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Abstract— We analyze IS-IS routing updates from Sprint’s
IP network to characterize failures that affect IP connectivity.
Failures are first classified based on probable causes such as
maintenance activities, router-related and optical layer problems.
Key temporal and spatial characteristics of each class are ana-
lyzed and, when appropriate, parameterized using well-known
distributions. Our results indicate that 20% of all failures is due
to planned maintenance activities. Of the unplanned failures,
almost 30% are shared by multiple links and can be attributed
to router-related and optical equipment-related problems, while
70% affect a single link at a time. Our classification of failures
according to different causes reveals the nature and extent of
failures in today’s IP backbones. Furthermore, our characteriza-
tion of the different classes can be used to develop a probabilistic
failure model, which is important for various traffic engineering
problems.

I. INTRODUCTION

The core of the Internet consists of several large networks
(often referred to as backbones) that provide transit services to
the rest of the Internet. These backbone networks are usually
well-engineered and adequately provisioned, leading to very
low packet losses and negligible queuing delays [1], [2]. This
robust network design is one of the reasons why the occurrence
and impact of failures in these networks have received little
attention. The lack of failure data from operational networks
has further limited the investigation of failures in IP back-
bones. However, such failures occur almost everyday [3] and
an in-depth understanding of their properties and impact is
extremely valuable to Internet Service Providers (ISPs).

In this paper, we address this deficiency by analyzing
failure data collected from Sprint’s operational IP backbone.
The Sprint network uses an IP-level restoration approach for
safeguarding against failures with no protection mechanisms
in the underlying optical fiber infrastructure [4]. Therefore,
problems with any component at or below the IP layer (e.g.,
router hardware/software failures, fiber cuts, malfunctioning
of optical equipment, protocol misconfigurations) manifest
themselves as the loss of connectivity between two directly
connected routers, which we refer to as an IP link failure.

IS-IS [5] is the protocol used for routing traffic inside the
Sprint network. When an IP link fails, IS-IS automatically
recomputes alternate routes around the failed link, if such
routes exist. The Sprint network has a highly meshed topology
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to prevent network partitioning even in the event of widespread
failures involving multiple links. However, link failures may
still adversely affect packet forwarding. While IS-IS recom-
putes alternate routes around a failure, packets may be dropped
(or caught in a routing loop) by routers that lack up-to-date
forwarding information. Moreover, when traffic fails over to
backup paths, links along that path may get overloaded leading
to congestion and eventually to packet loss [6].

In this work, we collect IS-IS routing updates from the
Sprint network using passive listeners installed at geograph-
ically diverse locations. These updates are then processed to
extract the start-time and end-time of each IP link failure. The
data set analyzed consists of failure information for all links
in the continental US from April to October 2002.

The first step in our analysis is to classify failures into
different groups according to their underlying cause, i.e. the
network component that is responsible. This is a necessary
step for developing a failure model where the faults of each
component can be addressed independently. In our classifica-
tion, we proceed as follows. First, link failures resulting from
scheduled maintenance activities are separated from unplanned
failures. Then, among the unplanned failures, we identify
shared failures, i.e. failures on multiple IP links at the same
time due to a common cause. Among shared link failures, we
further distinguish those that have IP routers in common and
those that have optical equipment in common. The remaining
failures represent individual link failures, i.e. faults that affect
only one link at a time. For the individual failures, we further
differentiate groups of links, based on the number of failures
on each link.

The second step in our analysis is to provide the spatial
and temporal characteristics for each class separately, e.g., the
distributions of the number of failures per link, time between
failures, time-to-repair, etc. When possible, we provide param-
eters for these characteristics using well-known distributions.

Our results indicate that 20% of all failures can be attributed
to scheduled network maintenance activities. Of the remaining
unplanned failures, 30% can be classified as shared. Half of the
shared failures affected links connected to a common router,
pointing to a router-related problem; the rest affect links that
share optical infrastructure, indicating an optical layer fault.
The remaining 70% of the unplanned failures are individual
link failures caused by a variety of problems. Interestingly,
the failure characteristics of individual links vary widely- less
than 3% of the links in this class contribute to 55% of all
individual link failures.



The original contributions of the paper are as follows:
• We perform an in-depth analysis of IS-IS failure data

from a large operational backbone. This has not been
attempted before, largely due to the lack of availability
of such data sets.

• We classify failures based on their causes. This methodol-
ogy can enable an ISP to isolate failures attributable to a
cause and pinpoint areas of improvement. For example,
this approach can help determine whether a significant
number of failures are related to optical-layer problems
and identify optical components that should potentially
be updated.

• We provide the statistical characteristics of each class
of failures and, when appropriate, we approximate them
with well-known distributions. The parameters obtained
can be used as input to generate realistic failure scenarios,
which is important to various traffic engineering problems
that take failures into account. Those include routing
protocols, network management systems and network
design itself.

The paper is organized as follows. Section II presents some
related work in the area of failure analysis and fault manage-
ment. Section III describes the data collection process in the
Sprint backbone and provides an overview of the data set under
study. Section IV describes our classification methodology
and evaluates its accuracy. Section V describes the results of
our classification of failures and the characteristics of each
identified class. Section VI discusses how our characterization
can be used to build a failure model, and identifies open issues
for further investigation. Section VII concludes the paper.

