Network Coding-Aware Queue Management for Unicast Flows over Coded Wireless Networks

Hülya Seferoğlu, Athina Markopoulou
University of California, Irvine
Wireless Mesh Networks

- Throughput increases by mixing packets
One-hop network coding

Output queue

Output queue

Virtual queue

Virtual queue
Motivation

- **Problem:**
 - TCP over COPE does not fully exploit the NC potential

- **Intuition:**
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources
Motivation

- **Problem:**
 - TCP over COPE does not fully exploit the NC potential

- **Intuition:**
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources

- **Possible Solution:**
 - Artificially delay packets at intermediate nodes

 - Throughput increases with small delay, but decreases with large delay

 - Optimal delay depends on the network topology and the background traffic, and may change over time

 - Not practical
Motivation

- **Problem:**
 - TCP over COPE does not fully exploit the NC potential

- **Intuition:**
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources

- **Proposed Solution:**
 - Network Coding-Aware Queue Management (NCAQM)
 - No changes to TCP and MAC
 - Formulate network utility maximization (NUM) problem
 - TCP+NCAQM doubles the network coding benefit of TCP+COPE
Previous Work

Intra-session Network Coding

- Minimum cost multicast for wired and wireless:
 - D. S. Lun, N. Ratnakar, M. Medard, R. Koetter, D. R. Karger, T. Ho, E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet networks,” ToIT’06.

- Minimum cost unicast with for wireless:
Previous Work

Inter-session Network Coding

- **Optimal Scheduling and Routing:**

- **Energy efficient network coding:**

- **End2end pairwise network coding:**
Motivation

Proposed Solution:
- Network Coding-Aware Queue Management (NCAQM)
- No changes to TCP and MAC
- Formulate network utility maximization (NUM) problem
- TCP+NCAQM doubles the network coding benefit of TCP+COPE

Our work in perspective:
- Multiple unicast flows over wireless with given network coding scheme and pre-determined routing paths
- Connection between optimization and protocol design
- Intuition for practical implementation
Outline

- Introduction
- Network Utility Maximization (NUM)
- Network Coding-Aware Queue Management (NCAQM)
- Performance Evaluation
- Extensions & Summary
Network utility maximization

Formulation

\[
\text{maximize } \sum_{s \in S} U_s(x_s)
\]

\[
s.t. \sum_{k \in K_h} \max_{s \in S_k} \{H^{s,k}_h \alpha^{s,k}_h x_s\} \leq R_h \tau_h, \ \forall h \in A
\]

\[
\sum_{h(J) \in A} \sum_{k \in K_h} \alpha^{s,k}_h = 1, \ \forall s \in S, i \in P_s
\]

\[
\sum_{h \in C_q} \tau_h \leq \gamma, \ \forall C_q \subseteq A
\]
Network utility maximization

Solution I:

\[
\max_{s \in S_k} \{H^{s,k}_h \alpha^{s,k}_h x_s \} \quad \equiv \quad \max_m \sum_{s \in S_k} H^{s,k}_h \alpha^{s,k}_h x_s m^{s,k}_h \\
\text{s.t.} \quad \sum_{s \in S_k} m^{s,k}_h = 1
\]

\[
\max_{x, \alpha, \tau} \sum_{s \in S} U_s (x_s) \\
\text{s.t.} \quad \sum_{k \in K_h} \sum_{s \in S_k} H^{s,k}_h \alpha^{s,k}_h x_s (m^{s,k}_h)^* \leq R_h \tau_h, \quad \forall h \in A \\
\sum_{h \in C_q} \sum_{k \in K_h} \alpha^{s,k}_h = 1, \quad \forall s \in S, i \in P_s \\
\sum_{h \in C_q} \tau_h \leq \gamma, \quad \forall C_q \subseteq A
\]
Network utility maximization

