Network Coding-Aware Queue Management for Unicast Flows over Coded Wireless Networks

Hülya Seferoğlu, Athina Markopoulou University of California, Irvine

Wireless Mesh Networks

- Y. Wu, P. A. Chou, S. Y. Kung, "Information exchange in wireless network coding and physical layer broadcast", CISS '05.
- S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft "XORs In The Air: Practical Wireless Network Coding, (COPE)", ToN '08.
- Throughput increases by mixing packets

One-hop network coding

- o Problem:
 - TCP over COPE does not fully exploit the NC potential
- o Intuition:
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources

- o Problem:
 - TCP over COPE does not fully exploit the NC potential
- o Intuition:
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources
- o A Possible Solution:
 - Artificially delay packets at intermediate nodes
 Y. Huang, M. Ghaderi, D. Towsley, and W. Gong, "TCP performance in coded wireless mesh networks," SECON '08.
 - o Throughput increases with small delay, but decreases with large delay
 - o Optimal delay depends on the network topology and the background traffic, and may change over time
 - o Not practical

- o Problem:
 - TCP over COPE does not fully exploit the NC potential
- o Intuition:
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources

o Proposed Solution:

- Network Coding-Aware Queue Management (NCAQM)
- No changes to TCP and MAC
- Formulate network utility maximization (NUM) problem
- TCP+NCAQM doubles the network coding benefit of TCP+COPE

Previous Work

Intra-session Network Coding

o Minimum cost multicast for wired and wireless:

- D. S. Lun, N. Ratnakar, M. Medard, R. Koetter, D. R. Karger, T. Ho,
 E. Ahmed, and F. Zhao, "Minimum-cost multicast over coded packet networks," ToIT'06.
- o L. Chen, T. Ho, S. Low, M. Chiang, and J. C. Doyle, "Optimization based rate control for multicast with network coding," Infocom'07.

o Minimum cost unicast with for wireless:

 B. Radunovic, C. Gkantsidis, P. Key, P. Rodriguez, and W. Hu, "Toward Practical Opportunistic Routing with Intra-session Network Coding for Mesh Networks," ToN'09.

Previous Work

Inter-session Network Coding

- o Optimal Scheduling and Routing:
 - P. Chaporkar and A. Proutiere, "Adaptive network coding and scheduling for maximizing througput in wireless networks," Mobicom'07.
 - S. Sengupta, S. Rayanchu, and S. Banarjee, "An Analysis of Wireless Network Coding for Unicast Sessions: The Case for Coding-Aware Routing," Infocom'07.
- o Energy efficient network coding:
 - o T. Cui, L. Chen, and T. Ho, "Energy Efficient Opportunistic Network Coding for Wireless Networks," Infocom'08.
- o End2end pairwise network coding:
 - o A. Khreishah, C. C. Wang, and N. B. Shroff, "Cross-layer optimization for wireless multihop networks with pairwise intersession network coding," JSAC'09.

o Proposed Solution:

- Network Coding-Aware Queue Management (NCAQM)
- No changes to TCP and MAC
- Formulate network utility maximization (NUM) problem
- TCP+NCAQM doubles the network coding benefit of TCP+COPE

o Our work in perspective:

- Multiple unicast flows over wireless with given network coding scheme and pre-determined routing paths
- Connection between optimization and protocol design
- Intuition for practical implementation

Outline

- o Introduction
- Network Utility Maximization (NUM)
- Network Coding-Aware Queue Management (NCAQM)
- o Performance Evaluation
- o Extensions & Summary

Network utility maximization Formulation

Network utility maximization Solution I:

Network utility maximization Solution II:

Network Coding-Aware Queue Management (NCAQM)

Protocol modifications, mimicking the optimal solution

	Implementation Summary		
Queue management (NCAQM)	Network codingPacket dropping		
ТСР	No change (TCP-SACK)		
MAC	No change (802.11)		
	Minimal and intuitive		

NCAQM

Maintaining queues and packet transmission

Queue Size

$$q_{h}(t+1) = \left\{ q_{h}(t) + c_{t} \left[\sum_{k \in K_{k}} \max_{s \in S_{k}} \left\{ H_{h}^{s,k} \alpha_{h}^{s,k} x_{s} \right\} - R_{h} \tau_{h} \right] \right\}^{+}$$

Modification I

- o Q_i is the output queue at node i
- Store network coded packets (when an opportunity arises) instead of uncoded packets
- o Keep track of hypearc queues
- o Estimate traffic splitting parameters
- Packet scheduling is according to FIFO queue

NCAQM Rate control and packet dropping

Optimal Rate Control

Sum of network coded queue sizes across all nodes on the path

Modification II

- Upon congestion, compare Q^s for all flows s. Drop an uncoded packet from the largest flow
- o How to calculate Q_i^s ?
 - Determine hyperarc queues that 0 flow s is dominating (has the largest number of packets)
 - Sum the number of packets of 0 flow s over these hyperarc queues

NCAQM Implementation Summary

- o Problem:
 - TCP over COPE does not fully exploit the NC potential

o Intuition:

- Flows coded together do not compete for resources
- Not enough coding opportunities due to TCP burstiness

o Modifications

- Store network coded packets (when an opportunity arises) instead of uncoded packets.
- Compare Q^s for all s. Drop an uncoded packet from the "largest" flow.

Outline

- o Introduction
- o Network Utility Maximization (NUM)
- o Network Coding-Aware Queue Management (NCAQM)
- Performance Evaluation
- o Extensions & Summary

Performance evaluation Scenarios [Glomosim + NC] X Topology A & B Topology x_1 \mathbf{x}_1 X_2 a $\max\{x_1, x_2\}$ $\max\{x_1, x_2\}$ Grid Topology Cross Topology X₂ X3 X_1 C P2 **p**₁ X₃ P3 X_1 X_2 P3 P4 | X4 ×6 P₆ X_5 **p**5 X4 e

Performance evaluation Throughput improvement compared to noNC

	TCP+COPE (%)	TCP+NCAQM (%)	Optimal (%)
A&B	12	27	33
Cross	16	31	60
X	10	22	33
Grid	8	19	-

TCP+NCAQM doubles the improvement of TCP+COPE

Performance evaluation Throughput improvement vs buffer size

Extensions Multi-hop network coding

- Network utility maximization problem is extended for multi-hop network coding
- Distributed solutions are derived
 - Only traffic splitting part changes
 - In practice, traffic splitting parameter is estimated
 - NCAQM is directly applied to multi-hop network coding

Summary

- Proposed queue management schemes to improve the performance of TCP over coded wireless networks
 - Formulated network utility maximization problem and proposed a distributed solution
 - Designed NCAQM scheme, mimicking the structure of the optimal solution. No changes TCP and MAC.
 - Simulations show that TCP+NCAQM doubles the improvement of TCP+COPE as compared to noNC.

Thank you!

hseferog @uci.edu <u>http://newport.eecs.uci.edu/~hseferog/</u>