II. RELATED WORK

The availability of spare capacity and sound engineering
practices in commercial IP backbones makes it easy to achieve
traditional QoS objectives such as low loss, latency and jitter.
Recent results show that the Sprint network provides almost
no queuing delays [7], [2], negligible jitter [2] and is capable
of supporting toll-quality voice service [8].

On the other hand, failures can degrade network per-
formance by reducing available capacity and disrupting IP
packet forwarding. Common approaches for ensuring network
survivability in the presence of failures include protection
and restoration at the optical layer or the IP layer [9], [10],
[4]. A significant amount of effort has been investing in
achieving sub-second convergence in IS-IS [11]. In addition,
a number of new approaches have been proposed to account
for backbone failures, including the selection of link weights
in the presence of transient link failures [12], [13], deflection
routing techniques to alleviate temporary link overloads due to
failures [6], network availability-based service differentiation
[14], and failure insensitive routing [15].

All of the above approaches require a thorough under-
standing of the cause and characteristics of backbone failures.
However, such an understanding has been limited partly by
a lack of measurement data from operational networks, and
partly by a focus on traditional QoS objectives such as loss

and delay. In some cases, traceroutes were used to study the
routing behavior in the Internet. These include studies on
routing pathologies, stability and symmetry [16], stationarity
of Internet path properties [17], and evaluation of routing-
based and caching techniques to deal with failures [18]. To the
best of our knowledge, [19] is the only work that uses OSPF
routing updates for failure analysis, although its primary focus
is on studying stability of inter-domain paths. More recently,
[3] has performed a preliminary analysis of backbone link
failures based on IS-IS routing updates. Our work builds on
[3] and makes the following new contributions. We study a
larger and more recent data set, classify failures according to
probable causes, and provide characterization for each class
that can be used to build a failure model.

To put things in perspective, reliability is an aspect of de-
pendable distributed systems and has been extensively studied
in the context of fault-tolerant distributed systems. A landmark
paper on failures in Tandem systems and the techniques to
prevent them is [20]. In parallel and even earlier, a mathemat-
ical framework was developped in the Operations Research
world to manage the reliability and risk in systems composed
of various components [21]. In general, complex systems that
have passed the stage of proof of concept and have matured
into industrial grade systems, are expected to provide high
reliability/availability to their users. Telephone networks and
power grids are examples of such mature networks. Recently,
there has been an increasing interest in the reliability of
end-to-end services in the Internet. Examples of recent work
include [22] where human errors and incorrect configurations
are identified as a main source of errors, [23] where giant
scale web services are examined, and [24] where fast recovery
is compared to high reliability. Within the above context, our
work targets failures that affect routing and availability across
a single backbone network.

III. FAILURE MEASUREMENTS

In this section, we discuss the types of failures that impact
IP connectivity, present our methodology for extracting link
failure information from IS-IS routing updates and briefly
summarize the data set.

A. Failures with an impact on IP connectivity

The Sprint IP network has a layered structure, with an IP
layer operating directly above a dense wavelength-division
multiplexing (DWDM) optical infrastructure with SONET
framing.

There are two main approaches for sustaining end-to-end
connectivity in IP networks in the event of failures: protec-
tion and restoration. Protection is based on fixed and pre-
determined failure recovery, with a working path set up for
traffic forwarding and an alternate protection path provisioned
to carry traffic if the primary path fails. Restoration techniques
attempt to find a new path on-demand to restore connectivity
when a failure occurs. Protection and restoration mechanisms
can be provided either at the optical or at the IP layer, with
different cost-benefit tradeoffs [4], [10].



The Sprint IP network relies on IP layer restoration (via IS-
IS protocol) for failure recovery. All failures at or below the IP
layer that can potentially disrupt packet forwarding manifest
themselves as the loss of IP links between routers. The failure
or recovery of an IP link leads to changes in the IP-level
network topology. When such a change happens, the routers
at the two ends of the link notify the rest of the network
via IS-IS. Therefore, the IS-IS update messages constitute
the most appropriate data set for studying failures that affect
connectivity.

Failures can happen at various protocol layers in the network
for different reasons. At the physical layer, a fiber cut or
a failure of optical equipment may lead to loss of physical
connectivity. Hardware failures (e.g. linecard failures), router
processor overloads, software errors, protocol implementation
and misconfiguration errors may also lead to loss of connec-
tivity between routers. When network components (such as
routers, linecards, or optical fibers) are shared by multiple IP
links, their failures affect all the links. Finally, failures may
be unplanned or due to scheduled network maintenance. Note
that at the IS-IS level, we observe the superposition of all the
above events. Inferring causes from the observed IS-IS failures
is a difficult reverse engineering problem.

