Filtering Malicious IP Sources Models and Algorithms

Fabio Soldo, Athina Markopoulou, Katerina Argyraki

UC Irvine, EPFL

Context

Problem: Malicious IP Traffic

- Denial-of-service attacks
- Spam
- • • •

. . .

2

- Solution requires many components
 - Detection of malicious traffic
 - Action: filtering
 - Anti-spoofing, accountability

Denial of Service Attack Sure it's just a Toy but what if it was the Real Thing

 $http://www.networkliquidators.com/gallery/tech_notions/a1-godzilla-denial-of-service-attack.jpg$

Fabio Soldo - UC Irvine - Infocom 09

Part of the Solution: Filtering at the routers

Access Control Lists (ACLs)

- match a packet header against rules,
 e.g. source and destination IP addresses
- filter: ACL that denies access to a source
- Filters implemented in TCAM
 - are a limited resource
 - (< tens of thousands per router)

There are fewer filters than attack

sources

http://www.microimages.com/getstart/imgs/filter.jpg

Fabio Soldo - UC Irvine - Infocom 09

Filter Selection at a Single Router tradeoff: number of filters vs. collateral damage

Our Goal: Filter Selection

- Design a family of filtering algorithms that:
- take as input:
 - a blacklist of malicious sources
 - and possibly a whitelist of legitimate sources
 - a constraint on the number of filters,
 - and possibly other constraints, e.g., link capacities
 - the operator's policy
- produce a compact set of filtering rules:
 - so as to optimize the operator's objective
 - (e.g. filter as many malicious and as few legitimate sources)

Filter Selection Problem Notations

- p/l : IP prefix
- w_i : weight assigned to IP address i
 - <0 "bad" (blacklisted) addresses; >0 for "good" addresses
 - amount of flow sent
 - importance assigned by the operator
 - \square e.g. monetary loss (gain) in filtering out that address
- $x_{p/l} \in \{0,1\}$: decision variable
 - indicates whether or not we filter out IP sources in prefix p/l
- F_{max} : maximum number of available filters

Filter Selection as a Knapsack Problem A General Framework

Fabio Soldo - UC Irvine - Infocom 09

Filtering Problems Overview

FILTER-ALL	FILTER-SOME
	FLOODING
	DISTRIBUTED FILTERING

Add constraint on (single) link capacity

Multiple routers

_ _ _ _ _ _ _ _

Longest Common Prefix (LCP) Tree

Definition

the binary tree whose leaves are addresses in BL, and intermediate nodes represent all and only the longest common prefixes between addresses in BL

Example

For 4bit addresses, BL={1,3,7}, the LCP-Tree(BL) is:

FILTER-ALL Problem Statement

- <u>Given</u>: a blacklist, weight w_i (associated with good lps), F_{max} filters
- <u>choose:</u> source IP prefixes, x_{p/l}
- <u>so as to:</u> filter *all* bad addresses and minimize collateral damage

FILTER-ALL Simple greedy strategies do not work

Merging (N-Fmax) closest leaves: 28

Optimal solution: 26

http://cache.consumerist.com/assets/resources/2007/08/con_greedymoneyman.jpg

FILTER-ALL DP Algorithm (1)

• F: filters available at node (prefix) p

FILTER-ALL DP Algorithm (2)

Algorithm:

- Build LCP-Tree(BL)
- Initialize leaves: z_{leaf}(F)=0, F=1,...,Fmax
- For all other nodes:

$$z_p(1) = g_p \ \forall p$$

$$z_p(F) = \min_{n=1,\dots,F-1} \left\{ z_{s_l}(F-n) + z_{s_r}(n) \right\}, \ F > 1$$

Return: z_{root}(Fmax)

Analysis:

- Optimality
- Complexity: **linearly increasing with size of blacklist**, N:
 - O(mN) + O(FmaxN), where m=32 (length of bit string) and Fmax<<N

FILTER-SOME Problem Statement

- <u>Given</u>: a blacklist, weight w_i of every address i (>0 for good and <0 for bad) and F_{max} filters
- <u>choose:</u> source IP prefixes, X_{p/I}
- so as to: filter some bad addresses minimize total weight

FILTER-SOME DP Algorithm

• F: filters available at node (prefix) p

SL

filters within left subtree

F-n≥0,

n≥0, filters within right subtree

$$z_p(F) = \min_{n=0,\dots,F} \left\{ z_{s_l}(F-n) + z_{s_r}(n) \right\}$$

p

SR

n=0, I,...,F: means we may not block all malicious lps (leaves)

FLOODING Motivation

- DDoS: Malicious hosts coordinate to flood the access link to a victim
- Weights of every address represent the traffic volume
- Bound on link
 capacity, C

FLOODING Problem Statement

- <u>Given</u>: a blacklist BL, a set of legitimate sources, weight of address = traffic volume generated, a constraint on the link capacity C, and F_{max} filters
- <u>choose:</u> source IP prefixes, x_{p/l}
- so as to: minimize the collateral damage and fit the total traffic within the link capacity

FLOODING Solution

FLOODING is NP-hard

- reduces to knapsack with cardinality constraint
- An optimal pseudo-polynomial algorithm, solves the problem in: O(CN)
 - similar to the DP for FILTER-ALL/SOME
 - extended to take into account the capacity constraint

$$z_p(F,c) = \min_{\substack{n=0,...,F \ m=0,...,c}} \{ z_{s_l}(F-n,c-m) + z_{s_r}(n,m) \}$$

DISTRIBUTED FILTERING for FLOODING Motivation

- A single network (ISP or enterprise) may deploy filters on several routers
 - increase filter budget
- Each router (u) has its own:
 - view of good/bad traffic
 - capacity in downstream link
 - filter budget

The question is to choose: not only which prefix but also on which router

DISTRIBUTED FILTERING Problem Statement

DISTRIBUTED FILTERING Solution

Consider the partial lagrangian:

$$egin{aligned} L(x,\lambda) &= \sum_{u\in\mathcal{R}}\sum_{p/l}g^{(u)}_{p/l}x^{(u)}_{p/l} + \sum_{A\in\mathcal{BL}}\lambda_i\Big(\sum_{u\in\mathcal{R}}\sum_{p/l
i}x^{(u)}_{p/l} - 1\Big) \ &= \sum_{u\in\mathcal{R}}\Big(\sum_{p/l}\Big(g^{(u)}_{p/l} + \lambda_{p/l}\Big)x^{(u)}_{p/l}\Big) - \sum_{A\in\mathcal{BL}}\lambda_i \end{aligned}$$

Each Subproblem

Is an instance of **FLOODING:** can be solved independently at each router

$$\begin{split} \min \sum_{p/l} \Big(g_{p/l}^{(u)} + \lambda_{p/l} \Big) x_{p/l}^{(u)} \\ \text{s.t.} \sum_{p/l} x_{p/l}^{(u)} \leq F_{max}^{(u)} \\ \sum_{p/l} \Big(g_{p/l}^{(u)} + b_{p/l}^{(u)} \Big) (1 - x_{p/l}^{(u)}) \leq C^{(u)} \end{split}$$

Master Problem

Can be solved using a subgradient method

$$\max_{\lambda_i \ge 0} \sum_{u \in \mathcal{R}} h_u(\lambda) - \sum_{i \in \mathcal{BL}} \lambda_i$$

Conclusion

- Introduce a framework to model filter selection as a resource allocation problem
- Designed and analyzed efficient algorithms to solve filter selection problems

