# Characterization of Failures in the Sprint IP backbone

Athina Markopoulou Gianluca Iannaccone Supratik Bhattacharyya Chen-Nee Chuah Christophe Diot

# Why Study Backbone Failures?

- Backbone networks provide excellent traditional QoS
- E.g. SLAs in the Sprint's IP network
  - 0.3% packet loss
  - 55 msec delay in continental USA
  - 99.9% port availability
- Failures are poorly understood...
  - although they happen every day

# Link Failures

- Definitions
  - IP link: adjacency between two IS-IS routers
  - Link Failure: loss of this adjacency
- Possible reasons
  - Fiber cuts, optical equipment failures, router problem, human error or mis-configuration, maintenance ...
- Impact on the IP layer
  - Topology changes & routing re-configuration

# Dealing with failures

- Potential impact on availability
  - Forwarding disrupted during route re-convergence
  - Overload/Congestion on backup paths
- Network design becomes hard
  - Protection mechanisms
  - Topology design
  - Capacity provisioning
  - Timers tuning
- A failure model is needed !

# Outline

- Motivation
- Contributions
  - Measurement collection
  - Failures classification
  - Modeling of each class
- Conclusion

# Measurements of Link Failures at ISIS level

ISIS listeners collect flooded LSPs



• Record: (link A-B, router A, router B, start time, end time)

#### Data Set: US Failures, Apr. - Nov. 2002



# Classification Methodology



#### Maintenance

Weekly schedule (Mondays 5am-2pm UTC): 20% of failures



#### Data Set-revisited



10

#### Excluding Maintenance: Unplanned failures



#### US >1sec <24h, all Failures

# Shared failures (I): simultaneous

- 2+ links, go down/up at the exact same time
  - 16.5% of all unplanned failures



- For every such event
  - all links connected to the same router
- Indicate router-related cause



# Shared failures (II): overlapping

- Some links fail almost simultaneously
  - 14.3% of all failures are grouped in overlapping events

Event Link 2 Link 3 W1 Overlapping W2

- In 80% of overlapping events
  - links have no common router



- but all links share multiple optical components
- Good indication for optical-related failure

# Classification



#### Individual Link Failures

After excluding maintenance and shared (router, optical)



15



- Normalized number of failures per link
- High degree of heterogeneity
- Roughly two powerlaws
- A few (2.5%) links account for half of individual failures

# High Failure Links



• Components may be old or undergoing upgrades

#### Low Failure Links



# Classification Summary



#### Characterize each class

#### E.g. low failure links - revisited



2. How are they spread across links? 3. How long do they last?

## 1. How often?

Time between two successive failures, on any link

- •Weibull:  $F(x) = 1 \exp(-(x / scale)^{shape})$
- Low autocorrelation



### 2. How are they spread across links?

- Order links in decreasing number of failures
- Link with rank *l* has  $n_l$  failures, s.t.  $n_l \propto l^{-1.35}$



# Characterizing the Properties of each Class

|                          | 1.Time between<br>failures                 | 2. Num. of failures<br>per link (or num. of<br>events per router) | 3. Duration | 4. Number of<br>links in the<br>same event |
|--------------------------|--------------------------------------------|-------------------------------------------------------------------|-------------|--------------------------------------------|
| Low<br>failure<br>links  | Network-wide:<br>Weibull,<br>low autocorr. | Power-law                                                         | Empirical   | N/A                                        |
| High<br>failure<br>links | Per link:<br>Empirical                     | Power-law                                                         | Empirical   | N/A                                        |
| Router<br>related        | Network-wide:<br>Weibull,<br>low autocorr. | Power-law                                                         | Empirical   | Empirical                                  |
| Optical<br>related       | Network-wide:<br>Weibull,<br>low autocorr. | -                                                                 | Empirical   | Empirical                                  |

### Failure Durations – all groups



# Conclusion

- Summary
  - Measurements
  - Classification
  - Characterization
- Implications
  - Contribution: A Failure Model
  - Problem Area: Network Reliability

# Thank you!

#### amarko@stanford.edu