B. Collecting and Processing ISIS Updates

We use the Python Routing Toolkit (PyRT)1 to collect IS-IS
Link State PDUs (LSPs) from our backbone. PyRT includes an
IS-IS “listener” that collects these LSPs from an IS-IS enabled
router over an Ethernet link. The router treats the listener in the
same way as other adjacent routers, hence it forwards to the
listener all LSPs that it receives from the rest of the network.
Since IS-IS broadcasts LSPs through the entire network, our
listener is informed of every routing-level change occurring
anywhere in the network. However, the listener is passive in
the sense that it does not transmit any LSPs to the router. The
session between the listener and the router is kept alive via
periodic IS-IS keepalive (Hello) messages. Upon receiving an
LSP, the listener prepends it with a header in MRTD format
(extended to include timestamp of micro-second granularity)
and writes it out to a file. The data presented in this paper
were collected from a listener at a Sprint backbone Point-of-
Presence (POP) in New York.

Whenever IP level connectivity between two directly con-
nected routers is lost, each router independently broadcasts a
“link down” LSP through the network. When the connectivity
is restored, each router broadcasts a “link up” LSP. We refer to
the loss of connectivity between two routers as a link failure.

The LSPs from the two ends of a link reporting loss or
restoration of IP connectivity may not reach our listener at the
same time. The start of a failure is recorded with the MRTD
timestamp of the first LSP received at our listener that reports
“link down”. The end of each failure is recorded with the
MRTD timestamp of the second LSP received at our listener
that reports “link up”. This asymmetry is conformant with

1The source code is publicly available at http://ipmon.sprint.com/pyrt

Apr May Jun Jul Aug Sep Oct Nov

200

400

600

800

1000

1200

Li
nk

 N
um

be
r

Time

Fig. 1. Data set under study: failures in continental US between April 1 and
October 21, 2002.

how the IS-IS protocol reacts to routing updates. As soon as
a router receives the first LSP reporting an “link down”, it
considers the IP connectivity to be lost without waiting for
the second LSP. Hence, the first LSP is sufficient to trigger a
route re-computation, which may lead to a disruption in packet
forwarding. However, in order to consider the IP connectivity
restored, a router waits until it receives LSPs reporting “link
up” from both ends of a link. In the rest of the paper, we
refer to the time between the start and the end of a failure, as
defined above, as the time-to-repair for the failure.

C. The Failures Data Set

Using the steps described above, we can determine the
start and end times for failures on every link in the Sprint
backbone. The data are collected for the period between April
1st and October 21st 2002, in the continental US. This data
set involves a large number of links, routers and POPs (in
the order of thousands, hundreds and tens respectively). We
consider that link failures with time-to-repair longer than 24
hours are due to a links being decommissioned rather than to
accidental failures, and therefore we exclude them from the
failures data set. Indeed, the specified time-to-repair for any
failure is in the order of hours and not in the order of days.

Fig. 1 shows the failures in the data set under study, across
links and time. A single dot at (t, l) is used to represent a
failure that started at time t, on link l. One can see that failures
are part of the everyday operation and affect a variety of links.
We also observe that the failures occurrence follows patterns,
such as (more or less prominent) vertical and horizontal lines
of different lengths. In the rest of the paper, we further use
these visual patterns as guidance for our failure classification.2

2The scale of the figure is chosen to emphasize the horizontal and vertical
patterns. Times-to-repair are not represented in the figure and the area covered
by the dots represents neither the total duration nor the impact of link failures
on the Sprint backbone.
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IV. CLASSIFICATION METHODOLOGY

This section describes our methodology for classifying
failures according to their causes and properties. We attempt
to infer the causes by leveraging patterns observed in the
empirical data and by correlating them with the possible
causes. We first give an overview of our classification and
then we discuss each class in detail.

A. Overview

Our approach is to use several hints obtained from the IS-
IS failure data to identify groups of failures due to different
causes. A visual inspection of Fig. 1 provides insights into
how to perform this classification. We observe that the failures
are not uniformly scattered- there are vertical and horizontal
lines. The vertical lines correspond to links that fail at the
same time (indicating a shared network component that fails)
or to links that fail close in time (e.g. due to a maintenance
activity) but appear almost aligned in the plot. The horizontal
lines correspond to links that fail more frequently than others.
Apart from these lines, the remaining plot consists of roughly
uniformly scattered points.

Our classification of failures is summarized in Fig. 2 and
consists of the following steps. We first separate failures due to
scheduled Maintenance from Unplanned failures. We analyze
the unplanned failures in greater depth since these are the ones
that an operator seeks to minimize. We distinguish between
Individual Link Failures and Shared Link Failures, depending
on whether only one or multiple links fail at the same time.
Shared failures indicate that the involved links share a network
component that fails. This component can be located either
on a common router (e.g. a linecard or route processor in the
router) or in the underlying optical infrastructure (a common
fiber or optical equipment). Therefore, we further classify
shared failures into three categories according to their cause:
Router-Related, Optical-Related and Unspecified (for shared
failures where the cause cannot be clearly inferred). We divide
links with individual failures into High Failure and Low
Failure Links depending on the number of failures per link.
In Fig. 2, maintenance and shared failures correspond to the
vertical lines, high failure links correspond to the horizontal

Tstart Tend
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link 3

link 4

Wstart Wend

starting simultaneously
 Event of failures Event of

overlapping failures
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Fig. 3. Example events of simultaneous and overlapping failures.

lines, and low failure links correspond to the roughly uniform
plot that remains after excluding all the above classes of
failures.

