5] rather than 5 numbers. 

Finally, there has been extended criticism on many aspects of the ITU-T P.800 
procedures. For example in [6], the discrete scale is criticized for both the difficulty of 
answering and its coarse granularity; a continuous scale is proposed instead. 
Furthermore, the paper argues that the terms corresponding to the 5 numbers have 
different interpretations in different languages.  

In the next sections we formulate and solve the problem of minimizing the expected 
number of questions per listener, to elicit a given Quality-Impairment curve within a 
desired accuracy.  

3. PROBLEM FORMULATION 

Let us consider a single listener and let us assume that s/he gives consistent answers 
according to a quality (Q)-impairment (I) curve, unknown to us. This means that the 
same person will not rate a sample with 2% loss as worse than quality 3 and another 
sample with 5%>2% loss as better than 4. (In future work we extend this work to 
incorporate mistakes and inconsistencies). 

We know that the impairment conditions are ordered such that (I0<I1<I2<…<IK) and 
we also know that quality is decreasing with increasing impairment, i.e. 
Q0>=Q1>=…QK. We would like to elicit the quality rating of each sample using the 
minimum expected number of questions, as accurately as possible and using questions 
that are easy to answer. 
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FIGURE 5. Voice quality rating curves. 



A characteristic that makes the ratings of a single listener particularly similar to 
utility values is that they are inherently ordered: the listener perceives worse quality 
with increasing degrees of impairment.  

In this paper, we exploit this ordering property to calculate the maximum-entropy 
joint distribution for each listener’s “j” ratings: Qij, i=1,…,k, j=1,…n. We use entropy-
coding principles to minimize the expected number of questions needed to obtain the 
Qij’s within a desired resolution. The number of questions can be further reduced by 
testing only a subset of the k samples and by using the maximum entropy principle to 
infer the remaining ratings. In the next section, we present a solution to this elicitation 
problem and a geometric representation for all points Qi, , i=1,…,k provided by the 
same listener (j). For the rest of the paper, we refer to those points as the single 
listener’s Q-I curve: (Ii, Qi), i=1,…,k. The same procedure could be applied to all 
listeners. 

4. SOLUTION 

4.1 Geometric Interpretation and Observations 

Note that the properties of quality rating curves provide for a geometric 
interpretation of the subjective voice quality-rating problem. For example, consider 
the two points Q2 and Q1 on the quality-rating curve of Fig. 6(a). These two points can 
be represented as a point in the shaded region shown in Fig. 6(b), which 
we call the quality rating volume. Furthermore, if the quality rating curve is 
normalized to range from zero to one, then the sample with the highest impairment 
and that with the lowest impairment have quality ratings of 0 and 1 respectively. 
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FIGURE 6. (a) Voice quality rating curves. (b) Vector space representation. 
 

Note that any point in the quality volume represents the ordering of the given 
impairments but assigns different quality rating values to them. For example, the point 

suggests that the rating of and that the impairment of 1 2( ,Q Q 2Q Q≥ 2I I≤  but any 
values of quality ratings in the shaded region satisfy this condition. In other words, if 



we only know the order of the impaired samples, and would like to guess the location 
of the quality-rating vector, it is reasonable to assume that its location is uniformly 
distributed over the quality volume. By thinking of the quality rating points as ordered 
statistics, we can deduce the following properties.  
 
Quality rating assignment given the order of the samples:  
 

The maximum entropy marginal distributions for quality values of a set of K 
ordered impairments, is the family of Beta distributions, Beta (j,K-j-1), j=1,...K-2. The 
mean of these distributions, j/(K-1), is the quality value of each impairment, j. 
Impairments j=0 and j=K-1 are given deterministic with values 0 and 1 
respectively.Example 
 
Consider a quality-rating curve with 4 impairments. The sample with lowest rating and 
that with the highest rating have values of 0 and 1 respectively. As discussed above, 
the remaining two samples have marginal distributions of Beta(1,2)  and Beta(2,1). 
These distributions are shown in Fig. 7. The quality value assignment for the 4 
samples starting from worst to best is thus equal to: Q=(0, 1/3, 2/3,1).  
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FIGURE 7. Marginal distributions for ordered samples. 

4.2 Algorithm 

Given K ordered samples, the problem of eliciting the subjective voice quality 
ratings is equivalent to searching for the quality vector over the quality volume. If we 
require binary questions for the search, then the optimal question-selection process 
partitions the quality volume into two halves each time with equal probability. If the 
distribution over the quality volume is uniform, this implies that the optimal question-
selection process partitions the quality volume into two geometric halves. This is 
shown in Fig.8.  The partitioning of the quality volume into two geometric halves is 
simple for two dimensions but gets more complicated as the dimensionality of the 
quality vector increases. Fortunately, the break point needed to partition the quality 



volume for each sample is, by definition, equal to the median of its marginal 
distribution at each stage. Recall that the marginal distributions at the start of the 
questionnaire are the Beta distributions described above. At any given stage the 
marginal distributions can be obtained by marginalizing the uniform joint distribution 
over the new bounds for the rating values.  Alternatively, the marginal distributions 
can be updated by conditioning on the new bounds using Bayes rule, or by using 
Monte Carlo simulation, where we generate uniform samples on the quality volume 
and select the samples that lie in the current search space. 