Solution II:

\[x_s = (U_s')^{-1} \left(\sum_{h \in A} \sum_{k \in K} \sum_{s \in S} q_h H_h^{s,k} \alpha_h^{s,k} (m_h^{s,k})^* \right) \]

\[q_h(t + 1) = \left\{ q_h(t) + c_t \left[\sum_{k \in K} \sum_{s \in S} H_h^{s,k} \alpha_h^{s,k} (m_h^{s,k})^* x_s - R_h \tau_h \right] \right\}^+ \]

\[\min_{\alpha} \sum_{h(J) \in A} \sum_{k \in K} \sum_{s \in S} q_h H_h^{s,k} (m_h^{s,k})^* \alpha_h^{s,k} \]

\[\text{s.t. } \sum_{h(J) \in A} \sum_{k \in K} \sum_{s \in S} \alpha_h^{s,k} = 1, \forall i \in P_s \]

\[\max_{\tau} \sum_{h \in A} q_h R_h \tau_h \]

\[\sum_{h \in C_q} \tau_h \leq \gamma, \forall C_q \subseteq A \]
Network Coding-Aware Queue Management (NCAQM)

Protocol modifications, mimicking the optimal solution

<table>
<thead>
<tr>
<th>Implementation Summary</th>
</tr>
</thead>
</table>
| Queue management (NCAQM) | • Network coding
• Packet dropping |
| TCP | No change (TCP-SACK) |
| MAC | No change (802.11) |

Minimal and intuitive
NCAQQM
Maintaining queues and packet transmission

\[q_h(t+1) = \left\{ q_h(t) + c_t \left[\sum_{k \in K_k} \max_{s \in S_k} \{ H_{h,k}^{s,k} \alpha_{h,k}^{s,k} x_s \} - R_h \tau_h \right] \right\}^+ \]

Modification I

- \(Q_i\) is the output queue at node \(i\)
- Store network coded packets (when an opportunity arises) instead of uncoded packets
- Keep track of hypearc queues
- Estimate traffic splitting parameters
- Packet scheduling is according to FIFO queue
NCAQM
Rate control and packet dropping

Optimal Rate Control

$$x_s = \left(\sum_{h(i) \in P_s} q_{h(i)}^s \right)^{-1}$$

Sum of network coded queue sizes across all nodes on the path

Modification II

- Upon congestion, compare Q_i^s for all flows s. Drop an uncoded packet from the largest flow.

- How to calculate Q_i^s?
 - Determine hyperarc queues that flow s is dominating (has the largest number of packets)
 - Sum the number of packets of flow s over these hyperarc queues
NCAQM
Implementation Summary

- **Problem:**
 - TCP over COPE does not fully exploit the NC potential

- **Intuition:**
 - Flows coded together do not compete for resources
 - Not enough coding opportunities due to TCP burstiness

- **Modifications**
 - Store network coded packets (when an opportunity arises) instead of uncoded packets.
 - Compare Q_δ for all s. Drop an uncoded packet from the “largest” flow.
Outline

- Introduction
- Network Utility Maximization (NUM)
- Network Coding-Aware Queue Management (NCAQM)
- Performance Evaluation
- Extensions & Summary
Performance evaluation

Scenarios

[Glomosim + NC]
Performance evaluation
Throughput improvement compared to noNC

<table>
<thead>
<tr>
<th></th>
<th>TCP+COPE (%)</th>
<th>TCP+NCAQM (%)</th>
<th>Optimal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & B</td>
<td>12</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Cross</td>
<td>16</td>
<td>31</td>
<td>60</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Grid</td>
<td>8</td>
<td>19</td>
<td>-</td>
</tr>
</tbody>
</table>

TCP+NCAQM doubles the improvement of TCP+COPE
Performance evaluation
Throughput improvement vs buffer size
Extensions
Multi-hop network coding

- Network utility maximization problem is extended for multi-hop network coding
- Distributed solutions are derived
 - Only traffic splitting part changes
 - In practice, traffic splitting parameter is estimated
 - NCAQM is directly applied to multi-hop network coding
Summary

- Proposed queue management schemes to improve the performance of TCP over coded wireless networks
 - Formulated network utility maximization problem and proposed a distributed solution
 - Designed NCAQM scheme, mimicking the structure of the optimal solution. No changes TCP and MAC.
 - Simulations show that TCP+NCAQM doubles the improvement of TCP+COPE as compared to noNC.
Thank you!

hseferog @uci.edu

http://newport.eecs.uci.edu/~hseferog/