We now consider each class separately and describe (i) the
rules that we use to decide whether a failure belongs to this
specific class and (ii) how we obtain partial confirmation for
the inferred cause.

B. Maintenance

Failures resulting from scheduled maintenance activities are
unavoidable in any network. Maintenance is usually scheduled
during periods of low network usage, in order to minimize the
impact on performance. The maintenance window in the US
Sprint backbone network is Mondays 5am-2pm, UTC time. It
turns out that failures during this window are responsible for
the most prominent vertical lines in Fig. 1, including the ones
in September - October.

C. Simultaneous Failures

In the shared failures class, we first identify failures that
happen simultaneously on two or more links. Failures on
multiple links can start or finish at exactly the same time, when
a router reports them in the same LSP. For example, when a
linecard fails, a router may send a single LSP to report that
all links connected to this linecard are going down. When our
listener receives this LSP, it will use the timestamp of this
LSP as the start for all the reported failures. Similarly, when
a router reboots, it sends an LSP reporting that many of the
links connected to it are going up. When our listener receives
this LSP, it will use the same timestamp as the end for all the
reported failures. (However, it still needs to receive an LSP
from the other end to declare the end of a failure.)

In our data, we identify many such cases. An example is
shown in Fig. 3(a): 4 links are going down at exactly the same
time Tstart (and 3 out of 4 come up at the exactly same time
Tend). We refer to such failures as simultaneous failures and
we group them into events.

For every event of simultaneous failures found in the data
set, we verified that all involved links are indeed connected to a
common router. And reversely, there is no simultaneous failure
event that does not involve a common router, which confirms
our intuition. Therefore, we attribute these events (simultane-
ous failures on links connected to the same router) to problems



on the common router and we call them router events. Such
problems include a router crash or reboot, a linecard failure
or reset, a CPU overload. In the rest of the paper, we refer to
these failures as Router-Related. Unfortunately, based on the
available data set, it is impossible to do any finer classification,
i.e. we are unable to identify whether the failure is due to high
load, software or hardware error or human misconfiguration.
Such a root-cause analysis is a direction for future work and
requires additional failure logs.

Occasionally, a link in a router event may come up later
than the others, as shown in Fig. 3(a). This can happen either
because the link comes up later (e.g. router interfaces coming
up one-by-one) or because the LSP from the other end of the
link reaches our listener later (either delayed or lost). However,
in 50% of the router events identified in the data set, all links
came up at the exact same time; in 90% of the cases the last
link came up no later than 2 minutes after the first link.

D. Overlapping Failures

After excluding the simultaneous failures, we relax the time
constraint from “simultaneous” to “overlapping”, i.e. we look
for events where all failures start and finish within a time
window of a few seconds. An example is shown in Fig. 3(b),
failures on all 4 links start within Wstart and finish within
Wend seconds from each other.

Overlapping failures on multiple links can happen when
these links share a network component that fails and our
listener records the beginning and the end of the failures
with some delays Wstart and Wend. For example, a fiber cut
leads to the failure of all IP links over the fiber, but may
lead to overlapping failures in our listener for several reasons.
First, there are multiple protocol timers involved in the failure
notification and in the generation of LSPs by the routers at
the ends of the links. Most of these timers are typically on
the order of tens of milli-seconds up to a few seconds. The
dominant ones are the IS-IS carrier delay timer [3] with default
2 seconds to report a link going down and 12 seconds to report
a link going up. The timers can be configured to have different
values on different routers. Finally, the LSPs from the two ends
of the link can reach our listener through different paths in the
network and thus may incur different delays; or an LSP may
be lost, leading to an additional retransmission delay.

The choice of windows, Wstart and Wend, becomes im-
portant for a meaningful definition of overlapping failures.
If the windows are chosen too long, failures that overlap by
coincidence may be wrongly interpreted as shared failures.
Windows that are too short may fail to detect some shared
failures. We choose Wstart and Wend to be 2 and 12 sec to
match the default timers used to report a link down or up
respectively. We also varied Wstart from 0.5 to 10 sec and
Wend from 0.5 to 20 sec and observed that the number of
overlapping failures or events is relatively insensitive around
the chosen values.

We now focus on identifying the network component that
is responsible for the overlapping failures. Links can share
components either at a router or in the optical infrastructure.

TABLE I

SUMMARY OF OVERLAPPING EVENTS

Classification % %
of event events failures

Overlapping 100% 100%
Optical-Related 75% 80%

Unspecified 25% 20%

TABLE II

USING THE IP-TO-OPTICAL MAPPING TO CONFIRM THAT LINKS IN THE

SAME OPTICAL EVENT SHARE AN OPTICAL COMPONENT

Optical-Related Events %

Found in the database 93% of optical events
All links have common site(s) 96% of found events

All links have common segment(s) 98% of found events

Optical-Related. Among all overlapping events, we identify
those that involve only inter-POP links and that do not share
a common router. It turns out that 75% of all overlapping
events and 80% of all overlapping failures are of this type, see
Table I. We consider those events to be Optical-Related for
the following reason. Since the links in the same event have
no router in common, an explanation for their overlapping
failures is that they share some underlying optical component
that fails, such as a fiber or another piece of optical equipment.