Note also from Fig.8c and Fig.8d that the optimal partition of the quality volume is 
not unique (any sample can partition the quality volume into two equal halves). The 
algorithm will give preference to the samples whose quality ratings we are most 
uncertain about (whose marginal distribution has the highest entropy).  
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FIGURE 8. Partitioning the quality rating volume. 
 

We now describe the steps of the algorithm using the steps shown in Alg.1 below 
and the flow chart of Fig. 9.  

 



Alg.1 Algorithm for voice quality ratings elicitation  
 

Initially 
• Use the maximum entropy principle to compute the marginal distributions for 

the quality of each sample. 
While “stopping criterion” is not met: 

• Select the sample, Smax , whose marginal distribution has the highest entropy  
• Partition this distribution at the median, M. 
• Ask the binary question: “Is Q(Smax)>M ? 
• Update the marginal distributions of each sample 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9. Flow chart for quality-rating algorithm. 
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Stopping Criteria 
Let us now discuss the stopping criterion for the algorithm. From the properties of 
entropy-coding theory, an expression for the stopping criterion can be obtained when 
the expected number of questions needed to locate the quality vector within a 
hypercube of side length ( ) has been asked. This is achieved, by the discretizing the 
quality volume into hypercubes of side length equal to 

∆
∆  and calculating the discrete 

form entropy expression, where 

 

Expected number of questions log (number of hypercubes)
1

Quality volume ( 2)                                               = log( ) log( )
volume of hyperubes K

K !

≅

−=
∆

. 

5. APPLYING THE ALGORITHM  

To demonstrate the application of the algorithm, we “simulate” a subjective test in the 
following sense. We consider the experiments whose results are shown in one of the 
curves of Fig.4. The algorithm poses the questions that would be given to a human 
subject, participating in the test in the lab. We assume that the human answers each 
question according to one of the curves. In other words, we assume that each curve 
captures perfectly the preferences of the subject. The “simulation” proceeds iteratively 
as follows. The algorithm asks the first question; the (simulated) human consults the 
curve and answers with “greater” or “less”; based on this answer the algorithm asks 
the next question; and so on. We see that our algorithm manages to reproduce the 
original Q-I curve after only a few binary questions 
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FIGURE 10.  Original and elicited Q-I curves for the “bursty loss” experiment. 



Example 1 
First, consider the middle curve of Fig.4, which corresponds to the bursty loss 
scenario. It is re-drawn in Fig.10 below, and labeled as “original” curve. In the same 
figure, we now plot our estimate for the Q-I curve after 0 questions (labeled as “Q0”), 
1 question (Q1), 4 questions (Q4), and 8 questions (Q8).  We can visually see that our 
algorithm successfully reproduces the original Q-I curve, after only a few binary 
questions, much earlier than the exhaustive traditional approach. 
To quantify the “closeness” between the elicited and the original curve after each 
question, we define the distance/error between an elicited and the real curve, as the 
mean square (or Euclidean) distance between the two Q vectors. Fig. 11 shows that the 
error decreases asymptotically with the number of questions.  

It is interesting to note that the error decreases asymptotically, because each answer 
divides the volume in two. However, the error does not necessarily decrease 
monotonically with the number of questions. For example, in Fig.11, the error 
increases after the first question. This means that, we cut the volume in half, but the 
distance between the new estimate and the true value is larger than before. However, 
the algorithm is guaranteed to converge asymptotically.   
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FIGURE 11.  Error after every question for the “bursty loss” experiment.  

Example 2 

As a second example, we considered the top curve of Fig.4, which corresponds to the 
uniform loss scenario. We repeat a similar simulation. Similar to Fig.10, we plotted 
the estimated Q-I curve after each question and we observed that it converged fast to 
the original one. We omit this figure here and we show only the error that quantifies 
the distance of our estimate from the true Q-I curve. Fig. 12 shows the error with the 
number of questions decreasing more smoothly in this case. 
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FIGURE 12.  Error after every question, for the “uniform loss” experiment. 

6. CONCLUSIONS 

In this paper, we designed a questionnaire to elicit the Quality-Impairment curve of a 
single human subject, using the minimum expected number of questions. We 
demonstrated the efficiency of our algorithm using simulation on some standard MOS-
loss curves. The same approach could be followed for other impairments such as delay 
or jitter.  

In this work, we assumed that the human subject gives consistent answers 
according to a unique Q-I curve. Future work will continue in two directions. First, we 
are considering experimental validation with actual subjective testing. Second, we are 
extending our algorithm to deal with imperfect responses from the human subjects. 
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