To verify this conjecture, we use an additional database: the
IP-to-Optical mapping of the Sprint network. This database
provides the mapping from the IP logical topology to the
underlying optical infrastructure. It provides the list of optical
equipment used by every IP link. The optical topology con-
sists of sites (cities where optical facilities are located) and
segments (pair of sites connected with an optical fiber). IP
links share necessarily some sites or segments.

Table II summarizes our findings in the IP-to-Optical
database. Out of all overlapping events that we classify as
optical-related (i.e. inter-POP without a common router), we
were able to find 93% of them in the database (meaning that
all links in the same event were found in the database). Not all
links are found in the database due to changes in the mapping.
For each event found in the database, we check whether all
links in the event share some optical component. We find that
96% of the events found in the database, involve links that all
share at least one site; 98% of the found events involve links
that all share at least one segment. In fact, links in the same
event share even more than just one site or segment. They
share from 1 up to 30 sites (8.3 on average) and from 1 up
to 27 segments (7.3 on average). These findings validate our
conjecture that the events classified as optical-related are most
likely due to the failure of some optical component shared by
multiple IP links.

Unspecified. All the overlapping failures that are not classi-
fied as optical-related fall in this class. These include overlap-
ping failures on inter-POP links connected to the same router.
The cause is ambiguous: they could be due to a problem at the
router or to an optical problem. They also include overlapping
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failures of links in the same POP that could be due to a
problem or operation in the POP. However, since we are not
able to satisfactorily infer their cause, we call these events
Unspecified and we do not attempt to analyze them further.
They account for only 20% of the overlapping failures (see
Table I), which is less than 3% of all the unplanned failures.

E. Individual Link Failures

After excluding all the above classes of failures from the
data set, we refer to the remaining failures collectively as
Individual Failures because they affect only one link at a time.

Let n(l) be the number of individual failures per link
l=1,..,L. Let the maximum number of failures in a single link
be maxn = maxl(n(l)). For proprietary reasons, we show
the normalized value nn(l) = 1000 · n(l)/maxn, instead of
the absolute number n(l). In Fig. 4, we plot nn(l), for all
links in decreasing order of number of failures. There are
several interesting observations based on this graph. First, links
are highly heterogeneous: some links fail significantly more
often than others, which motivates us to study them separately.
Second, there are two distinct straight lines in this log-log plot
in Fig. 4. We use a least-square fit to approximate each one
of them with a power-law: n(l) ∝ l−0.73 for the left line and
n(l) ∝ l−1.35 for the right line. Notice that both the absolute
(n(l)) and the normalized (nn(l)) values follow a power-law
with the same slope; therefore, the interested reader is still
able to use the normalized value to simulate this behavior. The
dashed lines in the figure, intersect approximately at a point
that corresponds to 2.5% of the links and to a normalized
number of failures nn(l) = 152.

We use this value as the threshold (THR = 152) to
distinguish between two sub-classes: the High Failure Links
(nn(l) ≥ THR) and the Low Failure Links (1 ≤ nn(l) ≤
THR). High failure links represent only 2.5% of all links
but account for more than half of individual failures. It is
difficult to determine the cause of individual failures. High
failure links may be in an advanced stage of their lifetime and
their components fail frequently; or they may be undergoing
an upgrade or testing operation for a period of time. Unlike

TABLE III

PARTITIONING FAILURES INTO CLASSES

Failure Class % of all % of unplanned

Data Set 100%
Maintenance 20%
Unplanned 80% 100%

Router-Related 16.5%
Shared Optical-Related 11.4%

Unspecified 2.9%
Individual High Failure Links 38.5%

Low Failure Links 30.7%
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all previous failure classes, low failure links do not have a
prominent pattern either in time or across links.

V. FAILURE ANALYSIS

We now consider each class of failures separately and we
study its characteristics that are useful for re-producing its
behavior. These characteristics include time between failures,
time-to-repair, number of links involved in an (router or
optical-related event) event and distribution of failures/events
across links/routers. We provide empirical distributions and,
when possible, we also fit them to simple distributions. 3

Table III and Fig. 5 summarize and compare all classes, and
will be referenced repeatedly throughout this section. Table III
shows the contribution of each class to the total number of
failures. Fig. 5 provides the empirical cumulative distribution
function of time-to-repair for each class of unplanned failures.

A. Maintenance

20% of all failures happen during the window of 9-hours
weekly maintenance, although each such window accounts
only for 5% of a week. Fig.6 shows the occurrence of link
failures due to scheduled maintenance. It turns out that those
account for many of the vertical lines in Fig.1.

3For proprietary reasons, we provide a characterization in terms of per-
centages and statistical properties, rather than in terms of absolute numbers.
However, the information provided should be sufficient for the reader to
reproduce realistic failure scenarios.
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More than half failures during the maintenance window are
also router-related (according to the definition of Section IV-
C). This is expected as maintenance operations involve shut-
ting down and (re)starting routers and interfaces. Also, Fig. 5
shows that the CDF of time-to-repair for maintenance-related
failures, is close to the CDF for the router-related failures,
which further supports the observation that many of the
maintenance failures are router-related. A typical maintenance
window for a given interface/router is one hour, although it
can take less.

B. Router-Related Failures

Router-related events are responsible for 16.5% of un-
planned failures. They happen on 21% of all routers. 87% of
these router events (or 93% of the involved failures) happen
on backbone routers and the remaining 7% happens on access
routers. An access router runs IS-IS only on two interfaces
facing the backbone but not on the customer side.

Router events are unevenly distributed across routers. Let
n(r) be the number of events in router r and nn(r) =
100 · n(r)/maxn be its normalized value with respect to
its maximum value maxn = maxr(n(r)). For proprietary
reasons, we present the normalized instead of the absolute
value. Fig. 7 shows the normalized number of events per
router, for all routers ranked in decreasing number of events.
Interestingly, the straight line in the log-log plot indicates that
nn(r) follows roughly a power-law. Both n(r) and nn(r)
follow a power-law with the same slope. An estimate of the
parameters of the power-law using least-square method yields
n(r) ∝ r−0.8, which we plot as a dashed line in Fig. 7. One
can use the same figure to calculate the mean time between
events for different routers: it varies from 5 days up to several
months.

When a router event happens, multiple links of the same
router fail together. The distribution of the number of links in
an event is shown in Fig. 8. Events involve 2 to 20 links. This
is related to the number of ports per linecard, which varies
typically between 2 and 24. Most events involve two links;
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Fig. 8. Empirical PDF for the number of links in a router event.

12% of these events are due to failures on the two links of
access routers.

The empirical CDF of time-to-repair for router-related fail-
ures is shown in Fig. 5, together with those of the other classes.
The CDF for the router and the maintenance-related classes are
close to each other, and shifted toward larger values compared
to other classes. This could be due to human intervention for
repair or due to the rebooting process that takes on the order of
several minutes for backbone routers. Repair times for failures
belonging to the same event are roughly equal.

Another characteristic of interest is the frequency of such
events. Because not all routers experience enough events
for a statistically significant derivation of per router inter-
arrival times, we consider the time between any two router
events, anywhere in the network. Fig. 9 shows the empirical
cumulative distribution of network-wide time between two
router events. We observe that the empirical CDF is well
approximated by the CDF of a Weibull distribution: F (x) =
1−exp(−(x/α)β), x ≥ 0. We estimate the Weibull parameters
using maximum-likelihood estimation as α = 0.068 and
β = 0.299. The fitted CDF is shown in dashed line in Fig. 9. In
addition, we notice that the autocorrelation function decreases
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Fig. 9. Cumulative distribution function (CDF) for the network-wide time
between router events.
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fast beyond small values of the lag. This means that, for prac-
tical purposes, one could use i.i.d Weibull random variables to
simulate the time between router events. The appropriateness
of the Weibull distribution for the time between failures, is
discussed in Section VI.

C. Optical-Related Failures

Shared optical failures have an important impact on the net-
work operation, as they affect multiple links and are therefore
more difficult to recover from than individual link failures.
Shared optical-related failures are responsible for 11.4% of
all unplanned failures.

Fig. 10 shows the histogram of the number of IP links
in the same optical event. There are at least two (as their
definition requires an overlap in time) and at most 10 links in
the same event. This is in agreement with sharing information
derived from the IP-to-Optical mapping. For example, the most
frequent number of links sharing a segment according to the
mapping is 2 (which is also the case in optical events); the
maximum number of links that share a segment according to
the mapping is 25 (larger than the maximum number of links
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Fig. 11. Cumulative distribution function (CDF) for the network-wide time
between optical events.

in any optical event).
The CDF of time-to-repair for optical-related failures is

shown in Fig. 5. Short time-to-repair values are more likely
due to faults in the optical switches, while longer times
correspond to fiber cuts or other failures that require human
intervention to be repaired. Similar to the previous classes
of shared failures, the CDF is shifted towards larger values,
compared to individual failures. By their definition, failures in
the same optical event happen within a few seconds from each
other.

Another characteristic of interest is the frequency of optical
failures in the network. Fig. 11 shows the CDF for the time be-
tween two successive optical events, anywhere in the network.
The values range from 5.5 sec up to 7.5 days, with a mean of
12 hours. We use maximum likelihood estimation to estimate
the parameters of a Weibull distribution from the empirical
data and we obtain α = 0.013 and β = 0.445. The resulting
CDF, shown in dashed line in Fig. 11, is an approximation of
the empirical CDF. However, one can observe that there are
more distinct modes in this distribution (e.g. one from 0 up
to 100 sec, a second from 100 sec up to 30 hours and a third
one above that), hinting to more factors that could be further
identified. A closer look in the sequence of events reveals
that times between events below 100 sec correspond to many
closely spaced events on the same set of links that could be
due to a persistent problem in the optical layer. However, the
Weibull fit of the aggregate CDF sufficiently characterizes the
frequency of optical events network-wide.

D. High Failure Links

High failure links include only 2.5% of all links. However,
they are responsible for more than half of the individual
failures and for 38.5% of all unplanned failures, which is the
largest contribution among all classes, see Table III.

As we discussed earlier in Fig. 4, the number of failures
n(l) per high failure link l follows a power-law: n(l) ∝ l−0.73.
Each high failure link experiences enough failures to allow for
a characterization by itself.
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Fig. 12. Time between failures on each high failure link.

The empirical CDF of the time between failures on each
of the high failure links is shown in Fig. 12. Some of them
experience failures well spread across the entire period. They
correspond to the long horizontal lines in Fig. 1 and the smooth
CDFs in Fig. 12. Some other high failure links are more bursty:
a large number of failures happens over a short time period.
They correspond to the short horizontal lines in Fig. 1 and
to the CDFs with a knee in Fig. 12. The mean time between
failures varies from 1 to 40 hours for various links, i.e. a
shorter range than for the other classes. Finally, the CDF of
the time-to-repair for failures on high failure links is shown
in Fig. 5. It is clearly distinct from all other classes- failures
last significantly shorter (up to 30% difference from the CDF
of all unplanned failures and up to 70% from the CDF of the
shared failures). The larger number of shorter failures is in
accordance with our conjecture that high failure links are in
an advanced stage of their lifetime and their components are
probably subject to intermittent and recurring faults.

E. Low Failure Links

In Fig. 4, we have already defined low failure links are
those with less individual failures than the threshold THR.
The number of failures n(l) per link (l) follows roughly a
power-law: n(l) ∝ l−1.35.

A statistically significant characterization is not possible for
every low failure link, as many of them do not experience
enough failures. We group all low failure links together and
study the time between any two failures- the two failures
may happen anywhere in the network and not necessarily on
the same link. Fig. 13(a) shows the empirical CDF for the
network-wide time between failures. It turns out that in this
case too, the empirical CDF is well approximated by a Weibull
distribution with maximum-likelihood estimated parameters
α = 0.046 and β = 0.414; the fitted distribution is shown
in dashed line in the same figure. In Fig. 13(b), we also show
the autocorrelation function for the time between failures at
the 90% confidence interval. We notice that correlation in the
time between failures drops fast after a small lag. This means
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(b) Autocorrelation of (network-wide) time between fail-
ures

Fig. 13. Network-wide time between failures on low failure links

that, as a first approximation, we can use i.i.d. Weibull random
variables with the fitted parameters to regenerate the network-
wide time between individual failures on low failure links.

Finally, the empirical CDF for the time-to-repair in this
class is shown in Fig. 5, together with the rest of the classes. It
is interesting to note that the CDF is very close to the CDF for
all unplanned failures. This fact together with the observation
that low failure links correspond to the roughly random part
of Fig. 1 indicate that, unlike the previous classes, failures in
this class have an “average” behavior and are the norm rather
than the exception of the entire data set.

VI. DISCUSSION

This work offers a detailed characterization of link failures
and is useful in two ways. First, it reveals the nature and extent
of failures in today’s IP backbones. Our methodology can
be used to identify failing network components and pinpoint



areas for improvement. Second, it is the first step toward
building a failure model, as we provide information about the
cause of failures as well as their statistical properties. Such
a model would be useful as an input to various engineering
problems that need to account for failures. In this section,
we discuss how our classification and analysis can be used
toward building a failure model, as well as open issues and
future directions.

IP link failures occur due to several causally unrelated
events at or below the IP layer. Accordingly, we have divided
failures into a number of classes such that their underlying
causes are unrelated. Therefore a backbone failure model can
be obtained by developing a model to characterize each class
independently, and then combining them. For each class, we
have identified a few key properties (such as the time between
failures, the time-to-repair and the distribution of failures
across links and routers), provided their statistics and, when
possible, fitted them using well-known distributions with a
small number of parameters.

Let us first discuss the validity of our classification and then
the modeling of each class separately.

Our classification is based on hints from the ISIS data set,
discussed in detail in Section IV. In the same section, we used
the IP-to-Optical database and confirmed to a very satisfactory
degree the validity of our optical-related class of failures. The
fact that all simultaneous failures involved a common router
was also a confirmation for the router-related class. When we
applied our classification methodology to the measurements,
the statistics of the identified classes turned out to be quite
different from each other, which provides further assurance
about our classification. For example, the CDF of time-to-
repair in Fig. 5 are well separated from each other: the shared
failures “pull” the CDF toward larger values, the high failure
links “pull” it toward smaller values, while the low failure
links are in the middle. A similar separation happens in the
initial Fig. 1: the maintenance and shared failures capture the
vertical lines, the high failure capture the horizontal lines,
the low failure links capture the remaining “random” plot.
However, inferring the failures causes based solely on IS-IS
logs is a difficult reverse engineering problem and results to
a coarse classification. In future work, we plan to correlate
the IS-IS data set with additional logs, such as SONET alarm
logs, router logs, maintenance activity schedules. Even with
such cross examinations, it will still be difficult to uniquely
identify the causes for all failures.

The characterization in Section V provides the basis for
modeling each class separately. There are two interesting
observations from parameterizing the properties of various
classes. First, we observe that the empirical CDF for the
network-wide time between failures (or events) for three
classes of failures was well approximated by a Weibull distri-
bution. These three classes are the router-related (Fig. 9), the
optical-related (Fig. 11) and the low failure links (Fig. 13(a)).
The Weibull distribution has been found widely applicable in
reliability engineering to describe the lifetime of components,
primarily due to its versatile shape [25]. Interestingly enough,

the Weibull distribution is derived as a smallest extreme value
distribution: for a large number of identical and independent
components, the time to the first failure follows a Weibull
[25]. One could say that this explains the good fit in our case:
there is a large number of components in each class and the
network-wide time between failures can be interpreted as the
time to the first failure, assuming a renewal process. However,
there are implicit assumptions in such a claim, which have not
been validated in our data: e.g. independence and similarity
of components and the renewal assumption.

Our second finding is that power-laws describe well the
distribution of failures (or events) across components in the
same class. Indeed, power-laws fitted well the number of router
events per router (see Fig. 7) as well as for the number of
individual failures per high or low failure link (see Fig. 4).
Power-laws are often found to describe phenomena in which,
small occurrences are extremely common, whereas large in-
stances are extremely rare. Examples include man-made or
naturally occurring phenomena, such as word frequencies, in-
come distribution, city sizes and earthquake magnitudes, [26].
Recently, the Internet has been found to display quite a number
of power-law distributions, such as the node outdegrees and
other properties of Internet topologies [27], the sizes and other
attributes of objects in a web page [28] (Pareto distributions
are another expression for power-laws).

Care must be taken if the characterization of Section V is
used as the basis for a failure model. For example, consider the
low failure links in Section V-E and let us try to re-generate
failures that have similar statistics with the measured ones.
In order to decide when the next failure happens, one can
pick a random number from the Weibull distribution for the
network-wide time between failures. In order to decide on
which link this failure happened, one could pick a link using
the power-law distribution. (Similar steps can be followed
to reproduce the router events using the network-wide time
between events and the distribution of events across routers.)
However, using these distributions incorporates the assumption
that the arrival of successive failures is independent of the
distribution across links. Clustering of failures per link would
break this assumption. Therefore, the dependence among the
two dimensions, i.e. “time of occurrence” and “link/router
of occurrence”, needs to be studied further. Furthermore,
the independence among components in the same class is
important. We did find small correlation among low failure
links; however this is only a necessary and not a sufficient
condition for the independence among components.

The characterization presented in this paper is specific to
Sprint’s IP network and one should be careful before blindly
applying it to any kind of network. (For example, the network-
wide time between failures is tied to the specific topology. In
order to develop a model that is applicable to an IP network
regardless of its topology, size and underlying infrastructure,
we need a further characterization of each component and
graph statistics that describe the spatial occurrence of failures.)
In general, the failure behaviour of a network is very related
to its design, maintenance, technology, age and other specific



traits. These traits may vary between networks and also for the
same network in time, which is make them inherently difficult
to model in great precision.

One specific aspect we plan to address in future work, is
the variation in time. Either the stationarity of the failure
classification and characteristics needs to be established or the
parameters of the model need to vary with time. This is an
entire problem by itself and we plan to address it leveraging
on the continuous collection of IS-IS updates from the Sprint
network, and applying our methodology in shorter intervals of
a long total period of time.

It also needs to be explored whether there is a dependence
between the time-to-repair and the failure arrival process, in
which case a marked Markov process (with the mark of each
point being the time-to-repair) could be a more appropriate
modeling approach.

Finally, an important direction for future work is to under-
stand how the failures actually affect the network and service
availability. Factors that determine the impact of a failure to the
service, as perceived by the user, include (i) the characteristics
of the failure (e.g. a shared failure affects multiple links and
is more difficult to recover from) (ii) the network topology
and the actual traffic carried over the network (note that
with appropriate network design, the effect of failures on
the traffic may be minimized) and (iii) the routing protocol
(which determines the forwarding disruption associated with
each failure and thus the effect perceived by the user) or other
protection/restoration mechanisms used at lower layers (that
are able to hide a failure from higher layers).

VII. CONCLUSIONS

In this paper, we analyze seven months of ISIS routing
updates from the Sprint’s IP backbone to characterize failures
that affect IP connectivity. We classify failures according to
their cause and describe the key characteristics of each class.
Our findings indicate that failures are part of the everyday
operation: 20% of them are due to scheduled maintenance
operation, while 16% and 11% of the unplanned failures are
shared among multiple links and can be attributed to router-
related and optical-related problems respectively. Our study
not only provides a better understanding of the nature and
the extent of link failures, but is also the first step towards
developing a failure model. Directions for future work include
(i) the modeling aspects discussed in the previous section
(ii) more root-cause analysis, using correlation with different
failure logs (iii) a better understanding of the impact of failures
on network availability.
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